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DNA methylation is one of the most extensive epigenetic modifications. DNA 4mC
modification plays a key role in regulating chromatin structure and gene expression.
In this study, we proposed a generic 4mC computational predictor, namely, 4mCPred-
MTL using multi-task learning coupled with Transformer to predict 4mC sites in
multiple species. In this predictor, we utilize a multi-task learning framework, in
which each task is to train species-specific data based on Transformer. Extensive
experimental results show that our multi-task predictive model can significantly improve
the performance of the model based on single task and outperform existing methods on
benchmarking comparison. Moreover, we found that our model can sufficiently capture
better characteristics of 4mC sites as compared to existing commonly used feature
descriptors, demonstrating the strong feature learning ability of our model. Therefore,
based on the above results, it can be expected that our 4mCPred-MTL can be a useful
tool for research communities of interest.

Keywords: multi-task learning, feature sharing, DNA 4mC modification, epigenetics, deep learning, transformer

INTRODUCTION

Epigenetics refers to the reversible and heritable changes in gene function when there is no change
in the nuclear DNA sequence (Zuo et al., 2020). Epigenetic phenomena include DNA methylation,
RNA interference, histone modification, etc. (Tang W. et al., 2018; Wang et al., 2018; Liu et al.,
2019; Hong et al., 2020; Lv et al., 2020a; Zhang D. et al., 2020; Min et al., 2021). Among them,
DNA methylation is one of the most extensive epigenetic modifications (Zhu et al., 2019). It is
a form of DNA chemical modification that can change genetic performance without changing
the DNA sequence. DNA methylation refers to the binding of a methyl group to the cytosine 5
carbon covalent bond of genomic CpG dinucleotides under the action of DNA methyltransferase
(Jin et al., 2011; Lv et al., 2020b). A large number of studies have shown that DNA methylation
can cause changes in chromatin structure, DNA conformation, DNA stability, and the way that
DNA interacts with proteins, thereby controlling gene expression (Jin et al., 2011; Zeng et al., 2016;
Zhang et al., 2019; Luo et al., 2020; Shen and Zou, 2020). DNA 4mC has been reported as an effective
DNA modification, which can protect its own DNA from restriction enzyme-mediated degradation
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(Chen et al., 2017; Wei et al., 2019b). Currently, we have relatively
little knowledge regarding 4mC modifications. In order to further
study its regulatory mechanism and its biological impact on the
organism, it is critical to identify the distribution of 4mC sites in
the whole genome.

With the development of high-throughput sequencing
technology, 4mC sites can be effectively identified through web-
lab biochemical experiments (Flusberg et al., 2010), but this kind
of method is time-consuming and labor-intensive. Therefore, it
is necessary to develop a computational model that can efficiently
and accurately predict and identify 4mC sites. Chen et al. (2017)
first developed a tool, namely, iDNA4mC for predicting 4mC
sites by establishing a feature set based on chemical properties
and occurrence frequency of nucleotides and training a support
vector machine (SVM)-based predicting model. In order to take
into account more of the physical and chemical properties of
DNA, He et al. (2018) proposed 4mCPred, also an SVM-based
predictor that used position-specific trinucleotide propensity
(PSTNP) and electron–ion interaction potential (EIIP) for
feature extraction. In particular, they further optimize the
features based on F-score to enhance the generalization ability
of the model. Similarly, through four feature coding schemes
and using two-step feature optimization method, Wei et al.
(2019a) constructed a prediction model called 4mCPred-SVM,
which is shown to perform better than previous methods on
benchmarking comparison. Later, Manavalan et al. (2019b) first
proposed the meta-predictor Meta-4mCpred for predicting
4mC sites. It used a variety of feature extraction methods to
convert DNA sequences into a total of 14 feature descriptors
and trained four different classifiers. Particularly, meta-4mCpred
exhibits good performance with independent test, demonstrating
the excellent generalization ability. To make full use of the
advantages of each prediction method mentioned above, Tang
et al. (2020) developed DNA4mC-LIP, which for the first time
linearly integrated all the previous methods for the 4mC site
prediction. In recent years, deep learning has been widely used
in the field of bioinformatics. Xu et al. (2020) developed the first
deep learning Deep4mC, which converted sequences into digital
vectors through binary, enhanced nucleic acid composition
(ENAC), EIIP, and nucleotide chemical property (NCP) feature
encoding schemes and inputted them into two convolutional
layers without pooling layers and the attention layers. The
average area under the ROC (receiver operating characteristic)
curve (AUC) values of its prediction for multiple species were
greater than 0.9 in multiple cross-validations. In our previous
work, we proposed a two-layer deep learning model called
Deep4mcPred, which utilizes a hybrid network of ResNet and
long short-term memory (LSTM) (Zeng and Liao, 2020).

Although much progress has been made by the methods
mentioned above, the performance is still not satisfactory.
Moreover, most existing predictors are designed for one specific
species. Although they provide a cross-species model and
validation test, the performance is always not that good as
compared to the original species-specific model. Therefore, to
address this problem, we established a generic 4mC predictor,
namely, 4mCPred-MTL using multi-task learning coupled with
Transformer, which is a widely used NLP (natural language

processing) technique, to predict 4mC sites in multiple species.
In this predictor, we utilize a multi-task learning framework,
in which each task is to train species-specific data based on
Transformer. Extensive experimental results show that our multi-
task predictive model can significantly improve the performance
of the model based on a single task and outperform existing
methods. Moreover, we found that the feature representations
learned from our model can capture better characteristics of
4mC sites as compared to the existing commonly used feature
descriptors, demonstrating the strong feature learning ability.
Therefore, based on the above results, it can be expected
that our 4mCPred-MTL can be a useful tool for research
communities of interest.

MATERIALS AND METHODS

Datasets
Previous studies have demonstrated that a stringent dataset

is essential for building a robust predictive model (Liang et al.,
2017; Zeng and Liao, 2020; Su et al., 2021). In our previous
work (Zeng and Liao, 2020), we constructed large-scale datasets
for three species, including Arabidopsis thaliana (A. thaliana),
Caenorhabditis elegans (C. elegans), and Drosophila melanogaster
(D. melanogaster). As for the positive samples, there are 20,000
positive samples, and each sample is a 41-bp-long sequence
centered with true 4mC sites. Similarly, the dataset contains the
same number of negative samples, which are cytosine-centered
sequences with lengths of 41 bp but are not recognized by the
single-molecule, real-time (SMRT) sequencing technology.

Training Set and Independent Test Set
Considering the performance, most of the existing predictors
are evaluated by cross validation test, which might produce
performance bias; we here randomly split the datasets into (Zuo
et al., 2020) training set for model training and evaluation and
(Liu et al., 2019) independent test set for model robustness
validation. Thus, we randomly divided the dataset into training
set and testing set with the ratio of 8:2, resulting in 16,000 samples
in the training set and 4,000 samples in the testing set. The
details of the datasets are presented in Table 1. Notably, for fair
comparison, all the existing methods are evaluated on the test set.

Architecture of 4mCPred-MTL
The network architecture of our model is illustrated in Figure 1.
This network architecture consists of three main components:
(i) sequence processing module, (ii) sharing module, and (iii)

TABLE 1 | Summary of benchmark datasets in three species.

Species Training set Testing set

Positives Negatives Positives Negatives

A. thaliana 16,000 16,000 4,000 4,000

C. elegans 16,000 16,000 4,000 4,000

D. melanogaster 16,000 16,000 4,000 4,000
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FIGURE 1 | The flowchart of 4mCPred-MTL. The sequence processing module uses 2-gram to split an original DNA sequence into overlapping subsequences and
converts them into feature vectors by one-hot encoding. Next, the feature vectors of subsequences are fed into the sharing module, containing a Transformer
encoder and a max-pooling layer, to capture the sharing information among different species. Finally, the output of the sharing module is fed into the task-specific
output module to predict the 4mC site of a certain species.

task-specific output module. The sequence processing module
is designed to encode the DNA sequences into feature matrices
by one-hot encoding (Quang and Xie, 2016; Zou et al.,
2019; Dao et al., 2020a). Next, the encoded matrix is passed
through a Transformer, which is a popular technique for
embedding different levels of dependency relationships between
subsequences. Afterward, we used a max-pooling layer to
automatically measure which feature plays a key role in the target
task in each unit of the Transformer. Finally, the features derived
from the max-pooling layer is fed to the task-specific output
module to identify 4mC sites in three species, respectively. The
task-specific output module contains three parts, and each part
consists of fully connected layers that are designed in terms
of the size of the training set for each species. The model
is implemented using Pytorch. Each module of our model is
described in detail as follows.

Sequence Processing Module
We first employed n-gram nucleobases to define “words” in DNA
sequences (Dong et al., 2006; Zeng et al., 2018; Fu et al., 2020; Lin
et al., 2020; Liu X. et al., 2020; Wang et al., 2020; Yang et al., 2020;
Zhang Z. Y. et al., 2021). The n-grams are the set of all possible
subsequences of nucleotides. Afterward, the DNA sequences are
segmented into overlapping n-gram nucleotides. The number of

possibilities is 4n, since there are four types of nucleotides. To
prevent the sparsity in the encoding, the n-gram number n is set
to 2. For example, we split a DNA sequence into overlapping 2-
gram nucleotide sequences as follows: GTTGT. . .CTT→ “GT,”
“TT,” “TG,” “GT,” . . ., “CT,” “TT.”

For a given DNA sequence P with length L, it can be denoted
as follows:

P = R1,R2, ,RL (1)

where Ri is the ith word. These words are first randomly
initialized and embedded by one-hot embedding, which is
referred to as “word embeddings.” Here, we define the sequence
of word embeddings as

x1, x2, , xL (2) (2)

where xi ∈ Rd is the d-dimensional embedding of the ith word.

Sharing Module
Attention Mechanism
The attention mechanism was proposed by Bahdanau et al. (2014)
in the application of neural machine translation. The Attention
mechanism is somewhat similar to the idea of human translating
articles, that is, paying attention to the corresponding context of
our translation part. For example, we can get the hidden states
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of the recurrent neural network (RNN) encoder:
(
h1, h2, , ht

)
.

By assuming the current decoder hidden state is st−1, we can
calculate the correlation between each input position j and the
current output position:

−→ct =
(
a
(
st−1, h1

)
, ? · · · , a

(
st−1, hT

))
(3)

where a is a correlation operator, such as dot product. We can get
the attention distribution by normalizing the −→ct . The expanding
form of the attention is

atj =
exp

(
ctj
)∑T

k=1 exp (ctk)
. (4)

Therefore, attention is a weight vector. These weights represent
which tokens the machine focuses on. When the attention
distribution is obtained, the weight of the more important input
position for the current output position is obtained, which
accounts for a larger proportion when predicting the output. By
introducing the attention mechanism, we can only use the final
single vector result of the encoder, so that the model can focus
on all the input information that is important for the next target
word, and the model effect is greatly improved.

Transformer With Multi-Head Attention
The development of deep learning (Dao et al., 2020b; Liu Y. et al.,
2020; Long et al., 2020; Naseer et al., 2020; Zhang T. et al.,
2020; Zhang Y. et al., 2020) in NLP is filled with RNN and
LSTM. Transformer models completely abandon the RNN and
LSTM layers and only use the attention mechanism for feature
extraction. After the input has been embedded to matrix form,
we first use the position encoding layer. Since the model has no
recurrent or convolutional layers, there is no clear relative or
absolute information about the position of the word in the source
sentence. In order to let the model learn the position information
better, position encoding is added and superimposed on the word
embedding. An encoding method using trigonometric functions
maintains its position invariance.

The position encoding function can be presented as

PE(pos,2i) = sin
(
pos/10, 0002i/dmodel

)
(5)

PE(pos,2i1) = cos
(
pos/10, 0002i/dmodel

)
(6)

where pos is the position of each token; 2i and 2i1 are the
even-numbered and odd-numbered dimensions of each token
position vector of the cardinality, respectively, where all position
subscripts start from 0; and dmodel is the dimensionality of word
vector, the same as the dimensionality of encoding.

Diving into the encoder of Transformer, we will first
meet the multi-head attention module. The multi-head
attention is actually a combination of multiple self-attention
structures. Each head learns its characteristics in different
representation spaces. The first step in calculating self-
attention is to construct three vectors based on the input
vector of the encoder. In our task, it is the embedding of
each sequence. So for each embedding, we need to create a
Query matrix, a Key matrix, and a Value matrix. These three

matrices are created during the training process, all from
the same input. The self-attention function can be written as

SA (Q,K,V) = softmax

(
QK√
dk

)
V. (7)

First, we need to calculate the dot product between Q and K.
To prevent the result from being too large, we will divide it by a
scale of

√
dk, which is the dimension of query and key vectors.

Then a Softmax operation is implemented to normalize the result
to a probability distribution, and then it is multiplied by the
matrix V to get the weighted summation. Multi-head attention
means that we can have different Qs, Ks, and Vs representations
and finally combine the results. For the encoder, these basic
units are concatenated, where the keys, queries, and values are
all from the output of the previous layer of encoder; that is, every
position of the encoder can notice all the positions of the previous
layer of encoder.

After the attention is achieved, we come to the Add-and-Norm
module. The “Add” in it stands for residual connection (He et al.,
2016), which is designed to solve the problem of difficult training
of multi-layer neural networks. By passing the information of the
last layer to the next layer without difference, it can effectively
focus on only the difference part. On the other hand, “Norm” is
short for the layer normalization (Ba et al., 2016). It can speed
up the training process and make the model converge faster by
normalizing the activation value of the layer.

Max-Pooling Layer
The feature vector h of each subsequence is fed into amax-pooling
layer to capture the most significant feature in identifying the
DNA modification to represent this subsequence. Then, all the
most significant features of subsequences are concatenated into
a vector to represent a DNA sequence, which is shown in the
following equation:

y = maxni=1 hi (8)

where i is the ith subsequence, n is the number of subsequences
in a DNA sequence, and y is regarded as the feature vector of a

TABLE 2 | Performance comparison of the proposed method and existing
single-task 4mC predictors.

Species Method SN (%) SP (%) ACC (%) MCC

A. thaliana 4mcPred-IFL 70.4 84.9 77.7 0.559

4mcPred_SVM 72.3 81.1 76.7 0.536

Deep4mcPred 81.3 84.8 83.1 0.661

Proposed 89.7 83.6 86.5 0.728

C. elegans 4mcPred-IFL 45.4 79.4 62.4 0.263

4mcPred_SVM 43.7 75.4 59.5 0.201

Deep4mcPred 75.6 88.5 82.0 0.646

Proposed 83.8 83.2 83.3 0.665

D. melanogaster 4mcPred-IFL 65.5 87.6 76.5 0.544

4mcPred_SVM 65.8 84.5 75.1 0.511

Deep4mcPred 84.6 84.8 84.7 0.693

Proposed 88.0 84.1 86.0 0.722

The bold denotes the best performance.
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target sequence. The max-pooling layer attempts to find the most
important dependencies in subsequences.

Task-Specific Output Module
This module consists of four sets of fully connected layers
corresponding to each task. In each fully connected layer with a
relu activation function, its output is calculated by the following
equation:

fji = relu(Wj
if
j
i−1bj

i) (9)

TABLE 3 | Performance comparison with the model not using the multi-task
learning.

Species Method SN (%) SP (%) ACC (%) MCC

A. thaliana Single-task 86.7 84.2 85.4 0.708

Proposed 89.7 83.6 86.5 0.728

C. elegans Single-task 85.9 82.8 84.4 0.688

Proposed 83.8 83.2 83.3 0.665

D. melanogaster Single-task 85.7 84.0 84.9 0.698

Proposed 88.0 84.1 86.0 0.722

The bold denotes the best performance.

where fji−1 is the output of the previous layer of jth task, fji is the
current layer output of jth task, Wj

i is the weight matrix, and bj
i is

the bias vector. In each layer, the “batch normalization” technique
was used to improve generalization performance (Cheng and
Baldi, 2006). Finally, a softmax layer is added on the top of
final output fj to perform the final prediction. Note that the
parameters of different sets of the fully connected layer are
designed differently in terms of the amount of data of the
corresponding task.

Training
The task-specific features, y, generated by the sharing module,
are ultimately sent into one set of fully connected layers
in terms of it belonging to which task. For classification
tasks, we used binary cross-entropy loss function as
the objective:

l =
1
N

∑
i

−[yilog(pi)(1− yi)log(1− pi)] (10)

where N denotes the number of training samples, yi denotes
the label (i.e., 1 or 0) of sample i, and pi denotes the
probability that sample i is predicted to be positive. Our

FIGURE 2 | ROC curves and PR curves of the model using multi-task learning and the model not using multi-task. (A–C) The ROC curves of the two models in three
species. (D–F) The PR curves of the two models in three species.
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global loss function is the linear combination of loss function
for all tasks:

lall =
k∑

k=1

αklk (11)

where αk is the weight for task k.

Evaluation Metrics
Here, we adopted four commonly used metrics to measure
the performance of the proposed method and existing
methods, including sensitivity (SN), specificity (SP), overall
accuracy (ACC), and Matthew’s correlation coefficient
(MCC) (Wei et al., 2014, 2017a,c, 2018c, 2019a,c,d, 2020b;
Feng et al., 2019; Jin et al., 2019; Zou et al., 2019;
Hong et al., 2020; Qiang et al., 2020; Su et al., 2019a,b,
2020a; Zhao et al., 2020). They are formulated as follows:

SN =
TP

TP + FN

SP =
TN

TN + FP

ACC =
TP + TN

TP + FN + TN + FP

MCC =
(TP × TN)− (FP × FN)

√
(TP + FN) = (TP + FP) = (TN + FN) = (TN + FP)

where TP, TN, FP, and FN represent the numbers of true
positives, true negatives, false positives, and false negatives,
respectively. MCC and ACC are two metrics used to evaluate
the overall prediction ability of a predictive model. In addition,
we used the ROC curve to intuitively validate the overall
performance. The AUC is to quantitatively evaluate the
overall prediction performance of the model (Tang H. et al.,
2018; Jin et al., 2020; Zeng et al., 2020; Cai et al., 2021;
Zhang D. et al., 2021). The AUC ranges from 0.5 to 1.
The higher the AUC score, the better the performance
of the model.

RESULTS AND DISCUSSION

Performance Comparison With Other
Single-Task State-of-the-Art Methods
To demonstrate the effectiveness of the proposed method,
we compared its performance with four other existing
single-task state-of-the-art methods on the benchmark
dataset, including 4mcPred-IFL (Wei et al., 2019b),
4mcPred_SVM (Wei et al., 2019a), and Deep4mcPred (Zeng

FIGURE 3 | The 10-fold cross-validation results of the Proposed, ENAC, DNC, CKSNAP, EIIP, and PreEIIP methods are based on the three basic classifiers for each
species. (A–C) The results of the species A. thaliana. (D–F) The results of the species C. elegans. (G–I) The results of the species D. melanogaster.
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and Liao, 2020). It is worth noting that among the three
competing methods, except the method Deep4mcPred
using deep learning technique, other methods all use
traditional machine learning to train the respective models
by hand-made features extracted from original DNA
sequences. For a fair comparison, the source codes of these
methods are used to carry out independent tests on our
benchmark dataset.

The results of different methods are listed in Table 2.
As shown in Table 2, we can see that for all species

(i.e., A. thaliana, C. elegans, and D. melanogaster), our
proposed method significantly outperform all other single-task
competing methods in terms of SN, ACC, and MCC, with
the only exception that the value of SP of our proposed
method is lower than those of other methods. Specifically,
for the species A. thaliana, when compared to the second-
best method Deep4mcPred, our proposed method achieves
an SN of 89.7%, an ACC of 86.5%, and an MCC of 0.728,
yielding a relative improvement over Deep4mcPred of 10.33,
4.09, and 10.14%, respectively. However, Deep4mcPred does

FIGURE 4 | ROC curves of the Proposed, ENAC, DNC, CKSNAP, EIIP, and PreEIIP methods are based on the three basic classifiers for each species. (A–C) The
results of the species A. thaliana. (D–F) The results of the species C. elegans. (G–I) The results of the species D. melanogaster.
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have a higher SP of 84.8, where our method only reaches
an SP of 84.2. For the species C. elegans, compared to
all competing methods, our proposed method achieves great
improvement in terms of SN, ACC, and MCC, which are
6.06, 4.24, and 12.73% higher than that of the runner-
up Deep4mcPred. For the species D. melanogaster, our
proposed method also gets the best performance among
all methods, achieving SN of 88.0%, ACC of 86.0%, and
MCC of 0.722. Note that although the SP of our proposed
methods is worse than those of other methods, the other
three metrics are all higher than any competing single-
task method. Therefore, we can conclude that our proposed
method can achieve the best predictive performance for

detecting 4mC sites in multiple species. The reason may
be that in our method, we used the Transformer technique
to learn more discriminative features based on multi-task
learning that can leverage useful information among multiple
related learning tasks to help learn a more accurate learner
for each task, while the competing methods only use the
information from one task. So the results are not surprising
that our method achieves the best performance when using
multi-task learning.

Effect of Multi-Task Learning
To investigate the efficiency of the multi-task learning technique,
we compared the method using multi-task learning, namely,

FIGURE 5 | PR curves of the Proposed, ENAC, DNC, CKSNAP, EIIP, and PreEIIP methods are based on the three basic classifiers for each species. (A–C) The
results of the species A. thaliana. (D–F) The results of the species C. elegans. (G–I) The results of the species D. melanogaster.
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our proposed method, with the method not using multi-task
learning. The comparative results obtained are shown in Table 3.
From Table 3, we can see that the method using multi-
task learning outperforms the method not using multi-task
learning in the species A. thaliana and D. melanogaster, with
only one exception in the species C. elegans. in which the
performance of the method using multi-task learning is slightly
worse than the methods not using multi-task learning. To
be specific, for the species A. thaliana, the SN, ACC, and
MCC of the method using multi-task learning are 3.46, 1.29,
and 2.82% higher than those of the method not using multi-
task learning, while the SP of the method not using multi-
task learning is lower. For D. melanogaster, the method using
multi-task learning improves the performance from 85.7 to
88.0% in terms of SN, 84.0–84.1% in terms of SP, 84.9–
86.0% in terms of ACC, and 69.8–72.2% in terms of MCC.
For a more intuitive comparison, we further compared their
ROC curve s and PR (precision-recall) curves, which are
illustrated in Figure 2. We can observe that except in the
species C. elegans, the method using multi-task learning achieves
the best values of auROC and auPRC in the other species.
When using multi-task learning, even if the performance of
our method is not good in one species, the performance is
improved in the other species. Therefore, we can conclude
that employing the multi-task learning technique in a feature
learning scheme can improve the feature representation ability
and predictive performance because the multi-task learning
technique aims to enhance the performance of each task
by sharing information between related tasks so that they
complement each other.

Analysis of Features Extracted From
Multi-Task Learning Method on the Test
Dataset
Discriminative features play a crucial role in developing
a predictive tool with high accuracy. To investigate
whether the features learning by our method is more
discriminative, we compared them with five traditional
hand-made feature descriptors, including ENAC, di-
nucleotide composition (DNC), composition of k-spaced
nucleic acid pairs (CKSNAP), electron–ion interaction
pseudopotentials of trinucleotide (EIIP), and electron–ion
interaction pseudopotentials of trinucleotide (PseEIIP).
On the test dataset, all the features are evaluated with a
10-fold cross-validation technique by using three basic
machine learning classifiers, including random forest (RF),
SVM, and LightGBM.

The comparison results are illustrated in Figure 3. As shown
in Figure 3, we can observe that for each species, the features
extracted by our proposed method achieve the best performance
among other traditional hand-made features in terms of the
four metrics on every basic classifier, especially on the classifiers
RF and SVM, indicating that the features generated by our
proposed method are more effective for 4mC sites prediction
in different species and are more suitable for most of the
common classifiers.

In the feature learning scheme, we used the transformer
network to learn the related information between DNA
subsequences and added a max-pool layer to judge which feature
plays a key role in detecting 4mC sites in each subsequence.
Moreover, the multi-task learning technique was exploited
to capture sharing information contained in multiple tasks
to help learn a more discriminative and effective feature to
represent DNA sequences for 4mC sites prediction. Therefore,
the proposed method significantly outperforms other traditional
handcraft features, which needs prior knowledge. Figures 4, 5
illustrate the ROC and PR curves of different features. It can be
also seen that our learned features are more effective than existing
handcraft features, further demonstrating that our model can
capture more useful information than existing feature algorithms.

CONCLUSION

In this study, we have established a predictor called 4mcPred-
MTL, using Transformer-based multi-task learning to predict
DNA 4mC modifications in multiple species. To the best of our
knowledge, this is the first 4mC predictor that can perform the
prediction task for different species on a single run. Importantly,
our predictor shows better performance as compared to state-of-
the-art prediction tools on independent test, demonstrating the
superiority of our model. In particular, via feature comparative
analysis, we found that our model can sufficiently capture
better characteristics of 4mC sites as compared to existing
commonly used feature descriptors, demonstrating the strong
feature learning ability of our model. We expect that our model
can be a useful predictor for research communities of interest.
In addition, we provide a new way to predict multi-species
sequence prediction analysis, which can be extended to other
bioinformatics fields (Ding et al., 2016a,b, 2019a,b,c,d, 2020a,b,c;
Liu et al., 2017; Wei et al., 2017a,b,c, 2018a,b,c, 2020a; Jiang et al.,
2018; Jin et al., 2019; Manavalan et al., 2019a,b; Su et al., 2019b,
2020b,c; Wang et al., 2019, 2021a,b; Dai et al., 2020; Guo et al.,
2020a,b; Song et al., 2020; Zou et al., 2020; Yang et al., 2021).
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