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A B S T R A C T   

Gastric cancer (GACA) is a complex and multifaceted disease influenced by a variety of environmental and 
genetic factors. Somatic mutations play a major role in its development, and their characteristics, including the 
asymmetry between two DNA strands, are of great interest and appear as a signal of information and guidance, 
revealing mechanisms of DNA damage and repair. Here, we analyzed the impact of High-frequency mutated 
genes on patient prognosis and found that the effect of expression levels of tumor protein p53 (TP53) and lysine 
methyltransferase 2C (KMT2C) genes remained high throughout the development of GACA, with similar 
expression patterns. After investigating mutation asymmetry across mutagenic processes, we found that tran
scriptional asymmetry was dominated by T > G mutations under the influence of transcription couples repair and 
damage. The apolipoprotein B mRNA editing enzyme catalytic polypeptide like (APOBEC) enzyme that induces 
mutations during DNA replication has been identified here and we identified a replicative asymmetry, which was 
dominated by C > A mutations in left-replicating. Strand bias in different mutation classes at transcription factor 
binding sites and enhancer regions were also confirmed, which implies the important role of non-coding regu
latory elements in the occurrence of mutations. This work systematically describes mutational strand asymme
tries in specific genomic regions, shedding light on the DNA damage and repair mechanisms underlying somatic 
mutations in cohorts of GACA patients with gastric cancer.   

1. Introduction 

Gastric cancer is one of the most common malignant tumors in China 
and is also a highly prevalent malignant tumor throughout Asia [1,2]. In 
2020, there were about 1.09 million new cases of gastric cancer 
worldwide, which ranked 5th in the incidence of malignant tumors [3]. 
The number of deaths from stomach cancer was about 769,000, which 
ranked fourth in the number of deaths from malignant tumors; 43.9 % of 
the cases and 48.6 % of the deaths occurred in China [4]. The global 
incidence of gastric cancer varies greatly geographically, with a 15 to 
20-fold difference between high- and low-prevalence areas. The regions 
with the highest incidence of gastric cancer are Northeast Asia, South 
and Central America, and Eastern Europe. In Northeast Asia, gastric 

cancer is one of the most diagnosed cancers among Japanese and Korean 
men [5,6]. Most patients are already in the progressive stage of gastric 
cancer when diagnosed, which makes it an important public health 
problem [7,8]. 

It is well known that cancer is caused by mutations. Cancer occurs 
due to the accumulation of a large number of genetic mutations in so
matic cells over a long period of time, and these genetic mutations 
encourage the formation of cancer [9]. The somatic mutant spectrum in 
humans suggests that tissue-specific mutant characteristics and 
co-associations play an important role in human aging and disease 
studies. Over the last decade, Next generation sequencing (NGS) as 
enabled application of clinical genomics to the diagnosis and treatment 
of cancers. Cai et al. [10] drew a comprehensive mutational landscape of 
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153 gastric tumors and demonstrated utility of massively parallel DNA 
sequencing of tumors to guide clinical management. Pan et al. [11] 
detected somatic mutation profiles of 45 cases of gastric cancer by whole 
exon sequencing, which suggested that MLL4, ERBB3, FBXW7, MLL3, 
MTOR, NOTCH1, PIK3CA, KRAS, ERBB4, and EGFR were mutated in 
gastric cancer. The DNA repair gene TP53 was the gene most frequently 
mutated, and patients with TP53 mutations had a significantly higher 
number of mutations, which indicated that the TP53 gene may serve a 
crucial role in the maintenance of genome integrity and stability. 

A comprehensive understanding of mutation density and patterns in 
cancer genomes is very important for the study of mutation mechanisms, 
the establishment of models for the evolution of cancer genomes, and 
the identification of cancer genes [12,13]. Pan-Cancer Analysis of Whole 
Genomes (PCAWG), which is the most comprehensive atlas of cancer 
genomes to date, contains sequences and analyses of the genomes of 
2658 primary cancers and their matching normal tissue samples from 38 
different tumor types. This atlas revealed the extensive role of 
large-scale mutations in cancer, identified previously unknown 
cancer-associated mutations in gene regulatory regions, and elucidated 
the interaction between somatic mutations and the transcriptome [14]. 
Mutations leave a mutational signature on the DNA strand. In the cancer 
genome, somatic mutations show heterogeneity in terms of mutation 
density along the genome and mutation spectrum among cancer types 
[15,16]. Thus far, about 30 different mutation characteristics have been 
reported, each with a corresponding inducing factor. For example, in 
lung cancer, smoking-related damage is mainly G:C>T:A [17]. In skin 
cancer, C:G>T:A transitions are mainly associated with ultraviolet (UV) 
radiation exposure [18]. 

Mutations result from DNA damage and unsuccessful repair pro
cesses. DNA damage encountered on the transcription ("template") 
strand prevents the progression of RNA polymerase, which leads to the 
recruitment of nucleotide excise repair (NER) complexes that correct the 
damage [19–21]. In addition to the background activity of these pro
cesses, the distribution of mutations is influenced by genomic, epi
genomic, and cellular physiological factors, such as replication and 
transcription. Single nucleotide substitutions occur at different rates on 
both DNA strands due to inherent asymmetries in the replication and 
transcription processes. Mutational strand asymmetries in cancer ge
nomes, which appear as a signal of information and guidance, reveal 
mechanisms of DNA damage and repair. 

Haradhvala et al. [22] revealed widespread asymmetries across 
mutagenic processes, where transcriptional (“T-class”) asymmetry 
dominated UV-, smoking-, and liver-cancer-associated mutations, and 
replicative (“R-class”) asymmetry dominated POLE-, APOBEC-, and 
MSI-associated mutations; this was based on the analysis of 
whole-genome sequences of 590 tumors from 14 different cancer types. 
They reported remarkable phenomena of transcription coupled damage 
(TCD) on non-transcribed DNA strands and transcription coupled repair 
(TCR) on transcribed strands, and provided evidence that APOBEC 
mutagenesis occurred on the lagging-strand template during DNA 
replication. Strand asymmetry has been well studied in the context of 
transcription. As the most representative example of transcriptional 
strand bias in somatic mutations in several cancers, skin cancer has 
higher C > T mutations in the non-transcriptional strand than in the 
transcriptional strand [23]. Lung cancer has higher G > T mutations in 
the non-transcriptional strand than in the transcriptional strand [24]. 
Liver cancer has higher A > G mutations in the non-transcriptional 
strand than in the transcriptional strand [25]. 

While mutational strand asymmetries in human liver, skin, and lung 
cancers had been extensively studied, gastric cancer, in comparison, 
remained relatively under-explored. Given the high prevalence of 
gastric cancer in Asian populations, understanding its unique mutational 
characteristics was of paramount importance. To address this gap, our 
study delved into the mutational strand asymmetries within the gastric 
cancer genome, focusing particularly on Chinese patients. By harnessing 
somatic mutation data from the International Cancer Genome 

Consortium database, we aimed to provide a comprehensive analysis of 
mutation density patterns around specific genomic regions, including 
Transcription Factor Binding Sites (TFBS) and Enhancers. Notably, we 
placed significant emphasis on Transcription Start Sites (TSS) and 
replication origin Initiation Sites (IS). Additionally, we conducted a 
comparative analysis using data from Japanese patients, seeking both 
commonalities and distinctions in mutational strand asymmetries. 
Through this endeavor, we aspired to shed light on the unique muta
tional profile of gastric cancer, offering valuable insights into its un
derlying mechanisms, particularly within the context of Asian 
populations. 

2. Materials and methods 

2.1. Data collection and processing 

Data from GACA-CN (Gastric Cancer-China) and GACA-JP (Gastric 
Cancer-Japan) were downloaded from the International Cancer Genome 
Consortium (ICGC) portal through the “ICGC DCC DATA RELEASES” 
website (https://dcc.icgc.org/releases/current/Projects/GACA-CN). In 
GACA-CN, the total number of donors is 145, containing 42 from 
PCAWG and 123 from DCC. In GACA-CN, the total number of donors is 
585 from DCC. Subsequently, we conducted a meticulous screening 
based on chromosomal count and mutation type, ultimately selecting 22 
autosomal single nucleotide variants (SNVs) for in-depth analysis. All 
computations and assessments were conducted utilizing the hg19 
human genome assembly. It is important to note that the mutations in 
this study refer to a collection of all potential pathogenicity or uncer
tainty in terms of clinical significance, including possible pathogenicity, 
pathogenicity, pathogenicity/probable pathogenicity, conflicting in
terpretations of pathogenicity and uncertain significance. 

2.2. Waterfall plot of somatic mutations 

Following the annotation process, the R package GenVisR (1.34.0) is 
utilized to create the waterfall plot. It’s crucial to bear in mind that 
GenVisR generates the waterfall chart by extracting information from 
three specific columns in the provided dataset. Therefore, ensure that 
the columns are appropriately named according to the required format. 
These three columns include: sample name, gene symbol, and mutation 
type. 

2.3. Survival analysis 

Overall survival (OS) or disease free survival (DFS, also called 
relapse-free survival and RFS) analysis based on gene expression were 
performed on GEPIA (http://gepia.cancer-pku.cn/). It uses Log-rank 
test, a.k.a the Mantel–Cox test, for hypothesis test. The group cutoff 
we chose here is Median, and percentage of cutoff high and low is 50 %. 
Pathological Stage Plot was used log2(TPM+1) for log-scale. 

2.4. GO and KEGG enrichment analysis 

GO and KEGG functional enrichment analyses were performed using 
Rstudio. Before the code run, we should install the following packages: 
org.Hs.eg.db (3.18.0), DOSE (3.28.1), topGO (2.54.0), clusterProfiler 
(4.10.0), pathview (1.42.0) and DO.db (2.9). Gene annotation of these 
mutated sites was recorded using the ICGC database, and we obtained 
19,976 protein-coding genes. In GO and KEGG functional enrichment 
analysis, p < 0.05 was considered statistically significant. 

2.5. Identifying patterns of mutation density 

MutDens is an R application used to investigate patterns of muta
tional density for any specific genomic region (https://github.com/h 
ui-sheen/MutDens) [26]. The location information for TSS, IS, TFBS, 
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and Enhancer regions was sourced from MutDens, a software package 
equipped with a data folder containing specific area location files. This 
data also encompassed information for other species. Prior to initiation, 
we prepared two input files: one for somatic mutations and another for 
focal genomic positions. We then tailored parameters in the optFile. It’s 
worth noting that MutDens doesn’t automatically verify software de
pendencies. As a result, we manually installed rmarkdown (2.25), 
GenomicRanges (1.52.1), knitr (1.44), MASS (7.3–60), and the 
species-specific Bioconductor annotation package. Subsequently, we 
followed the instructions outlined in the software’s operation guide 
(README.md) to execute the process. 

By default, mutation density was normalized to "mutations per 
megabyte" (MPM) to account for the ratio of a specific nucleotide type. 
However, in direct comparisons of two sample cohorts or two focal re
gions, the overall mutation burden per cohort/regions was considered. 
Otherwise, the statistical test result would reflect the difference in 
genome-wide mutation burden, not necessarily the situation within the 
vicinity of focal positions. Consequently, the mutation density was 
assessed using the metric of "mutations per kilo total mutations per 
megabase" (MPKM), rather than MPM [26]. 

2.6. Mutation signature analysis 

The mutation signature analysis in this study was conducted using 
the deconstructSigs-R package (1.8.0). Initially, the data was organized 
into five columns (ID, chr, pos, ref, alt) information. If working with a 
MAF file from TCGA, extracting this data is straightforward. The mut.to. 
sigs.input function was then employed to construct the input file 
necessary for calculating the signature, yielding the 96 tribase types for 
each sample. Subsequently, the signature composition was deduced, and 
the percentage of three-base sequences in the tumor was generated after 
computing the weight of the mutation signature. Finally, the plot
Signatures command was used for visualization. 

APOBEC mutation signature analysis was extracted from the per
centage of tribase sequences in the tumor. APOBEC activation in cancer 
results in elevated levels of genomic C-to-U deamination events, man
ifested as C-to-T switching or C-to-G switching in the TCw (w = A or T) 
trinucleotide environment. Combined mutations in the TCw back
ground, including: TCA to TTA or TGA, and TCT to TTT or TGT, can 
represent APOBEC mutation counts [27]. 

2.7. Analysis of regulatory elements of genes 

EpiRegio is a web page about find genomic regulatory elements 
online tool [28]. First enter the website: https://epiregio.de/g 
eneQuery/(accessed it last time: 11/2023). The entry of the gene is 
simple and accepts either "gene symbol" or "ensembl ID". After 
completing gene input, click Query Database to display the number of 
regulatory elements on the gene, the start and end locations of regula
tory elements, whether the function of regulatory elements is to inhibit 
or activate, and in what tissues it plays a regulatory role. 

2.8. Statistical methods 

All statistics were done in R4.2.1 and GraphPad Prism9 software. 
Plotting was done using R packages ggplot2, GraphPad Prism9, and 
Adobe Illustrator 2022 software. Wilcoxon signed-rank tests were per
formed using MutDens. A p-value of p < 0.05 indicated a statistically 
significant difference. A p < 0.001 was an extremely significant 
difference. 

3. Results 

3.1. Survival analysis 

Survival Analysis is a statistical method to study the survival 

phenomenon and response time data and their statistical rules. It is an 
important means to associate phenotype with patient prognosis. Here in 
GACA-CN dataset, we found that the survival probability and survival 
time of male patients were significantly lower than that of female pa
tients during the follow-up period (Log-rank test, p = 0.046) (Fig. 1A). At 
the same time, the survival analysis based on the primary tumor of the 
donor showed that the larger the tumor, the lower the survival proba
bility (Log-rank test, p = 0.003). When the stage is T4 at diagnosis, the 
survival probability of patients is less than 50 % (Fig. 1B). 

3.2. Distribution of somatic mutations on gastric cancer genome 

To display the distribution of somatic mutations in the gastric cancer 
genome on 22 autosomes visually, we drew a mutation density map 
under a 1 Mb block. Ideally, nucleotide markers present uniform density 
in the whole genome. The distribution of high-depth resequencing mu
tation markers in the whole genome can be displayed with different 
colors that represent the mutation density in this region (Fig. 1C). The 
distribution of chromosomal locations of somatic mutations showed 
significant high-frequency mutation regions on chromosomes 2 and 10 
in the Chinese gastric cancer data. In healthy people, the shape of each 
chromosome is basically constant, but there are a few chromosomes 
with small variations. In the metaphase of cell division, the centromere 
of some chromosomes is located at one end of the chromosome with a 
very short arm, that is, the proximal centromere chromosome, such as in 
human chromosomes 13–15. However, there were no mutations on the 
broken arms of these chromosomes, that is, there were no obvious mu
tations in genomic desert areas (Fig. 1C). 

The waterfall diagram graphically shows the map of the top 20 high- 
frequency mutant genes in the GACA-CN dataset. The leftmost part of 
the waterfall diagram represents the gene and gene mutation frequency. 
The top is the gene mutation load and the effect of mutation on amino 
acids. On the far right, different colors represent different mutation 
types. The middle shows the mutation of each sample. From the muta
tion characteristics of these datasets, it is intuitive to find that most of 
the mutations occur in the intronic region and intergenic region (green 
part), and the mutation load variability in the dataset is large (Fig. 1D). 
It can also be seen that mutations in exon regions are basically non- 
synonymous mutations, which may have an important impact on the 
function of genes. At the same time, TP53, KMT2C and low density li
poprotein receptor-related protein 1B (LRP1B) are the top three mutated 
genes of gastric cancer (Fig. 1D). 

3.3. High-frequency mutated gene analysis of gastric cancer 

As reported in recent studies [29], because TP53, LRP1B, and KMT2C 
are the top three mutated genes of gastric cancer. However, Survival 
analysis and Pathological Stage of those top 3 mutated cancer genes 
remain to know. First, we investigated the impact of gene expression 
levels on patient prognosis, including overall Survival and disease-free 
Survival. TP53 is the highest frequently mutated gene, almost 49 % of 
donors were affected. Here in overall survival analysis (Fig. 2A), it can 
be seen that both high or low expression of the TP53 gene resulted in a 
similar overall risk of death, with a survival rate of approximately 20 % 
after 70 months (Log rank test, p = 0.46). The survival rate in LRP1B low 
expression group was significantly higher than that in LRP1B high 
expression group (Log rank test, p = 0.023) (Fig. 2B). Also, both high or 
low expression of the KMT2C gene resulted in a similar overall survival 
rate, with a survival rate of approximately 30 % after 80 months (Log 
rank test, p = 0.71) (Fig. 2C). 

Disease Free Survival (DFS) is the time from randomization to the 
first recurrence/metastasis or death from any cause. It is also not con
cerned with the cause of death and is usually used as the main outcome 
measure after radical surgery. As is shown in Fig. 2E, the DFS survival 
rate in LRP1B low expression group was significantly higher than that in 
LRP1B high expression group (Log rank test, p = 0.02). However, the 
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DFS survival rate were not affected by the expression level of TP53 (Log 
rank test, p = 0.054) (Fig. 2D) and KMT2C genes (Log rank test, p =
0.74) (Fig. 2F), which may indicate that these two genes may have 
similar gene expression patterns during the development of gastric 
cancer. What’s more, Pathological Stage Plot shows that TP53 and 
KMT2C genes expression level remained high throughout sub stages of 
gastric cancer development (Fig. 2G). These findings have implications 
for clinical diagnosis, treatment strategies, and further research in 
gastric cancer. The identification of significant differences in gene 
expression across stages helps in identifying potential biomarkers for 
diagnosis and prognosis, as well as therapeutic targets for personalized 
medicine approaches. 

3.4. GO and KEGG enrichment analysis 

Since many reported genes were related to the gastric cancer oc
currences, we wanted to know what biological processes in which these 
genes that are related to gastric cancer are involved and what major 
signaling pathways in which they are enriched. In a cohort of Chinese 

gastric cancer patients, we acquired a total of 4,169,143 single nucleo
tide point mutations on 22 human autosomes. Gene annotation of these 
sites was recorded using the ICGC database, and the names of protein- 
coding genes were downloaded for further GO and KEGG enrichment 
analysis. We obtained 19,976 protein-coding genes. In the biological 
process (BP), genes related to gastric cancer were mainly enriched in 
mononuclear cell differentiation, signal release, embryonic organ 
development, and gland development (Fig. 3A). In the cellular compo
nent (CC), they were mainly enriched in neuronal cell bodies, collagen- 
containing extracellular matrices, cell–substrate junctions, and focal 
adhesions (Fig. 3B). In the molecular function (MF), genes related to 
gastric cancer were mainly enriched in GTPase regulator activity, 
nucleoside− triphosphatase regulator activity, DNA–binding transcrip
tion factor binding, and DNA− binding transcription activator activity 
(Fig. 3C). KEGG results showed that the enrichment mainly occurred in 
the following pathways: the PI3K-Akt signaling pathway, human 
papillomavirus infection, cytokine-cytokine receptor interaction, and 
the MAPK signaling pathway (Fig. 3D). 

Fig. 1. Survival analysis by gender (A) and donor tumor diagnosis stage (B). Heat map of the distribution density of somatic mutations on gastric cancer autosomes 
(C). Different colors indicate the number of somatic mutations contained within 1 Mb Windows. The waterfull plot of the top 20 high-frequency mutant genes in the 
GACA-CN dataset (D). In the waterfall diagram of mutations, the horizontal axis represents different samples, the vertical axis is the gene, the filling represents the 
mutation of the gene, and different colors represent different mutations. The bar chart above is the statistics of the mutation for each sample. 
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3.5. Base composition in focal regions 

Base composition is a key component of genome organization and 
illustrating the details of base composition is an important step in 
elucidating the evolutionary significance and potential biological func
tions of other aspects of genome organization [30]. By using an 
advanced and unique R application named MutDens (https://github.co 
m/hui-sheen/MutDens), we extracted the mutation type in specific 
genomic regions, which included TSS, IS, TFBS, and Enhancer. From the 
distribution of six nucleotide mutation types, we found that C > T 
accounted for about 28.4 %, T > C 21.8 %, C > A 16.5 %, C > G 4.6 %, T 
> A 9.9 %, and T > G 18.8 % in the whole genome (Fig. 4A). In those 

four focal regions, the average C > T accounted for about 41.7 %, T > C 
18 %, C > A 15.4 %, C > G 5.9 %, T > A 7.1 %, and T > G 11.8 % 
(Fig. 4B). There was an excess of C > T mutations in the TSS and TFBS 
regions, which was significantly higher than that of the whole genome 
(Chi-square test, p < 2.2 × 10− 16) (Fig. 4C and E). Nevertheless, tran
sitions from T > C in the TSS and TFBS regions were significantly lower 
than that of whole genome (Chi-square test, p < 2.2 × 10− 16). For 
transversions from T:A > A:T and A:T > C:G, those types in the TSS and 
TFBS regions were both significantly lower than that of the whole 
genome (Chi-square test, p < 2.2 × 10− 16). 

It is interesting that those differences in the six mutation types be
tween focal regions like TSS and TFBS and the whole genome also 

Fig. 2. Disease Free Survival (DFS) analysis and Pathological Stage of top 3 mutated cancer genes. Overall survival curve of TP53 (A), LRP1B (B) and KMT2C (C) 
genes. Disease free survival curve of TP53 (D), LRP1B (E) and KMT2C (F)genes. All those survival analyses were used by Log-rank test. Violin plots of gene expression 
generated according to the pathological stage of the patient (G). The method for differential gene expression analysis is one-way ANOVA, using pathological stage as 
variable for calculating differential expression: Gene expression ~ pathological stage. The expression data are first log2(TPM+1) transformed for differential analysis. 
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existed in the IS and Enhancer regions (Fig. 4D and F). We speculated 
that mutations tended to occur on the flanks of these four focal regions. 
To confirm this hypothesis, we calculated the mutation burden in MPKM 
(mutations per kilo total mutations per megabase) in specific regions of 
the gastric cancer genome. A high value of six mutation forms was found 
in the TSS, TFBS, IS, and Enhancer regions compared with the whole 
genome (Supplementary Table 1). At the same time, we also found that 
the value of the mutation burden of C > T was the highest and C > G was 
the lowest among those four focal regions, which is a widely accepted 
pattern of mutation distribution. 

3.6. Effects of TCD and TCR on transcriptional strand bias 

For a particular class of mutations, a clear divergence between the 
two coupled mutation density curves indicates transcriptional/replica
tive strand bias [26]. For TSS, we observed that the mutation density of 
the C > A form was drastically different between coding and template 
strands upstream from TSS (Wilcoxon signed-rank test, p = 0.0003 for 
TSS’s left half range) (Fig. 4G). The mutation densities of the C > G and 
T > C forms on the coding strand were much higher than the template 
strand in GACA-CN dataset (Wilcoxon signed-rank test, p = 0.013 and 
0.039 for TSS’s left half range, respectively) (Fig. 4H and I), but no 
difference in GACA-JP dataset (Fig. 4K). We also observed that the 
mutation density of the C > A (Fig. 4J) and T > C (Fig. 4L) forms on the 
coding strand was drastically higher than on the template strand 

(Wilcoxon signed-rank test, p = 0.0049 and p = 0.019 for TSS’s left half 
range, respectively) in GACA-JP dataset. It is worth noting that we found 
a mutation hot region in the 1 Kb downstream region of TSS and central 
peaks of origins in GACA-JP dataset, with mutation density about 5x 
higher than that in the upstream region, and TSS-coincident mutational 
spikes were commonly seen in six different mutation types. 

If the mutation density curve for the coding strand was higher than 
the other curve for the template strand downstream from TSS, tran
scriptional strand bias would be postulated. Our scan of Chinese gastric 
cancer cohort for all six mutational classes indeed revealed mutational 
strand bias in many cases. For example, we find these transcriptional 
strand bias of T > G in gastric cancer data here (Fig. 4M) (Wilcoxon 
signed-rank test, p = 0.04). In addition, the mutation densities of the T >
G forms on the coding strand were drastically less than the template 
strand in the upstream from TSS (Fig. 4N) (Wilcoxon signed-rank test, p 
= 0.0038), which was also confirmed in GACA-JP dataset. 

The most important finding to emerge from this study was the 
description of mutation density in vicinity regions of TSS, that is, the 
transcriptional strand bias. GACA-CN and GACA-JP cohorts both 
showed transcriptional strand bias by presenting more T > G mutations 
on the non-transcribed strand. We believe that the strong T > G tran
scription strand bias characteristic in the genome of gastric cancer pa
tients is caused by a combination of the higher transcription-coupled 
repair (TCR) efficiency on the template strand and transcription-coupled 
damage (TCD) suffered by the coding strand in the single-stranded DNA 

Fig. 3. The GO enrichment analysis of protein coding genes in GACA-CN dataset. Bubble plot (A) based on GO enrichment analysis of genetic related biological 
processes (BP). Bubble plot (B) were genetically related to cell components (CC). Bubble plot (C) related to molecular function (MF). In the bubble plot, the X-axis is 
the proportion of genes, and the size of the circle represents the number of genes that are enriched in each GO gene. The larger the circle, the more genes are enriched 
in that GO gene. The color of the circle represents the significance of the enrichment, and the redder the circle, the more significantly the gene is enriched on this GO. 
Bubble plot (D) based on KEGG enrichment analysis. The ordinate is the name of the signal pathway. 
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state during transcription (Fig. 4O). This is a complex mutation forma
tion mechanism that produces extreme mutations of strand imbalance. 

3.7. Replication strand bias during DNA replication and mutation 
signatures characterizing 

Replication strand bias was probable if the mutation density domi
nance flipped from one mutation form to another on the left and right 
near the replication origin. In GACA-CN dataset, a visual graph in the 
replication origin regions showed that the mutation density of the C > A 
form was drastically different between the two strands (Wilcoxon 
signed-rank test, p = 0.033 for the whole range of the replication origin 
initiation site and p = 0.009 for the initiation site’s left half range) 
(Fig. 5A). When we took the GACA-JP dataset into consideration, a 

strong mutational strand asymmetry of C > A was found drastically 
different between the two strands (Fig. 5B) (Wilcoxon signed-rank test, 
p = 0.033 for the whole range of the replication origin initiation site and 
p = 0.009 for the initiation site’s left half range). We also found an 
origin-coincident and mutational off-center peak in the C > T class, but 
did not find the mutation strand bias characteristic of C > T during DNA 
replication (Fig. 5C). And C>T mutational strand asymmetry was found 
in the whole range of the replication origin initiation site in GACA-JP 
dataset (Fig. 5D), which was not exist in GACA-CN dataset. 

Different mutation base types are combined to form an inherent 
mutation pattern, which is the so-called mutation signature. The iden
tification of mutational markers has helped to deepen the understanding 
of environmental or endogenous factors in cancer development. In the 
GACA-CN dataset, we found that there were a variety of mutation 

Fig. 4. Distribution of mutational classes was analyzed in both the whole genome (A) and in proximity to Transcription Start Sites (TSS), Intronic Splice (IS) sites, 
Transcription Factor Binding Sites (TFBS), and Enhancer regions (B). Comparison of the mutational base spectrum was conducted between the entire genome (in 
yellow) and mutations in the vicinity of (C) TSS, (D) IS, (E) TFBS, and (F) Enhancer regions (in gray). Significance was determined using the Chi-square test in 
RStudio. The plots were generated using MutDens with the GACA-CN dataset for case studies (G, H, I, M). Mutation density curves for (G) C > A, (H) C > G, (I) T > C, 
and (M) T > G mutations were analyzed with respect to the specific genomic position: Transcription Start Site (TSS). Plots for the GACA-JP dataset are presented in 
(J, K, L, N). Mutation density curves for (J) C > A, (K) C > G, (L) T > C, and (N) T > G mutations were examined. Thymine-Cytosine Dimer (TCD) induces damage on 
the non-transcribed strand, which is exposed as single-stranded DNA (ssDNA) during transcription. Thymine-Cytosine Repair (TCR) mends the transcribed strand. 
Both processes contribute to T-class asymmetry (O). 
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features in the gastric cancer genome (Fig. 5E), including the sponta
neous deamination mark of cytosine methylation signature-1, account
ing for about 11 %; Signature-6, which is characterized by DNA 
mismatch repair, accounted for about 9 %; Signature-8, characterized by 
nucleotide excision repair (NER) defects, accounted for about 17 %; 
Signature-9, characterized by hypermutation induced by polymerase eta 
during replication, accounted for about 16 %; Signature-17, which is 
marked by ROS damage, accounted for about 24 %. The rich mutational 
signature in the gastric cancer genome hints at the complexity of somatic 
mutation formation. 

In humans, APOBEC mutagenesis primarily occurs on the lagging 
strand template during DNA replication. The APOBEC signature shows 
strong R-class asymmetry, with a higher rate of C > G and C > T mu
tations in right-replicating regions, where reference-strand DNA is pre
dicted to be replicated as the lagging-strand, exposed as ssDNA between 
Okazaki segments. In this study, we also found that the APOBEC in
duction pattern in the gastric cancer genome was mainly T[C>T]w and T 
[C>A]w, and less T[C>G]w (w = A or T) (Fig. 5F). Fig. 5G shows the 
composition of 96 specific mutation signatures, which provides a 
reference for APOBEC feature analysis. 

3.8. Mutation asymmetry patterns in enhancer and TFBS vicinity regions 

In recent years, enhancers, which are cis-type elements that affect the 
transcription regulation of proximal or distal genes, have received 
extensive attention. Studying enhancers and the different patterns of 
mutations around them can help us to understand more about how 

evolution happens. In addition to driving species evolution, enhancers 
have been linked to disease: mutations in enhancers have been linked to 
more than 80 % of human diseases [31]. After visualization of six 
different mutant classes in Enhancer regions, we found that the mutation 
density of C > A and C > T forms were significantly less than G > T 
(Wilcoxon signed-rank test, p = 0.0113) and G > A (Wilcoxon 
signed-rank test, p = 0.0279) upstream of the enhancer region in 
GACA-CN dataset, respectively (Fig. 5H and I). However, the mutational 
asymmetry in the region near the enhancer was not found in the 
GACA-JP dataset (Fig. 5J and K). 

Transcription factors are protein molecules that bind to genes with 
specific sequences to ensure the expression of target genes in specific 
time and space, and these factors control chromatin and transcription by 
recognizing specific DNA sequences. If the mutation occurs in the pro
moter region, it may affect the binding of the gene by the transcription 
factor, which in turn affects gene expression. Therefore, we investigated 
the mutation density pattern in the proximal region of TFBS. In GACA- 
CN dataset, the mutation density of C > A was significantly less than 
G > T upstream of TFBS (Wilcoxon signed-rank test, p = 0.0187), but 
higher in the downstream of TFBS (Wilcoxon signed-rank test, p = 2.03e- 
04) (Fig. 6A). The mutation density of C > G was significantly less than 
G > C upstream of TFBS (Fig. 6B) (Wilcoxon signed-rank test, p = 3.09e- 
05). 

The mutation density of C > T was significantly less than G > An 
upstream of TFBS (Wilcoxon signed-rank test, p = 1.0e-07), but higher 
downstream of TFBS (Wilcoxon signed-rank test, p = 3.22e-04). We also 
found an origin-coincident, mutational off-center peak in the C > T class 

Fig. 5. Plots generated by MutDens in replication origin Initiation Site (IS) vicinity regions of the GACA-CN dataset (A, C) and the GACA-JP dataset (B, D). Distinct 
mutation density patterns were identified and marked in gray rectangles, which include off-center peak of origins (B,C,D). Compositional pie chart of mutational 
signatures in the gastric cancer genome (E). The proportion of 3 substitution types in APOBEC-characteristic mutations (F). Mutation signature distribution map using 
deconstructSigs-R package after considering the context sequence of mutation sites. The mutation position was added by one base before and after to form a three- 
base pattern, and then 96 (6*4*4) mutation combinations were counted (G). Representative plots of Enhancer vicinity regions generated by MutDens in case studies 
of GACA-CN dataset (H, I) and the GACA-JP dataset (J, K). 
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(Fig. 6C). These similar waves were also found in the density of T > C, 
which was less than A > G upstream of TFBS (Wilcoxon signed-rank test, 
p = 1.0e-07) and higher downstream of TFBS (Wilcoxon signed-rank 
test, p = 1.91e-05) (Fig. 6E). The mutation density of the T > A form 
was drastically higher than A > T (Wilcoxon signed-rank test, p = 4.83e- 
04 (Fig. 6D) in the GACA-CN dataset, but lower in the GACA-JP dataset 
(Fig. 6J). We also found that the mutation density of T > G was signif
icantly less than A > C upstream of TFBS (Wilcoxon signed-rank test, p 
= 1.13e-05), but higher downstream of TFBS (Wilcoxon signed-rank 
test, p = 8.2e-05) (Fig. 6F). These results are further confirmed in the 
GACA-JP dataset. For examples, the mutation density of C > A (Fig. 6G), 
C > G (Fig. 6H), C > T (Fig. 6I) were significantly less than G > T, G > C, 
G > An upstream of TFBS but higher in the downstream of TFBS. 

4. Discussion 

Gastric cancer is one of the most common cancers in China, and it is 
characterized by high incidence and poor prognosis. Most cancer pa
tients cannot be cured due to a late diagnosis. It is essential to analyze 
changes in the genome to find biomarkers for early detection of gastric 
cancer and to present an accurate prognosis. Given the high prevalence 
of gastric Cancer in China and the possible interaction of environmental 
factors, Peking Cancer Hospital initiated the Gastric Cancer-China 
(GACA-CN) project and shared somatic mutation data with the Inter
national Cancer Genome Consortium (ICGC), which was the data source 
for our analysis. In addition, to reveal the mutation characteristics of the 

Asian population, we combined the Gastric Cancer somatic mutation 
data from Japanese people from the Gastric Cancer-Japan (GACA-JP) 
Project released in ICGC to find the common points and differences in 
the asymmetry of gastric cancer mutations. 

The results of location distribution of somatic mutation chromo
somes showed that chromosome 2 was prone to mutation in the GACA- 
CN and GACA-JP data. This was consistent with the published charac
teristics of somatic mutations in gastric cancer [10] that reflect its het
erogeneity [32]. According to the location of chromosome mutations in 
the GACA-JP data, no mutations occurred on the broken arm of chro
mosomes 13–15, but high-frequency mutations occurred on chromo
somes 2 and 17 (Fig. S1). These mutation hotspots were located at the 
positions of TTN and TP53 genes. TTN has a high frequency of mutations 
in a variety of tumors [33,34], and TP53 also has a high frequency. Most 
functional studies have found that after a TP53 mutation, the cancer 
inhibitory function was lost [35,36], and even the effect of inhibiting 
cancer was changed to promoting cancer [37]. Interestingly, we also 
found a high mutation density on chromosome 19 in the GACA-JP 
dataset (Fig. S1), which was not found in the GACA-CN dataset (Fig. 1C). 

TP53 and KMT2C are high frequency genes in gastric cancer and can 
be used as prognostic markers for immunotherapy. This study further 
analyzed the survival effect of genes on patient prognosis, and 
confirmed that the gene expression of TP53 and KMT2C mutations was 
higher throughout the cancer development cycle, and the survival rate 
of patients after 70 months was low. However, the survival rate in 
LRP1B low expression group was significantly higher than that in LRP1B 

Fig. 6. Mutation density curves of (A) C > A, (B) C > G, (C) C > T, (D) T > A, (E) T > C, and (F) T > G, analyzed against the special genomic position sets: 
Transcription factor binding site (TFBS) and generated by MutDens in case studies of GACA-CN dataset. Mutation density curves of (G) C > A, (H) C > G, (I) C > T, (J) 
T > A, (K) T > C, and (L) T > G, analyzed against the special genomic position sets: Transcription factor binding site (TFBS) in GACA-JP dataset. Distinct mutation 
density patterns were identified and marked in gray rectangles, including off-center peak of origins. 
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high expression group. LRP1B is known to be a putative tumor sup
pressor and a member of the low-density lipoprotein (LDL) receptor 
family. The LDL receptor family has a role associated with extracellular 
ligand clearance and is thought to be involved in extracellular signaling, 
as evidenced by LRP1B silencing and downregulation observed in renal 
cell carcinoma and thyroid carcinoma. 

In this study, we also found that among the characteristics of somatic 
mutations in four specific regions, transitions accounted for about 60 % 
and transversions accounted for about 40 %, among which C > T was the 
main mutation type (Fig. 4B, Fig. S2). In the subsequent calculation of 
mutation burden in MPKM, there was a high mutation load near these 
four regions, especially TSS and TFBS (Supplementary Table 1), which 
also suggested that mutations might be more prone to occur in the 
proximal regions of TSS, TFBS, IS, and Enhancer. This further reflected 
the regional heterogeneity of somatic mutations in gastric cancer, the 
high mutation load and mutation uncertainty of the genome, and the 
diversity of the genome at the molecular level. Therefore, personalized 
precision medicine is required to diagnose and to treat for gastric cancer. 

Our results highlight the widespread mutational strand asymmetries 
observed in cancer genomes, mediated by DNA replication, RNA tran
scription, and their associated repair pathways. Here in GACA-CN and 
GACA-JP cohorts, we first identified the transcriptional strand bias of 
T>G transversion. It suggests that the RNA polymerase on the tran
scription strand is blocked in the transcription process, and the blocked 
RNA polymerase recruit’s nucleotide shear repair related factors to 
repair the damaged nucleotides to avoid mutation. Because the whole 
genome is replicated every time a cell divides, replication direction has 
the potential to exert larger asymmetries in mutational data. For IS, we 
found a different result between GACA-JP and GACA-CN cohorts. In 
GACA-CN, we saw predominantly C > A mutations in left-replicating 
regions and G > T in right-replicating regions (Fig. 5A). This was 
consistent with the recent report on POLE tumors: that tumors carried 
functional mutations in the proofreading exonuclease domain of POLE 
[38]. In humans, Haradhvala et al. suggested that apolipoprotein B 
mRNA editing enzyme catalytic polypeptide like (APOBEC) mutagenesis 
primarily occurred on the lagging-strand template during DNA replica
tion, and the APOBEC signature showed strong R-class asymmetry. 
There was a higher rate of C > G and C > T mutations in right-replicating 
regions, where reference-strand DNA was predicted to be replicated as 
the lagging-strand template where it was exposed as ssDNA between 
Okazaki segments. The magnitude of this asymmetry increased with 
enrichment of the APOBEC signature [22]. 

Enhancers are genomic sequences that play a key role in regulating 
tissue-specific gene expression levels. An increasing number of diseases 
that are associated with impaired enhancer function through chromo
somal rearrangement, genetic variation within enhancers, or epigenetic 
regulation have been discovered recently [39]. In this study, we found 
that the mutation density of C > A (Fig. 5H) and C > T (Fig. 5I) forms 
were significantly less than G > T and G > An upstream of enhancer 
regions, respectively. Enhancers are characterized by specific chromatin 
modifications like H3K4me1 and H3K27ac [40–42]. We speculate that 
the mutation bias in the region around enhancers may be influenced by 
chromatin status. For example, the frequency of base mutations corre
lated negatively with H3K27ac modifications in germline mutations in 
autistic individuals and in somatic mutations in cancer [43,44]. 

In addition to these mutant signatures associated with specific mu
tation processes, such as APOBEC mutations, nucleotide mismatch 
repair, or various carcinogens, more recently, nucleotide excisational 
repair (NER) associated with a mutant signature has been associated 
with specific mutation patterns within TFBS in the cancer genome [45]. 
The mutation asymmetries in TFBS regions in the GACA-JP cohort was 
consistent with the GACA-CN cohort, but the GACA-JP cohort had a 
more significant mutation strand bias in the upstream and downstream 
regions of TFBS. This was especially true for those TFBS-coincident 
mutational, off-center peaks in the C > A, C > G, C > T, and T > C 
classes (Fig. 6G, H, I and K). Given the differences in DNA binding 

specificity between TFs, we hypothesized that mutational signatures 
that were specific to gastric cancer types affected TFBSs differentially 
across TF families. 

Gene expression is regulated mainly at the transcriptional level by 
the binding of TF to promoters (i.e., cis-regulatory regions that surround 
genes’ transcription start sites, TSS) and enhancers (i.e., cis-regulatory 
regions distal to genes) at TF binding sites (TFBS) [46–48]. After 
comparing the number of regulatory elements between high mutational 
impact genes and low mutational impact genes, we found the regulatory 
elements in high mutational impact genes is significantly higher than 
low mutational impact genes (Fig. S3), indicating the important role of 
the regulatory elements during mutation occurrence. 

Last but not least, a limitation of this analysis lies in its static nature. 
While our donor pool encompasses various stages of cancer (Stage I to 
IV), it does not take into account other recognized important prognostic 
factors, such as stage, N ratio, and HER positivity. This is one of the 
shortcomings of our study. Furthermore, cancer onset is a dynamic 
stochastic process, during which cell populations acquire mutations 
driving tumor initiation, immune evasion, expansion, invasive infiltra
tion, and resistance to treatment [49]. Meanwhile, we conducted KEGG 
and GO analyses on all identified genetic variants to gain a preliminary 
understanding of the potential functional implications associated with 
these variants. However, we acknowledge a critical point regarding the 
necessity of considering the proven impact of genetic variants on gene 
function or expression level. As rightly pointed out, not every somatic 
variant is inherently pathogenic or functional. The work by He et al. [50] 
underscores this point, highlighting that among a set of somatic variants, 
only a fraction was identified as strong or potentially clinically action
able. This prompts us to acknowledge the need for caution in inter
preting the functional significance of all identified variants solely based 
on computational predictions. In light of these considerations, we 
emphasize that our study represents an initial step, and its findings 
should be viewed in the context of this limitation. Future research di
rections should involve more targeted analyses, including functional 
characterization studies, to delineate the true impact of specific variants 
on gene function or expression. The importance of distinguishing be
tween pathogenic and non-pathogenic variants will be a key aspect of 
our future investigations. 

The emergence and advancement of next-generation sequencing 
technologies have greatly facilitated the quantification of cancer evo
lution dynamics. In the future, a combined analysis using targeted 
sequencing, genomic analysis, single-cell sequencing methods, and 
emerging multi-omics technologies should be employed. By sequencing 
and analyzing circulating tumor cells or tumor DNA, a minimally 
invasive approach holds promise for monitoring and capturing the dy
namic mutations in cancer [51]. 

5. Conclusion 

Somatic mutation is the main factor in cancer. Rather than studying 
the characteristics of individual mutations, studying mutations in 
conjunction with specific genomic regions provides a unique perspective 
on tumorigenesis and history. Mutation strand bias, in contrast to mu
tation load and mutation signature, represents another holistic view of 
genome-wide mutation and appears to be a promising approach to 
tumorigenesis. The analysis in this series of studies compares many 
single base substitutions between two complementary strands of DNA. 
The mutation mechanism can be revealed only by checking the mutation 
form and number, which eliminates the mutation annotation step used 
commonly in another research workflow. Starting from specific regions 
of the genome (TSS, IS, TFBS, and Enhancer regions), we present mu
tation density patterns in those four focal regions, which is an important 
supplement to the conventional studies on the mechanism of somatic 
mutations; it is significant to reveal the characteristics of somatic mu
tations in gastric cancer. Novel mutations and repair processes are 
emerging constantly from studies of cancer genome sequencing, and 
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looking at them through the lens of the asymmetry of mutation strands 
provides immediate insight into their molecular mechanisms. This work 
systematically describes the mutational strand asymmetries and helps to 
reveal the underlying biological mechanism of somatic mutations in 
cohorts of Asian patients with gastric cancer. 
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