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Abstract

Background: Innate immunity is the first line of defense against microorganisms in vertebrates
and acts by providing an initial barrier to microorganisms and triggering adaptive immune
responses. Peptides such as �-defensins are an important component of this defense, providing a
broad spectrum of antimicrobial activity against bacteria, fungi, mycobacteria and several
enveloped viruses. �-defensins are small cationic peptides that vary in their expression patterns
and spectrum of pathogen specificity. Disruptions in �-defensin function have been implicated in
human diseases, including cystic fibrosis, and a fuller understanding of the variety, function and
evolution of human �-defensins might form the basis for novel therapies. Here we use a
combination of laboratory and computational techniques to characterize the main human
�-defensin locus on chromosome 8p22-p23.

Results: In addition to known genes in the region we report the genomic structures and
expression patterns of four novel human �-defensin genes and a related pseudogene. These genes
show an unusual pattern of evolution, with rapid divergence between second exon sequences
that encode the mature �-defensin peptides matched by relative stasis in first exons that encode
signal peptides.

Conclusions: We conclude that the 8p22-p23 locus has evolved by successive rounds of
duplication followed by substantial divergence involving positive selection, to produce a diverse
cluster of paralogous genes established before the human-baboon divergence more than 23
million years ago. Positive selection, disproportionately favoring alterations in the charge of
amino-acid residues, is implicated as driving second exon divergence in these genes.
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Background 
The vertebrate innate immune system provides protection

against a wide range of pathogenic microorganisms, and

defensins are an important component of this response as

well as having a role in adaptive immunity. In mammals, the

defensins can be divided into the �- and �-defensin subfami-

lies on the basis of differences in the spacing of six, conserved

cysteine residues. The �-defensins are produced by neu-

trophils and intestinal Paneth cells, whereas the �-defensins

are mainly produced by epithelial cells in contact with the

environment. The functions of human �-defensins seem to

be disrupted in cystic fibrosis and inflammatory skin lesions

such as psoriasis [1,2]. A fuller knowledge of the human

complement of �-defensins may therefore be useful in
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understanding human disease as well as in the design of

novel, synthetic antimicrobial peptides.

The known human �-defensin genes show a conserved two-

exon structure: the first exon encodes a signal peptide

whereas the second exon encodes a short propiece and the

mature defensin peptide with a characteristic six-cysteine

motif and many basic amino-acid residues [3]. The

�-defensin genes are present at five syntenic loci in the

human and mouse genomes, with the main locus on human

chromosome 8p22-23 and mouse chromosome 8A3 [4]. All

four, full-length, human �-defensins that are present in the

public databases are from 8p22-23 (GenBank sequence

accession numbers are human �-defensin 1 or DEFB1,

Q09753; DEFB4 (formerly DEFB2), O15263; DEFB103 (for-

merly DEFB3), NP_061131; DEFB104 (formerly DEFB4),

CAC85520), but there are substantial differences in their

coding sequences, expression patterns and antimicrobial

activities. DEFB1 is constitutively expressed in many tissues

(respiratory tract, kidney, urogenital and oral cavity epithe-

lia) whereas DEFB4 is expressed in response to bacterial

infection or proinflammatory agonists in respiratory tract

epithelial cells, and epidermal and gingival keratinocytes.

Both DEFB1 and DEFB4 proteins have salt-sensitive, bacte-

ricidal activity against a spectrum of Gram-positive and

Gram-negative enteric, urinary tract, and respiratory bacte-

ria in vitro [5]. DEFB103 is expressed in epithelial cells,

adult heart, skeletal muscle, placenta and fetal thymus, it has

broad-spectrum antimicrobial activity under conditions of

low salt and (unusually among �-defensins) it retains activ-

ity against Staphylococcus aureus even in physiological

saline. DEFB104 achieves highest expression in the testis

(with lower levels in gastric antrum, neutrophils, uterus,

thyroid, lung and kidney) and was found to be inducible in

the respiratory epithelium upon exposure to Pseudomonas

aeruginosa or Streptococcus pneumoniae [3].

The evolution of various genes involved in the vertebrate

immune system has involved duplication followed by selec-

tion to provide responses to a wide range of pathogens, with

well documented examples in immunoglobulin [6] and

major histocompatibility complex genes [7]. Hughes and

Yeager [8] studied the evolution of �-defensins and found

evidence for duplication followed by diversification driven

by positive selection. Similar phenomena were also impli-

cated in the evolution of bovine �-defensins [9] and amphib-

ian antimicrobial peptides [10]. In contrast, DEFB1 was

found not to vary significantly across primates [11].

Here we describe a combined strategy to identify further

�-defensin genes in the draft human genome sequence using

computational techniques and verification using reverse

transcription-PCR. Four full-length, novel genes (DEFB105,

DEFB106, DEFB107, DEFB108) and a related pseudogene

DEFB109p are reported, as well as their expression patterns and

evidence for their evolution by duplication and positive selection.

Results 
All TBLASTX [12] matches to human bacterial artificial

chromosome (BAC) clone sequences were in the 8p22-p23

region in a subsection of FPC contig ctg45 (1 April freeze

WashU Accession Map Layout Files [13]) bounded by the

BAC clones RP11-161B1 (AC079018) and SCb-177K12

(AF252831) and consisting of 53 BACs in total. These 53

BACs were deemed to represent the human �-defensin gene

family locus and were masked for repetitive sequences using

RepeatMasker [14]. This locus was the subject of a more sen-

sitive search for the presence of novel human �-defensins,

using a hidden Markov model constructed from an align-

ment of the GenBank �-defensin sequences mentioned

above. As well as the known, full-length human �-defensins

and the related epididymis-specific SPAG11 (formerly EP2)

gene [15], two novel �-defensin genes, DEFB105 and

DEFB106, were identified in this search and were then

incorporated into the previous hidden Markov model.

Further searches with this revised model identified a further

three genes: DEFB107, DEFB108 and DEFB109p. None of

these five genes was found in the EMBL sequence database

(24 June 2002 release) or in the Ensembl genomic annota-

tion database (version 6.28.1 [16]). The novel gene

DEFB109p appears to be a pseudogene as it contains a pre-

mature stop codon within its first exon, as observed in three

independently sequenced, overlapping 8p22-p23 BAC

sequences (accession numbers AC068974, AC087203 and

AF252830). Given the absence of premature stop codons in

the other four genes, despite considerable divergence among

them (they encode only 18-28% identical amino-acid

residues), it is unlikely that they too are pseudogenes.

Many putative final exon fragments from novel mouse

�-defensins were recently reported by Schutte et al. [4].

However, their data were incomplete and were not sup-

ported by experimental verification. They used computa-

tional techniques to identify sequences matching a central

portion of the mature defensin peptide including the six-cys-

teine motif characteristic of �-defensins. At best, this

method could only identify incomplete final exons encoding

this region of the peptide. No attempt was made to delineate

precisely the boundaries of final exons or to identify first

exons by these authors. In the present study we restrict our

attention to complete genes, present in a BAC-clone-based

map of the region and verified as encoding real transcripts

by RT-PCR. Our full-length novel genes correspond to five

final exon fragments (DEFB5, DEFB6, DEFB7, DEFB8 and

DEFB9) reported by Schutte et al. [4] and we have adopted

the official HUGO Human Gene Nomenclature Committee

[17] names for these fragments: DEFB105, DEFB106,

DEFB107, DEFB108 and DEFB109p (amended from

DEFB109) respectively.

RT-PCR amplification confirmed the presence of the compu-

tationally predicted, functional genes, but sequencing of

these products and subsequent alignment to genomic

R31.2 Genome Biology 2003, Volume 4, Issue 5, Article R31 Semple et al. http://genomebiology.com/2003/4/5/R31

Genome Biology 2003, 4:R31



sequence also uncovered several instances where the actual

gene structures differed from those that were predicted. In

two cases, DEFB106 and DEFB107, splice sites other than

those predicted were used and it was found that the pre-

dicted coding sequences had been respectively 36 base-pairs

(bp) longer and 9 bp shorter than the actual coding

sequences. In the case of DEFB105 RT-PCR verified the two

predicted exons but also uncovered an additional, 42-bp

intervening exon. The RT-PCR analysis also produced inter-

esting results with respect to the coding sequence of

DEFB108. In four independent, sequenced RT-PCR prod-

ucts from one mRNA sample, the amplified DEFB108

sequence was consistently found to differ from the computa-

tionally predicted sequence from the human public draft

sequence at three nucleotide sites, but was otherwise identi-

cal. The three differences observed between predicted and

amplified sequences respectively were an A to G at

nucleotide 62 (which causes a conservative amino-acid

change from lysine to arginine), a T to C at nucleotide 111

(which is a synonymous change) and a C to T at nucleotide

120 (also synonymous). This indicates novel human poly-

morphisms in DEFB108 and is consistent with observations

of high degrees of polymorphism for other human �-

defensins [18] (see also Additional data files 1-6 for the novel

gene sequences confirmed by RT-PCR and the computation-

ally predicted sequence of DEFB109p).

Figure 1a depicts the relative positions and orientations of

the four novel genes, the novel pseudogene DEFB109p and

four known genes in the vicinity: DEFB2-4 and the related

epididymis-specific SPAG11. This cluster is about 350 kilo-

bases (kb) centromeric of the DEFB1 gene. A phylogenetic

tree relating functional human �-defensins (Figure 1b)

reflects the spatial distribution of these genes, with the

cluster of genes in Figure 1a appearing to form a clade sepa-

rate from DEFB1. The simplest explanation for the origin of

this cluster is a series of local duplication events followed by

substantial divergence. In addition it seems that the four

novel functional genes are more closely related to DEFB104

than to DEFB4 or DEFB103. Three of these genes, DEFB106,

DEFB105 and DEFB108, encode mature peptides exhibiting

the same spacing of conserved cysteine residues as seen in

DEFB104, although in DEFB105 there is an extra cysteine

residue (amino acid 43) towards the amino-terminal end of

the mature peptide. DEFB105 also encodes an unusually

long propiece peptide region in the second of its three exons.

Strikingly, the DEFB107 protein lacks the first canonical

�-defensin cysteine altogether and instead has a serine

residue at the same position (Figure 2). The changes in the

number of cysteine residues seen in DEFB105 and DEFB107

are likely to have important functional consequences. The

predicted mature peptides for the four novel, functional

�-defensins presented here have a similar proportion of

cationic residues to human DEFB104, with higher propor-

tions of anionic residues (10-13%) than are seen in human

DEFB1, DEFB4 and DEFB103 (less than 4%). Indeed the pI

of DEFB107 and DEFB108 are 6.74 and 6.89 respectively,

whereas all other �-defensins described to date are cationic.

This relative increase in anionic residues is expected to affect

function, as the action of defensins initially involves interac-

tions between the cationic mature defensin peptides and

anionic membrane lipids [19]. Expression analysis for the

novel, functional human genes was carried out by RT-PCR

on a panel of human RNA samples and the novel gene PCR

products were confirmed by hybridization to an internal

probe (Figure 3). Expression of all four novel genes was

readily detected in testis. A longer exposure period revealed

low levels of expression of DEFB108 in the liver (Figure 3,

left-hand panel of DEFB108). Expression was not detected

in any of the other tissues analyzed.

Six genes highly similar (85-98% identical at the amino-acid

level) to three of the novel human �-defensins (DEFB105,

DEFB106 and DEFB107) as well as to DEFB4, DEFB103 and

DEFB104, were found within two olive baboon (Papio cyno-

cephalus anubis) draft genomic sequences (GenBank acces-

sion numbers AC116558 and AC116559) using BLAST.

Full-length sequences were obtained for each baboon gene

except the putative DEFB4 ortholog (which lacks a first exon

because of gaps in the draft genomic sequences); in all other

cases the exonic structure of the putative baboon ortholog

was identical to that of the human gene (Figure 2). It is very

likely that these sequences originate from the baboon locus

orthologous to the human region under study, but without

more complete sequence or mapping data for the baboon

genome it is impossible to be certain. These novel baboon

gene sequences (see Additional data files for the accession

numbers), together with the published sequence for olive

baboon �-defensin 1 (AAK61474) and the full-length human

�-defensins formed the basis for our evolutionary analyses.

Figure 4 shows dN (number of nonsynonymous substitutions

per nonsynonymous site) plotted against dS (number of syn-

onymous substitutions per synonymous site) for compar-

isons between the first exon (which encodes the signal

peptide) and second exon (which encodes the mature

defensin) from all human and baboon genes (the full dN, dS

and dN - dS estimates for all first and second exon compar-

isons are available in Additional data file 7). Two major

trends are observable. In the vast majority of first exon com-

parisons dS exceeds dN (Figure 4a) and this excess is statisti-

cally significant in almost every case according to two-tailed

Z-test results for all human and baboon genes, but there

were no significant excesses of dS according to the more rig-

orous Fisher’s exact test (data not shown). Thus the rates of

substitution in first exons indicate that they are evolving

approximately neutrally, perhaps under weak purifying

selection. The pattern seen in the second exon comparisons

is quite different (Figure 4b). In the second exons dN often

exceeds dS, and even in these short sequences, for certain

comparisons this excess reaches statistical significance. Sig-

nificant excesses of dN over dS are seen between DEFB1 and
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DEFB104 and between DEFB103 and DEFB107, with similar

effects seen among the second exons of orthologous baboon

genes (Table 1) using the method of Nei and Gojobori [20]. 

Moreover, in these comparisons dS tends to be rather low

relative to the rest of the data set (mean dS = 0.464).

Similar results are obtained using this method either modi-

fied to take account of the transition-to-transversion ratio R

[21] or using the Jukes-Cantor correction, although the

unmodified method is thought to be a more reliable basis

for the detection of positive selection [22]. If we assume

that synonymous substitutions (which are selectively

neutral or nearly so) have accumulated regularly with time,

such a pattern of substitution suggests that duplication was

followed by rapid nonsynonymous change that subse-

quently decelerated. Most comparisons involving the

second exons of DEFB103, DEFB104 and DEFB107 with the

second exons of other genes in the dataset show excesses of

dN over dS, but these excesses fail to reach significance by

either of the tests used (data not shown). Although some of
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Figure 1
Genomic organization of novel human �-defensin genes. (a) The genomic organization of novel human �-defensin genes DEFB105, DEFB106, DEFB107,
DEFB108 and DEFB109p on 8p22-p23. The horizontal lines represent the three BAC clones in which all novel genes were found. Exons are represented
as triangles with the vertical side representing the position of the exon. Exons above the horizontal lines are transcribed from the strand represented by
the original BAC clone sequence entries whereas those below are transcribed in the opposite direction from the complementary strand. The region
depicted is about 350 kb centromeric of DEFB1. Those genes marked with an asterisk were found to have orthologs in baboon genomic sequences
(AC116558 and AC116559). (b) A phylogenetic tree of functional human �-defensins using the prepropeptide sequences encoded by the genes shown in
(a). The phylogenetic tree was rooted with chicken gallinacin 1 (GGGAL1; P46156) and the reliability of each branch was assessed using 1,000 bootstrap
replications.
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the comparisons shown in Figure 4b indicate an excess of

dS over dN, this is never significant by either of the two sta-

tistical tests used.

There is no detectable similarity between the introns of the

genes under study except between the five putatively ortholo-

gous pairs of human and baboon genes where intronic
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Figure 2
(a) Alignment and (b) phylogenetic tree of human and baboon �-defensin protein sequences. The tree was rooted with chicken gallinacin 1 (GGGAL1;
P46156) and the reliability of each branch was assessed using 1,000 bootstrap replications. The alignment shows the same sequences with the estimated
locations of the signal peptide and mature peptide regions; the intervening region is the propiece. The long arrow indicates the position of first introns: in
each case except DEFB105 the intron splits the codon that encodes the residue immediately before the arrow. The short arrow indicates the second
intron, found only in DEFB105. The shading represents the degree of conservation at each position in the alignment, taking into account similar
physicochemical properties of residues. The six canonical cysteines are indicated under the appropriate alignment positions. X at residue 14 denotes the
location of the premature stop codon in DEFB109p.
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sequence is available (DEFB103, DEFB104, DEFB105,

DEFB106 and DEFB107): each pair shares 74-91% identity

over 80-99% of their lengths in spite of many small indel

events. In every case these pairs of orthologous introns show a

substitution rate that is not significantly different from the

value of dS obtained for the coding sequences. In particular, the

orthologous intron sequence comparisons for DEFB103,

DEFB104 and DEFB107 give substitution-rate estimates of

0.106�0.010, 0.081�0.005 and 0.066�0.004 respectively,

which are consistent with the dS estimates for the coding

sequences of these pairs: 0.166�0.077, 0.085�0.058 and

0.053�0.049. Thus, the excess of nonsynonymous substitu-

tions observed for the second exons of these genes is not attrib-

utable to artificially low dS estimates as a result of sampling

error, but is caused by a real increase in dN relative to dS, which

is the pattern expected to be generated by positive selection.

Averages for the ratio of radical to conservative amino-acid

changes, pR/pC calculated over 47 mammalian genes were

reported as 0.81 and 0.49 for charge and the Miyata-Yasunaga

(polarity and volume) classification respectively [23]. The

equivalent values from Table 1, for comparisons between the

second exons of genes showing evidence of positive selection,

are all greater than these averages. Furthermore Table 1

shows that there has been a higher rate of change with

respect to charge than with respect to polarity and volume

(Miyata-Yasunaga amino-acid classification). That is, where

there is evidence of positive selection, most nonsynonymous

changes have tended to change the charges of the residues

encoded but have tended to conserve the polarities and

volumes of those residues.

Likelihood ratio tests (LRTs), as implemented by the PAML

package [24] also indicate the operation of positive selection
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Figure 3
Expression patterns of novel human �-defensin genes. RT-PCR analysis of
novel human gene expression carried out on a panel of human RNA
samples. The tissues are indicated with a plus (+) and a minus (-) reverse
transcriptase reaction shown for each sample. GAPDH RT-PCR was
carried out as a control.
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at sites within second exons. These tests indicate whether

data (the substitutions inferred from an alignment) are best

explained by one of two models of � = dN/dS. Since � is a

measure of selective pressure on proteins, these models can

be used to assess the evidence for variable selective pres-

sures among sites. In a test for positive selection (the pres-

ence of sites at which � > 1) two statistical distributions are

compared: a null model that uses a distribution that does not

allow for sites with � > 1 and another model which does

allow such sites. Three pairs of site-specific likelihood

models were compared that assume variable selective pres-

sure (as determined by the value of �) among sites but no

variation among sequences in the dataset: M0 (one-ratio)

and M3 (discrete), M1 (neutral) and M2 (selection), and M7

(beta) and M8 (beta+�) [25]. The second exon of the

pseudogene DEFB109p was omitted from the analysis. The

discrete model (M3) with two site classes suggested that 41%

of second-exon sites are under positive selection with � =

1.67 and identified nine amino-acid sites under positive

selection at the 95% cutoff. M3 was a significantly better fit

to the data than the one-ratio model M0; the LRT statistic is

2�l = -1061.79-(-1004.12) = 115.32, and p < 0.001 with two

degrees of freedom. However the M0-M3 comparison is

essentially a test of variability in the � ratio among sites and

does not constitute a rigorous test of positive selection.

Model M1 (neutral) assumes two site classes with � = 0 and

�1 = 1 fixed and with the proportions p and p1 estimated.

Model M2 (selection) adds a third site class with the ratio �2

estimated, it suggests that about 47% of sites are under posi-

tive selection with �2 = 53.17 and identified 12 amino-acid

sites under positive selection at the 95% cutoff. The two

models can be compared using an LRT as follows, 2�l =

-1030.51 -(-1022.03) = 16.97; p < 0.001 with 2 df. So model

M2 is significantly better than M1. Model M7 (beta) assumes

a beta distribution for � over sites. The beta distribution is

limited to values between 0 and 1, providing the most flexi-

ble null hypothesis for testing positive selection. Model M8

(beta+�) adds another site class to M7 (beta), with the �

ratio estimated from the data. However, the difference

between M7 and M8 is not statistically significant, as indi-

cated by the LRT: 2�l = -1006.44 -(-1006.44) = 0. Nine par-

ticular sites were implicated (in both M2 and M3 models) as

being under positive selection with greater than 95% confi-

dence: positions 43, 44, 48, 52, 56, 57, 69, 70 and 73 in

Figure 2a. All these positions are close or adjacent to a con-

served cysteine residue and so it is possible they are important

co
m

m
ent

review
s

repo
rts

depo
sited research

interactio
ns

info
rm

atio
n

refereed research

http://genomebiology.com/2003/4/5/R31                                                        Genome Biology 2003, Volume 4, Issue 5, Article R31 Semple et al. R31.7

Genome Biology 2003, 4:R31

Table 1

Results of comparisons between the second exons of human and baboon genes demonstrating positive selection

DEFB1 vs DEFB104 DEFB103 vs DEFB107

Homo sapiens P. cynocephalus anubis H. sapiens P. cynocephalus anubis

S* 17.917±1.180 17.167± 1.169 16.917±1.165 16.833±1.124

N 48.083±1.144 48.833±1.181 49.083±1.156 49.167±1.124

s 6.25±1.954 6.25±1.954 4.5±1.796 4±1.767

n 35.75±3.482 34.75±3.559 27.5±3.382 27±3.373

dS 0.349±0.103 0.364±0.106 0.266±0.104 0.238±0.105

dN 0.744±0.062 0.712±0.063 0.560±0.064 0.549±0.067

Z-test† 0.001 0.005 0.020 0.008

Fisher’s‡ 0.012 0.019 0.060 0.023

Charge§

pC 0.498±0.088 0.535±0.102 0.447±0.094 0.409±0.094

pR 0.784±0.077 0.830±0.086 0.571±0.087 0.575±0.085

pR/pC 1.57¶ 1.55¶ 1.28 1.41

M-Y#

pC 0.577±0.116 0.708±0.108 0.598±0.124 0.581±0.124

pR 0.618±0.092 0.634±0.100 0.467±0.080 0.446±0.082

pR/pC 1.0 0.90 0.78 0.77

*Estimates (�SE) of the number of synonymous sites (S), number of nonsynonymous sites, numbers of synonymous substitutions (s), numbers of
nonsynonymous substitutions (n), the number of synonymous substitutions per synonymous site (dS) and the number of nonsynonymous substitutions
per nonsynonymous site (dN). †The result of a two-tailed Z-test of dN - dS = 0. ‡The result of a Fisher’s exact test. §Rates of radical (pR) and conservative
(pC) changes in amino-acid properties, with the ratio of radical to conservative changes (pR/pC) for residues categorized in terms of their charges. ¶pR is
significantly greater than pC. #Rates of radical (pR) and conservative (pC) changes in amino-acid properties, with the ratio of radical to conservative
changes (pR/pC) for residues categorized in terms of the Miyata-Yasunaga classification (M-Y; a combination of polarity and volume).



in determining �-defensin structure. In summary, the PAML

analysis indicates that � varies significantly between sites, and

in two separate LRTs the parameters estimated suggest a sub-

stantial proportion of sites are under positive selection. In

spite of this, the most stringent test (M7 versus M8) does not

indicate a significant difference from neutrality. This result

may be attributable to the extremely short lengths (33 codons

aligned omitting positions with gaps) of the sequences

aligned, such an effect was seen when analyzing short (130

codons) lysozyme sequences in the same way [25].

Discussion 
This study represents the most detailed study of a human

�-defensin cluster to date, including the full-length sequences of

four novel genes (DEFB105, DEFB106, DEFB107, DEFB108),

and a novel pseudogene (DEFB109p), their expression pat-

terns and sequences for the baboon orthologs of six genes

from this cluster. The 8p22-23 defensin locus appears to have

evolved by successive rounds of duplication followed by sub-

stantial divergence, to produce a diverse cluster of paralogous

genes defined by these four novel genes and four known

�-defensin genes (DEFB4, DEFB103 and DEFB104). Diver-

gence has been most rapid within the second exons of these

genes, which encode the mature �-defensin peptide, with

many comparisons between paralogous genes showing an

excess of nonsynonymous over synonymous substitutions.

Statistically significant evidence of elevated nonsynonymous

change is seen by two methods in the second exons, indicating

the action of positive selection. By contrast, comparisons

between the first exons of genes from this cluster, which

encode a signal peptide, show an excess of synonymous sub-

stitutions consistent with neutral evolution or weak purifying

selection. The duplication and subsequent positive selection of

these genes predates human-baboon divergence more than 23

million years ago and is consistent with observations that

DEFB1 has undergone very little change during the evolution

of primates [11]. The positive selection observed has tended to

change the charges of residues encoded more than other quali-

ties such as residue polarity or volume. As seems to be the case

with other antimicrobial peptides, such as MHC receptors,

immunoglobulins and �-defensins [6-8], this selection may be

a response to the rapid evolution of pathogens.

In this study the computationally predicted gene structures

were found by laboratory work to deviate from the actual

structures in three out of five novel genes. These errors in

the predictions arose in spite of the fact that the predictions

were based on all the �-defensin protein-sequence data

available and involved three completed BAC sequences

rather than unfinished, gapped sequence. This has implica-

tions for purely computational approaches to novel gene dis-

covery such as that of Schutte et al. [4].

DEFB104 and DEFB108 have no detectable orthologs in

the mouse genome and therefore appear to have arisen by

duplication since the divergence of rodents and primates;

alternatively, there could have been a loss of these genes in

the rodent lineage. They are also the best candidates for

primate-specific �-defensins as they lack orthologs within all

other known mammalian defensins, although our knowledge

of mammalian defensins is currently incomplete. As we have

shown, the evolution of the DEFB104 mature peptide has

been driven by positive selection since its emergence, which

is consistent with its novel antimicrobial properties [26]. All

defensins were thought to exist as monomers stabilized by

three disulfide bridges between their three pairs of con-

served cysteines [19]. However, when compared with other

known human �-defensins (DEFB1, DEFB4 and DEFB103),

DEFB104 was found to have a different number of residues

between its second and third, and between its fourth and

fifth cysteine residues. Furthermore, DEFB104 was found to

have bactericidal activity against Pseudomonas aeruginosa

that was more than sixfold stronger than for any other

�-defensin [26]. Three of the novel genes described here

(DEFB105, DEFB106 and DEFB108) encode mature pep-

tides exhibiting the same spacing of conserved cysteine

residues as seen in DEFB104 as well as sharing similar

expression patterns, with highest expression in the testes.

The functional divergence of �-defensin genes appears to

have continued following human-baboon divergence, as

exemplified by DEFB107 which displays a serine residue

instead of the first canonical cysteine seen in the baboon

ortholog. It is notable that a novel mouse �-defensin gene

(Defr1), which also lacks the first canonical cysteine, has

potent antimicrobial activity against a spectrum of pathogens

[27]. In addition a polymorphism in the DEFB1 gene which

alters the first canonical cysteine to a serine residue has been

shown to produce a peptide which is as active against the

microorganisms tested as the usual form [28]. The unusual

amino-acid composition of the proteins encoded by the novel

genes presented here suggests that they may possess novel

functions, indeed the cationic nature of �-defensins is lost in

DEFB107 and DEFB108. As shown recently, there may be

more subtle consequences of variation in �-defensin protein

sequences, affecting dimerization as well as net charge and

disulfide bridges [29]. It is worth noting that recent research

has identified additional functions for �-defensins that link

the innate and adaptive immune response. Both human and

mouse �-defensins have been shown to be chemotactic for

immature dendritic cells and memory T cells via the CCR6

chemokine receptor [30]. The mouse �-defensin Defb2 has

been shown to act directly on immature dendritic cells as an

endogenous ligand for Toll-like receptor 4 (TLR-4), inducing

upregulation of co-stimulatory molecules and dendritic cell

maturation. These events, in turn, trigger robust, type-1

polarized adaptive immune responses in vivo, which suggests

that �-defensins may have an important role in immunosur-

veillance against pathogens [31].

The expression of the novel antimicrobial peptides reported

here in the human male reproductive tract is also of interest.
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Recent work has shown that the male urogenital tracts in

mammals express a broad range of �- and �-defensins, with

human DEFB1 expressed in testicular biopsies, seminal

plasma and ejaculated spermatozoa [32]. Together with our

results demonstrating that DEFB105, DEFB106, DEFB107

and DEFB108 are predominantly expressed in the testes,

these data suggest that the male reproductive tract has a

complex innate defense mechanism.

Conclusions 
The 8p22-23 �-defensin locus has evolved by duplication and

subsequent divergence, to produce a diverse cluster of paralo-

gous genes defined by four novel genes (DEFB105, DEFB106,

DEFB107, DEFB108), a novel pseudogene (DEFB109p), and

three known genes (DEFB4, DEFB103 and DEFB104). We

present full-length sequences for the four novel genes, their

expression patterns and the predicted sequences for the

baboon orthologs of six genes from this cluster. Although

comparisons among first-exon sequences of these human

genes show little variation, the second-exon sequences that

encode the mature �-defensin peptides show substantial

divergence. Evolutionary analyses suggest that the diver-

gence seen in second exons has involved positive selection

disproportionately favoring alterations in the charge of

amino-acid residues.

Materials and methods 
Identification of novel genes 
The following mammalian �-defensin sequences were retrieved

from GenBank. Mouse �-defensins: 1-11 (NP_031869,

NP_034160, NP_038784, NP_062702, NP_109659,

NP_473415, NP_631966, CAC44635, NP_631965, CAD26894,

CAD26895), �-defensin 13 (NP_631969), �-defensin 15

(NP_631970), �-defensin 35 (NP_631970), defensin-related

peptide (AJ344114). Human: DEFB1 (Q09753), DEFB4

(O15263), DEFB103 (NP_061131), DEFB104 (CAC85520).

Rat: Rattus norvegicus �-defensin 1 (NP_113998),

�-defensin 2 (O88514). Cow: Bos taurus �-defensin 1

(P46159), �-defensin 2 (P46160), �-defensin 3 (P46161),

�-defensin 4 (P46162), �-defensin 5 (P46163), �-defensin 6

(P46164), �-defensin 7 (P46165), �-defensin 8 (P46166),

�-defensin 9 (P46167), �-defensin 10 (P46168), �-defensin

11 (P46169), �-defensin 12 (P46170), �-defensin 13 (P46171)

, tracheal antimicrobial peptide (P25068), lingual antimicro-

bial peptide (Q28880), enteric �-defensin (O02775),

�-defensin C7 (O18815). Pig: Sus scrofa �-defensin 1

(O62697). Goat: Capra hircus �-defensin 1 (O97946),

�-defensin 2 (CAA08905). Sheep: Ovis aries �-defensin 1

(O19038), �-defensin 2 (O19039). Rhesus monkey: Macaca

mulatta �-defensin 1 (O18794), �-defensin 2 (AAK26259).

Olive baboon: Pabio cynocephalus anubis �-defensin 1

(AAK61474). Chimpanzee: Pan troglodytes �-defensin 1

(AAF04110), �-defensin 2 (AAF20154), �-defensin 3

(AAK61549). These sequences were used as TBLASTX

(version 2.1.1 with default settings [12]) queries against the

HTG (high-throughput genomic) section of the EMBL data-

base (15 July 2001 release). Hidden Markov models were

constructed using HMMER (version 2.1.1 [33]) to process

CLUSTALW (version 1.82 with default settings [34]) multi-

ple sequence alignments. These models were searched

against genomic sequence using WISE2 (version 2-1-20c

with the human gene model option [35]). CLUSTALW align-

ments of diverse second-exon sequences were corrected

using the patterns of gaps seen in the corresponding protein-

sequence alignments that were more highly conserved.

Evolutionary analyses 
All phylogenetic trees were constructed by the neighbour-

joining method [36] based on the proportion of amino-acid

sites at which sequences compared were different and omit-

ting alignment gaps. The trees constructed were rooted with

chicken gallinacin 1 (GGGAL1; P46156) and the reliability of

each branch was assessed using 1,000 bootstrap replica-

tions. In pairwise comparisons between nucleotide

sequences, the number of synonymous substitutions per

synonymous site (dS) and the number of nonsynonymous

substitutions per nonsynonymous site (dN) were estimated

using the method of Nei and Gojobori [20], modified to take

account of the transition-to-transversion ratio R [21]. R was

estimated using the method of Kumar and Nei [22]. In addi-

tion, the Jukes-Cantor correction [37] was applied to

account for multiple substitutions at the same site. Two

codon-based tests of selection were used. Both tests are

based on estimates of dS and dN. Standard errors for dS and

dN were calculated using 1,000 bootstrap replicates. In the

first test dS and dN and their respective variances are used in

a two-tailed Z-test to test the null hypothesis that dN - dS = 0

[21]. In the second test, Fisher’s exact test is used to test the

null hypothesis that the proportions of synonymous and

non-synonymous differences are the same [38]. Additional

tests for the presence of sites under positive selection were

carried out using the PAML package [24], which uses likeli-

hood ratio tests (LRT) to compare models of the variation in

dN/dS ratio between sites. The six models recommended by

Anisimova et al. [39] were tested: M0 (one-ratio), M1

(neutral), M2 (selection), M3 (discrete), M7 (beta), and M8

(beta+�). Intron sequences were aligned using DIALIGN

(version 2.1 [40]) and the numbers of substitutions between

them were estimated using Kimura’s two-parameter method

[41]. All phylogenetic trees, distance calculations and codon-

based tests of selection were carried out using MEGA2 [42].

Estimates of the proportions of radical and conservative

nonsynonymous substitutions, along with their standard

errors, were made using the HON-NEW program [23] in an

extension of earlier methods for the measurement of conser-

vative and radical substitution rates [43]. The radical or con-

servative nature of nonsynonymous substitutions was

assessed with respect to charge and to the polarity and

volume of the amino acids (the Miyata-Yasunaga amino-acid

classification [44]).
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RT-PCR analysis of gene expression 
A range of human RNA samples was purchased from Strata-

gene (Amsterdam, The Netherlands) (stomach, vulva, ovary,

kidney, placenta, thyroid, lung, skeletal, uterus, breast, liver,

skin, colon, heart and cervix) and human testis RNA (BD

Biosciences Clontech, Oxford). cDNA synthesis was carried

out using a first-strand cDNA synthesis kit (Roche, Lewes,

UK) according to the instructions, using random hexameric

oligonucleotides. PCRs were carried out, using 5 �l of the

resultant cDNA according to the following procedures: 94°C

for 1 min followed by 35 cycles of 94°C for 30 sec, 55°C for

30 sec and 72°C for 1 min, and a final round of extension for 5

min. Products were analyzed on a 4% NuSIEVE agarose gel

(FMC BioProducts, Rockland, ME, USA) by electrophoresis

and also cloned using pGEM-T Easy Vector System I

(Promega, Southampton). Amplification of glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) was carried out in paral-

lel with conditions as for the other amplifications, but with an

annealing temperature of 56°C. Reactions were verified for

RNA amplification by including controls without reverse tran-

scriptase. RT-PCR products were hybridized with a radiola-

beled, internal oligonucleotide probe designed to each novel

sequence to confirm the presence of the correctly amplified

product. Purified plasmid DNA was sequenced from both

strands with ABI Prism dRhodamine Terminator Cycle

Sequencing Ready Reaction Kit (PE Applied Biosystems, War-

rington). Primers and internal probes were designed using the

Primer3 primer design program from the Whitehead Institute,

Center for Genome Research [45]. The sequences for the

primers and internal probes used were as follows: DEFB105:

5� primer: TCTATTTGCTATGTTCTTCATTTTGG, internal

oligo: TTCAACTGCCATCAGGTGAG, 3� primer: GCAGC-

AGAGAAAGTTCAGCC; DEFB106: 5� primer: CGTGCTCT-

TCTTTCTGACCC, internal oligo: TACAGGGAAGGTGATC-

GGAG, 3� primer: GTTCTTCATTTTTCCCGCAA; DEFB107: 5�

primer: TTTTGGCTGCTCTCATTCTTC, internal oligo: TCAC-

TGTGAAGCCGAATGTC, 3� primer: TGCAGCAAAATGGTGC-

TAAT; DEFB108: 5� primer: TGCTGTCCTCTTCTTCACCA,

internal oligo: GCCAAGTTCTACCAGCCAAG, 3� primer: CGG-

CTATTTAAACATCTCCCA.

The novel human gene sequences for DEFB105, DEFB106,

DEFB107, DEFB108 and DEFB109p, as confirmed by RT-

PCR, have been deposited in GenBank under sequence acces-

sion numbers AF540977, AF540978, AF540979, AF540980

and AF540981 respectively. The putative baboon orthologs of

the human DEFB4 (second exon only), DEFB103, DEFB104,

DEFB105, DEFB106 and DEFB107 genes have been also been

deposited in GenBank under sequence accession numbers

BK000556, BK000557, BK000558, BK000559, BK000560

and BK000561 respectively.

Additional data files 
The following files are available with this article: the DNA

sequences for olive baboon �-defensins (Additional data file

1), the DNA sequences for human �-defensins  (Additional

data file 2), the aligned baboon and human DNA sequences

(Additional data file 3), the aligned first-exon baboon and

human DNA sequences (Additional data file 4), the aligned

second-exon baboon and human DNA sequences (Additional

data file 5) and the DNA sequences for baboon and human

introns (Additional data file 6) and an Excel file listing the

full dN, dS and dN - dS estimates for all first and second exon

comparisons shown in Figures 4a and b (Additional data file

7). The alignments are in MSF format. The sequence and

alignment files are also available from [46].
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