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The ability to control network dynamics is essential for ensuring desirable functionality
of many technological, biological, and social systems. Such systems often consist of
a large number of network elements, and controlling large-scale networks remains
challenging because the computation and communication requirements increase pro-
hibitively fast with network size. Here, we introduce a notion of network locality that
can be exploited to make the control of networks scalable, even when the dynamics
are nonlinear. We show that network locality is captured by an information metric and
is almost universally observed across real and model networks. In localized networks,
the optimal control actions and system responses are both shown to be necessarily
concentrated in small neighborhoods induced by the information metric. This allows us
to develop localized algorithms for determining network controllability and optimizing
the placement of driver nodes. This also allows us to develop a localized algorithm for
designing local feedback controllers that approach the performance of the corresponding
best global controllers, while incurring a computational cost orders-of-magnitude lower.
We validate the locality, performance, and efficiency of the algorithms in Kuramoto
oscillator networks, as well as three large empirical networks: synchronization dynam-
ics in the Eastern US power grid, epidemic spreading mediated by the global air-
transportation network, and Alzheimer’s disease dynamics in a human brain network.
Taken together, our results establish that large networks can be controlled with compu-
tation and communication costs comparable to those for small networks.
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Many complex networks derive their functionalities from the dynamical processes they
host (1–3), such as synchronization of generators in power grids (4, 5), coordination
dynamics in robotic networks (6), production and distribution of goods in supply chain
networks (7), species interactions in biochemical (8, 9) and ecological (10, 11) networks,
and exchange of assets and other transactions in financial networks (12). The control of the
dynamics of such networks for desirable outcomes is a fundamental problem in network
science (13). Crucially, the dynamics of large real networks are high-dimensional. This calls
for the integration of control theory and network science in order to solve both the analysis
problem (whether a network is controllable) and the synthesis problem (how to control
the network), so that network properties can be exploited to avoid computation and
communication intractability (14–16). A promising line of research has been developed
by focusing on structure-based approaches (17–21), in which the nodes that need to be
controlled are determined by using network-topological information only. For instance,
based on the graph-theoretic characterizations of the Kalman (22) or Popov–Belevitch–
Hautus (23) rank conditions for controllability, efficient algorithms have been designed
to identify the minimal set of driver nodes for a network to be controllable (14). This
qualitative notion of controllability has proved to be insightful and broadly applicable.
However, this concept is not designed to characterize the difficulty in actually carrying
out the control actions or to inform the design of control laws. This is important because
the control energy needed to steer the system (i.e., the amount of physical, human, social,
or economic resources required for control) may increase exponentially as one reduces the
fraction of nodes controlled, even when the system is controllable in principle (24–26). To
enable network control in practice, numerous studies have shifted focus from qualitative
to quantitative controllability (24, 25, 27), from controlling the entire network to
controlling a target subset of nodes (28, 29), and from centralized to decentralized control
designs (30, 31).

In this article, we develop a theory and an associated computational approach for
controlling large complex dynamical networks by exploring the concept of locality (defined
below), and we show that empirical networks are most often localized. Our study uncovers
a dichotomy in controlling localized networks: Even though a significant fraction of nodes
need to be directly controlled to make the system controllable in practice, analysis and
control are possible using only local computation and communication, while keeping the
control performance near the optimal achieved by global control.
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Intuitively, a network is localized if each node is associated
with a small group of other nodes and interacts significantly
more strongly with the nodes within this group than outside it.
This notion of locality can be seen as a generalization of sparsity,
defined as the property in which each node is connected with
only a small subset of other nodes. Since locality additionally
accounts for interaction strengths, a network can be localized, even
if all pairs of nodes are connected. In addition, for the concept
of locality to be useful in network control, the locality property
should be preserved in the dynamical responses of the network,
which we formalize by introducing a metric space on the network.
We characterize network locality by how the interaction strengths
decay with a metric that we call the information distance, such
that each node in a network interacts strongly only with its so-
called information neighborhood (see Fig. 1 for an example and
the next section for precise definitions). We present an efficient
algorithm to construct the information distance from the given
network data, and we show that locality is observed in a broad class
of real and model networks. We emphasize that network locality is
different from the presence of a community structure (32), since
the information neighborhood of a node can be different from
that of another node in that neighborhood, whereas a community
is generally shared by all of its member nodes. For example,
a ring network, in which each node is connected to its two
nearest neighbors, does not have a community structure, and yet
is localized.

To address the analysis problem in network control, we prove
that locality allows both the construction of the controllability
Gramian and the approximation of its smallest eigenvalue (a mea-
sure of controllability; SI Appendix, section 3) to be performed
using only local information and computation. Based on this
observation, we develop a highly scalable algorithm that can com-
pute a near-optimal solution of the driver-placement problem,
in which the smallest eigenvalue of the Gramian is maximized.
Moreover, the locality of the Gramian implies that a driver can
efficiently control only the nodes in its information neighborhood
and that the energy needed to control a distant node becomes pro-
hibitively large as the information distance increases. Incidentally,

A B

Fig. 1. Information distance vs. network distance on a weighted Watts–
Strogatz (WS) network of N = 1,000 nodes with average degree d̄ = 20 and
rewiring probability p = 0.1. The network distance is the geodesic distance on
the network with edge lengths defined as the reciprocal of coupling strengths.
(A) Information distances and network distances to a reference node
(labeled “1”), visualized on the network by node colors and sizes, respectively.
(B) Information distances vs. network distances for each pair of nodes.
The color indicates the conditional probability density for the information
distance, given the network distance.

this provides a theoretical explanation for the observation in refs.
25 and 26 that, in the worst-case scenario, the control energy in-
creases exponentially when the number of driver nodes decreases.

To address the synthesis problem, we show that network local-
ity can enable stable and near-optimal control of large networks.
This follows from showing that the (globally) optimal control ac-
tions and the corresponding system responses are both localized in
the information neighborhoods of the disturbed nodes, implying
that the optimal feedback matrix is also localized. Taking advan-
tage of this, we develop a decentralized algorithm for calculating
a sparse approximation of the optimal feedback law, in which the
state measurements of each node are used only by the drivers in
the information neighborhood of that node.

Our theory and methods are applicable to the control of
nonlinear networks. This is achieved by allowing the local con-
trol laws to be time dependent and is demonstrated by using
four concrete examples: control of synchronization in Kuramoto
oscillator networks, stability control for the Eastern US power-
grid network, suppression of epidemic spreading mediated by
the global air-transportation network, and control of whole-
brain network dynamics associated with a neurological disease.
These examples illustrate the methods’ applicability to diverse
domains—infrastructural, epidemiological, and biomedical—and
to control tasks ranging from synchronization and stabilization to
trajectory tracking and command following. Thus, by exploiting
network locality, the developed method successfully addresses
existing computation and communication scalability issues in
controlling large complex networks.

Locality in Dynamical Networks

Definitions and Basic Implications. While our results will apply
to nonlinear networks, to develop our theory, we first consider
networks described by

ẋ i =C iix i +
N∑

j=1,j �=i

C ijx j , i = 1, · · · ,N , [1]

where x i ∈ R
ni is the state vector for node i and the dimension

ni can, in principle, be different for different nodes. In compact
form, Eq. 1 reads ẋ =Cx , where x ∈ R

m , C ∈ R
m×m , and

m =
∑N

i=1 ni . Here, C represents the Jacobian matrix of a
general network system of N nodes, which can be directed and
weighted. In the case of an adjacency-like matrixC , the blockC ij

represents the coupling from node j to node i if i �= j , whereas
C ii captures the nodal dynamics and self-links, collectively re-
ferred to as the self-interaction of node i . As a scalar measure of
the coupling strength from node j to i , we use the matrix norm
‖C ij‖ induced by the given vector norms for Rni and R

nj (the
notation ‖·‖ is used throughout to indicate these norms for any
vector and matrix). The theory presented below is applicable to
arbitrary matrices C and is explicitly illustrated for systems with
multidimensional node dynamics. However, except when noted
otherwise, our numerical simulations assume for concreteness that
C =−L, where L is the Laplacian matrix of a network. Given a
network with adjacency matrix A, the Laplacian matrix is defined
as Lij =−Aij for i �= j and Lii =

∑
j �=i Aij .

To define a notion of locality for dynamical networks, we use
the algebra of matrices with off-diagonal decay (33). The system
matrix C is said to be localized with respect to a characteristic
function v : R+ → R

+ and metric ρ : Z× Z→ R
+ provided

that

‖C ij‖ ≤ κ · v
(
ρ(i , j )

)−1
, i , j = 1, 2, . . . ,N , [2]
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for some positive real constant κ. A network with system matrix
C is localized if, in addition, the resulting information neighbor-
hoods defined below are small for a tight choice of the bound in
Eq. 2. The characteristic function v(·) is required to (i) be mono-
tonically increasing, (ii) satisfy v(0) = 1 and v(∞) =∞, and (iii)
be submultiplicative (i.e., v(z + y)≤ v(z )v(y)). As a metric,
ρ(·, ·) is required to satisfy (i′) the identity of indiscernibles—
i.e., ρ(i , j ) = 0 if and only if i = j , (ii′) the symmetry rela-
tion ρ(i , j ) = ρ(j , i), and (iii′) the triangle inequality ρ(i , j ) +
ρ(j , k)≥ ρ(i , k). We refer to ρ(·, ·) as the information distance
associated with the network system in Eq. 1, as it measures the dis-
tance between two nodes in terms of information exchange: The
farther apart two nodes are, the less information they exchange.
The reciprocal of the function v(·) in Eq. 2 characterizes how the
coupling strength in matrix C decays as the information distance
grows. We define Ni(τ) = {1≤ j ≤ N | ρ(i , j )≤ τ} to be the
information neighborhood of radius τ centered at node i . Thus,
Eq. 2 ensures that the coupling from node j to i is weaker than
κ · v(τ)−1 for all nodes j /∈ Ni(τ), whereas all nodes j ∈Ni(τ)
can have coupling with i stronger than κ · v(τ)−1. This coincides
with the intuitive idea of network locality mentioned above. The
rest of this article will establish the legitimacy of this formal
definition by demonstrating its explanatory and predictive power
for analyzing and designing the control of dynamical networks.

For this purpose, it is instructive to first consider some basic
implications of the notion of locality just introduced. Given a
characteristic function v(·) and a metric ρ(·, ·), the set Lv ,ρ of
all block matrices M of block sizes n1,n2, · · · ,nN satisfying the
locality property in Eq. 2 (for C ij replaced by M ij ) forms a
Banach algebra (33, 34). That is, the set Lv ,ρ, which can include
the system matrix C , is closed under matrix arithmetics and
contains its limit elements. In addition, if we choose a character-
istic function v(·) satisfying the Gelfand–Raikov–Shilov (GRS)
condition, limn→∞ v(nz )1/n = 1, then the set Lv ,ρ is inverse-
closed, i.e., M−1 ∈ Lv ,ρ if M is an invertible element in Lv ,ρ

(33). A special class of functions satisfying the GRS condition
consists of the subexponential functions v(z ) = eαz

β

(1 + z )q

with α > 0, 0< β < 1, and q > 1. When Lv ,ρ is an inverse-
closed Banach algebra, the locality defined above is invariant
under various operations on a given matrix M and, hence, is
preserved in key matrices for system analysis and control, such
as the controllability and observability Gramians. If the algebra is
inverse-closed, locality is also preserved in the solutions of linear
equations of the form Mx = b , the Riccati equation CTP +

PC −PBR−1BTP +Q = 0, and the Lyapunov equation
CTP ′ +P ′C +Q ′ = 0 (assuming that b is localized around a
given node i and that the matricesQ ,BR−1BT , andQ ′ belong
to Lv ,ρ) (34, 35). For localized networks, this leads to localized
feedback matrices that solve the linear-quadratic optimal control
problem. These properties are derived in SI Appendix, section 1
and used in our theory below.
Constructing the Information Distance and Locality Measures.
To systematically construct an information distance, we note that
given a function v(·) satisfying the conditions (i) to (iii) above,
there is always a function ρ(·, ·) satisfying Eq. 2 for some κ > 0
whose explicit identification is presented below. For simplicity,
we use the characteristic function v(z ) = eαz

β

(1 + z )q with
α= 1, β = 0.9, and q = 1.2 throughout. The locality of a given
network is then characterized solely by ρ(·, ·), which is unknown
a priori and, thus, needs to be constructed from the system
matrix C . Since v(·) is monotonically increasing, it has an inverse
function, which we denote by w(·). Let G̃ denote the graph in

which an undirected edge exists between nodes i and j if and
only if max{‖C ij‖ , ‖C ji‖}> 0 and define the length of each
edge to be ρ̃ij = max{w (max1≤i′,j ′≤N ‖C i′j ′‖ /max{‖C ij‖,
‖C ji‖}) , ε}. Here, we introduce a small number ε > 0 to ensure
that ρ(·, ·) to be constructed will be a metric and is set as
ε= 10−12 throughout this article. While it is straightforward to
verify that any function ρ(i , j )≤ ρ̃ij satisfies Eq. 2 with constant
κ= max1≤i,j≤N ‖C ij ‖ · v(ε), such a function is generally not a
metric. We thus choose ρ(i , j ) to be instead the geodesic distance
over the weighted graph G̃ , i.e., the smallest sum of edge lengths
ρ̃ij along a path between nodes i and j (ρ(i , j ) = +∞ if no such
path exists). This guarantees that ρ(·, ·) is a metric, in addition
to being upper-bounded by ρ̃ij , and satisfies all the conditions
required for an information distance.

Note that the information distance defined above is generally
different from the (conventional) network distance on networks,
where the edge length is taken to be the inverse of the coupling
strength. For the characteristic function v(·) adopted above, the
only case in which these two notions of distances coincide is when
the off-diagonal of C is given by an undirected and uniformly
weighted adjacency matrix and the diagonal satisfies ‖C kk‖>
maxi �=j ‖C ij‖ for all k . If, instead, we take a linear function
v(ρ(i , j )) = (max1≤i′,j ′≤N ‖C i′j ′‖)ρ(i , j ), by our construc-
tion, ρ̃ij = (max{‖C ij‖ , ‖C ji‖})−1 and the geodesic distance
on G̃ coincides with the network distance if the networks are
undirected. However, the linear function v(·) does not satisfy the
GRS condition and the properties (ii) and (iii) required to be a
characteristic function. We refer to SI Appendix, Fig. S1 for an
illustration of the necessity of the GRS condition.

The problem of constructing the information distance ρ(·, ·)
above has been reduced to that of determining the geodesic
distances on the graph G̃ , which is a classical problem that
is solvable, for example, by Dijkstra’s algorithm (36). For our
purpose, a variant of Dijkstra’s algorithm, called the Uniform Cost
Search (UCS) (37) (Algorithm 1 in Materials and Methods), is
suitable because the algorithm itself can then be implemented
in a distributed way. That is, the calculations can be parallelized
and performed at each node using only local information. Since
the algorithm starts from a given node and sequentially visits
its geodesic neighbors from the nearest to the farthest, it can
be terminated once the desired distances are calculated. These
features make the algorithm scalable to large networks.

The information distance constructed above is visualized in
Fig. 1 for a weighted variant of the WS small-world model (38).
The figure shows that a short network distance between two nodes
does not necessarily imply a short information distance between
them. Fundamentally, the difference between the two distances
arises because the information distance is a metric and captures not
only the node-to-node interactions, but also the self-interactions.
In contrast with the network distance, the information distance
is based on a characteristic function v(·) that satisfies the sub-
multiplicativity and GRS conditions, which guarantees that the
locality associated with the information distance is inherited
by the dynamical responses in the network. It follows that the
information distance is the appropriate distance representing the
dynamical interaction strengths among nodes in a network. For
the example in Fig. 1 and other model networks considered, the
(scalar) edge weights Aij are drawn randomly from the uniform
distribution in [0, 1], but we note that our main conclusions do
not depend sensitively on this choice.

To quantify the locality of a network, we now introduce two
measures, which we will refer to as the “γ-locality” and the
“L-neighborhood reduction rate,” using the information distance
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constructed above. Here, the γ-locality will quantify the size of
the neighborhood given a fixed reduction rate γ, whereas the
L-neighborhood reduction rate will measure the reduction rate
given a neighborhood size L.

For this purpose, we first define the γ-neighborhood Ñi(γ)
of node i for a given constant 0< γ < 1 as the set of nodes j
for which the upper bound κ · v(ρ(i , j ))−1 in Eq. 2 is larger
than γμi , where μi = max1≤j≤N max{‖C ij‖ , ‖C ji‖}. Thus,
the strength of the interaction between any node outside this
γ-neighborhood and node i is weaker than γ times the
maximum interaction strength involving node i . In terms of
the radius in information distance, we can write Ñi(γ) =
Ni

(
w (κ/(γμi))

)
, and thus the γ-neighborhoods can them-

selves be referred to as information neighborhoods. With this
definition, we can now quantify the degree to which node i

is localized by the neighborhood size Si(γ) = |Ñi(γ)| and its
normalized version, li(γ) = Si(γ)/N , where |·| denotes the
number of elements in the set (when applied to numbers,
the notation |·| will denote absolute value). We call li(γ) the
γ-locality of node i . To measure the locality of the entire network,
we use the average γ-locality, l̄(γ) =

∑
1≤i≤N Si(γ)/N

2, which
is a number between zero and one. In the extreme case of
completely isolated nodes (i.e., ‖C ij‖= 0 for all i �= j ), the
information distance is given by ρ(i , j ) = +∞ for all i �= j and
ρ(i , i) = 0 for all i , yielding Ñi(γ) = {i} and l̄(γ) = 1

N , which
approaches zero in the large-network limit. In the other extreme
of all-to-all uniform coupling (i.e., ‖C ij‖= ‖C i′j ′‖> 0 for all
i �= j and i ′ �= j ′), the distance is given by ρ(i , j ) = ε for all i �= j
and ρ(i , i) = 0, yielding l̄(γ) = 1. For typical networks, l̄(γ)
takes values intermediate between these two extremes. We note
that the calculation of the γ-locality does not require obtaining
ρ(·, ·) in advance; instead, the UCS algorithm can be run in
parallel to efficiently construct Ñi(γ) for all nodes i . Fig. 2A
shows the average of Si(γ) among all nodes, denoted as S̄ (γ), for
γ = 0.05 as a function of the network size for various empirical
and model networks. We observe l̄(γ)< 0.05 for all networks
considered, with nearly 90% of them showing l̄(γ)< 0.01, which
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Fig. 2. Locality measures for both empirical and model networks. (A) Av-
erage γ-neighborhood size S̄(γ) with γ = 0.05 vs. the number of nodes N
for 50 empirical networks from the KONECT dataset (39) (color-coded dots)
and model networks generated by the Erdős–Réyni (ER) model (40), Barabási–
Albert (BA) model (41), and WS model (38). For the model networks (color-
coded triangles), each data point represents an average over 20 realizations.
The gray dot–dash lines represent contour curves of the average γ-locality
l̄(γ). (B) Average L-neighborhood reduction rate R̄(L) vs. the neighborhood
size L for a representative subset of empirical networks and the model
networks with N = 1,000. The model networks are set to have average degree
d̄ = 6 using a seed network size of m0 = 3 for the BA networks and a rewiring
probability of p = 0.2 for the WS networks. The empirical network data are
described in SI Appendix, section 2.

suggests that the locality in the sense defined here is pervasive
across both real and model networks. In addition, the average
neighborhood size S̄ (γ) for model networks does not grow with
the network size, indicating that larger networks may not be more
difficult to analyze and control if locality is properly exploited.

The upper bound κ · v(ρ(i , j ))−1 on the strength of coupling
from a given node j to a given node i in Eq. 2 reduces as
the information distance ρ(i , j ) increases. Thus, the locality
of node i can also be measured by the reduction of this
bound achieved at the boundary of the L-neighborhood N̂i(L),
which we define as the set of L nodes closest to the node i
according the information distance. This neighborhood includes
node i itself, and nodes at equal information distances are
ordered randomly. The interaction strength reduction achieved
at the boundary of the L-neighborhood is then given by
Ri(L) := κ · v

(
max

k∈N̂i (L)
ρ(i , k)

)−1
/μi , which we call

the L-neighborhood reduction rate of node i . This implies
that ‖C ik‖ ≤ Ri(L)μi and that any node farther away must
couple more weakly to node i than Ri(L)μi . Fig. 2B shows
the average L-neighborhood reduction rate as a function of
L for several real and model networks. The average reduction
rate R̄(L) =

∑N
i=1 Ri(L)/N exhibits a sharp initial decrease

for a small L on various networks (note the logarithmic scale),
further suggesting that local control may be possible with small
information neighborhoods. Below, we show that this is indeed
the case by establishing that the controllability Gramian and
optimal control actions inherit the network locality.

Controllability of Localized Networks

Locality of the Controllability Gramian and Control Effort. We
now examine the network system described by Eq. 1 in a control-
theoretic context. In this analysis, we use the notion of driver
node to refer to a node that is directly actuated by an independent
control input, which is, in turn, referred to as a driver. By selecting
driver nodes as a subset of nodes D ⊆N := {1, . . . ,N }, the
system dynamics can be expressed as

ẋ =Cx +Bu , [3]

where B ∈ R
m×r comprises [e1b1, e2b2, · · · , eNbN ],

b i ∈ R
ni×ri is the input matrix of node i , and eT

i =
[0ni×n1

, · · · , I ni
, · · · , 0ni×nN

] ∈ R
ni×m is the projection from

the entire state space to the subspace of node i . The matrix
b i is zero if i /∈ D, and we define η = maxi ‖b i‖. The total
input dimension of the system is r =

∑N
i=1 ri and we denote

by f T
i = [0ri×r1 , · · · , I ri , · · · , 0ri×rN ] ∈ R

ri×r the projection
from the entire input space to the input subspace of node i . The
dynamical system in Eq. 3 is controllable if, for any given initial
state x 0, final state x 1, and finite time t1 > 0, there exists an
input u such that the system state is steered from x = x 0 at time
t = 0 to x = x 1 at t = t1. It can be shown that this controllability
condition is satisfied if the controllability Gramian matrix

W t
c =

∑
i∈D

W t
ci =

∑
i∈D

∫ t

0

eC t′e ib ib
T
i eT

i eC
T t′dt ′, [4]

is positive definite for any t > 0 (42), where the component W t
ci

represents the contribution of the i th driver. Since the matrix
exponential eC t is localized if the network system is localized
(see SI Appendix, section 1 for a proof ), we have

∥∥[eC t ]ij
∥∥≤

κtv(ρ(i , j ))
−1 for some constant κt > 0, where [eC t ]ij denotes
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the (i , j ) block of matrix eC t (according to the same block
partition as in matrix C ). Thus,

∥∥[eC te ib i(e
C te ib i)

T ]jk
∥∥≤

κ2
t η

2v(ρ(i , j ))−1v(ρ(i , k))−1 ≤ κ2
t η

2v
(
ρ(i , j ) + ρ(i , k)

)−1,
where the second inequality comes from the submuliplicative
property of the characteristic function. This decay pattern is
preserved under integration:

∥∥[W t
ci ]jk

∥∥≤ κ̆tη
2v

(
ρ(i , j ) +

ρ(i , k)
)−1, where κ̆t =

∫ t

0
κ2
t′dt

′. This shows that the contri-
bution to the controllability Gramian from the driver at node i
concentrates around the (i , i) block and decays as one moves
away vertically or horizontally from that block. Combining
the contributions from all driver nodes and using the triangle
inequality, we have

∥∥[W t
c ]jk

∥∥≤ κ̆tη
2|D|v

(
ρ(j , k)

)−1, which
implies that the Gramian is also localized and belongs to the
algebra Lv ,ρ, according to the block partition of the system
matrix C .

The quadratic integral
∫∞
0

u(t)Tu(t)dt is usually referred
to as the energy of the control input and serves as a quantita-
tive measure of the control effort required to achieve a certain
task. It is known that the worst-case minimum energy needed
to drive a system to a target state is inversely proportional to
λmin(W

t
c), the smallest eigenvalue of the controllability Gramian

(25, 27). In general, λmin(W
t
c) is upper-bounded by the smallest

diagonal element of W t
c . Thus, if a localized network system is

equipped with only one driver at node i , we have λmin(W
t
c)≤

κ̆tη
2v

(
maxj ρ(i , j )

)−2
, which implies that the worst-case con-

trol energy grows at least near-exponentially with the information
distance between the driver and the farthest node in the network.
A system that has nodes far from node i in the metric ρ(·, ·), as
in the case of a highly localized network, would be uncontrollable
in practice by just placing one driver at node i . That is, even if the
system is theoretically controllable (i.e., W t

c has full rank), the
control energy needed to drive the system would be prohibitively
high. Moreover, the analysis above extends to the case of multiple
driver nodes, providing a more general upper bound on the
smallest eigenvalue of the controllability Gramian:

λmin(W
t
c)≤ κ̆tη

2 · |D| · v
(
ρH(D,N )

)−2
, [5]

where D := {i1, i2, · · · , i|D|} is the set of driver nodes, and
ρH(D,N ) := maxj∈N mini∈D ρ(i , j ) is the directed Hausdorff
distance between the sets D and N induced by the metric ρ(·, ·).
Eq. 5 establishes a locality requirement for energy-efficient con-
trol: To ensure that the network is controllable in practice, every
node in the network must be within a small information neighbor-
hood of a node in D (i.e., mini∈D ρ(i , j ) is small for all j ∈N ,
so that ρH(D,N ) is small). This condition usually means that a
significant portion of the nodes need to be directly controlled.
This analysis provides a theoretical explanation for the empirical
observations in refs. 26 and 28 that the worst-case control energy
increases drastically as the number of driver nodes is reduced.

Localized Approximation of the Controllability Measure. The
Gramian eigenvalue λmin(W

t
c), being a quantitative measure of

the system’s controllability, can be used as an objective function to
guide the selection of driver nodes (27). The exact computation of
λmin(W

t
c), which requires solving the eigenvalue problem for the

entire system, is inefficient and can be prohibitive for large-scale
networks. However, when the network is localized, λmin(W

t
c)

can be well-approximated by λmin
(
W t

c(Ni(τ),Ni(τ))
)
, where

W t
c(Ni(τ),Ni(τ)) denotes the submatrix of W t

c induced by
an information neighborhood Ni(τ) of radius τ around a certain

node i . Indeed, we show that in a localized network, there exists
an i ∈N such that λmin

(
W t

c(Ni(τ),Ni(τ))
)
− λmin(W

t
c) =

O
(
v(τ)−1

)
(SI Appendix, section 4). Since identifying such a

node i may be difficult in practice, we consider the smallest
eigenvalue over all nodes:

λ̃min(W
t
c) = min

1≤k≤N
λmin

(
W t

c(Nk (τ),Nk (τ))
)
. [6]

It follows from the existence of the node i with the property
above that λ̃min(W

t
c) converges to λmin(W

t
c) as O

(
v(τ)−1

)
.

If the sizes of the information neighborhoods do not grow with
the network size N , the cost of computing the smallest eigenvalue
of each “sub-Gramian” in Eq. 6 would remain constant, and,
hence, the cost of computing λ̃min would scale linearly with N .
This analysis also applies to the infinite-horizon controllability
Gramian W∞

c when the system matrix C is stable (i.e., all
its eigenvalues have negative real parts) since the integration
in Eq. 4 converges as t →∞ and the algebra Lv ,ρ is com-
plete. Fig. 3 demonstrates the ability of λ̃min(W

∞
c ) to approx-

imate the exact λmin(W
∞
c ) for model networks. As the neigh-

borhood size L= |Ni(τ)| increases, the estimate λ̃min(W
∞
c )

quickly approaches the true value λmin(W
∞
c ), as shown in Fig. 3

A–C. For a fixed L, the estimate λ̃min(W
∞
c ) provides an upper

bound for λmin(W
∞
c ), as verified in Fig. 3 D–F. Moreover, plac-

ing additional drivers decreases the relative differences between
λ̃min(W

∞
c ) and λmin(W

∞
c ), as shown in Fig. 3 D–F (see Fig. 5A

for a further illustration of this point in the context of driver
placement). Interestingly, it follows that the higher the degree of
controllability, the more accurate the localized approximation of
the controllability measure λmin(W

∞
c ).

Localized Approximation of the Gramian. In the limit t →∞,
the controllability Gramian can be obtained by solving the al-
gebraic Lyapunov equation: CW∞

c +W∞
c CT +BBT = 0.

When C is the Laplacian matrix, it always has a zero eigenvalue
due to the system’s translational invariance, but we show that the

A B C

D E F

Fig. 3. Local approximability of the smallest eigenvalue of the controllability
Gramian. (A–C) Approximation error λ̃min − λmin vs. the information neigh-
borhood size L for the ER, BA, and WS models, respectively. The networks are
generated for N = 1,000 with the other parameters set as in Fig. 2. For each L,
we choose as drivers 950 randomly selected nodes, specifying B in Eq. 3 as the
diagonal matrix, whose diagonal elements equal one for the selected nodes
and zero for the others. The curves and shaded areas represent the mean
and SD of the approximation error over 100 realizations of driver placement.
(D–F) Exact vs. estimated smallest eigenvalue for the network models, respec-
tively, used in A–C for 1,000 realizations of a random number of drivers |D| =
N − ξ (each placed randomly). Here, ξ is drawn from the Poisson distribution
with mean μ = 100, the information neighborhood size is fixed at L = 50, and
each realization is color-coded by |D|.
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Lyapunov equation is valid after eliminating the trivial eigenspace
associated with the zero eigenvalue (SI Appendix, section 5). In
such cases, the notation W∞

c should always be interpreted as
the Gramian after this elimination. Since the Lyapunov equation
is linear in BBT , its solution can be decomposed as W∞

c =∑N
i=1 W

∞
ci , where each W∞

ci solves

CW∞
ci +W∞

ci C
T + e ib ib

T
i eT

i = 0. [7]

The components W∞
ci are exactly the limits of the individual

integral terms of the sum in Eq. 4 as t →∞ and, hence, inherit
the locality property of W t

ci . Thus, for a localized network
system, each W∞

ci is concentrated around the (i , i) block, with
a rapid decay away from that block, implying that there is a
τi -information neighborhood Ni(τi) of node i that captures
the most significant matrix elements of W∞

ci . If we denote by
N i the matrix of projection from the entire state space to the
subspace of the nodes in Ni(τi), it follows from the locality prop-
erties analyzed above that

∥∥NT
i N iW

∞
ci N

T
i N i −W∞

ci
∥∥
∞ ≤

κ̆t ‖b i‖2 v(τi)−2. Here, we used the induced infinity norm of
a matrix M ∈ R

m×m given by ‖M ‖∞ = max1≤i,j≤N ‖M ij‖,
where M ij is the (i , j )th block of matrix M following the same
partition of the system matrix C .

Defining W̃
∞
ci :=N iW

∞
ci N

T
i , we see that W∞

ci can be ap-
proximated well by NT

i W̃
∞
ci N i , and this W̃

∞
ci can be directly

obtained by solving the projected Lyapunov equation,

C̃ iW̃
∞
ci + W̃

∞
ci C̃

T

i +N ie ib ib
T
i eT

i NT
i = 0, [8]

where C̃ i :=N iCNT
i . This Lyapunov equation is generally of

much lower dimension than Eq. 7 and involves only the portions
of the system inside the information neighborhood Ni(τi). Eq. 8
can be solved at each node independently so that the compu-
tation can be distributed across all nodes. After obtaining all
W̃

∞
ci , the entire controllability Gramian can be approximated

as W̃
∞
c =

∑N
i=1 N

T
i W̃

∞
ci N i . Fig. 4 A and B show the exact

W∞
c and the corresponding approximation W̃

∞
c , respectively,

for the Eastern US power grid, showing that the localized method
developed here can accurately capture the structure of the exact
W∞

c . Furthermore, our numerics confirm the high accuracy of
the approximation across various model and empirical networks,
including the Eastern US power grid, the global air-transportation
network, and a human brain network (SI Appendix, Table S1).
Thus, our analysis establishes that, for localized networks, each

102

100

10-2

10-4

WA B

Fig. 4. Controllability Gramian of the Eastern US power grid. (A) Exact
Gramian W∞

c . (B) Approximate Gramian W̃∞
c obtained by our localized

method with information neighborhood size L = �N/100	. The network con-
sists of N = 3,907 generator nodes, each described by a phase δi and fre-
quency ωi , and is constructed from data as described in SI Appendix, section 2.
Eq. 3 for this system is specified by Eq. 14 in Materials and Methods, in which
the mechanical power input of every generator is directly controlled.
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Fig. 5. Performance of Algorithm 2 for driver placement. (A) Exact control-
lability measure λmin(W∞

c ) and its estimate λ̃min(W̃c) vs. the number of
drivers |D| for the optimal driver placement identified by the algorithm.
The curves are averages over 100 realizations of (weighted) BA networks
of Kuramoto oscillators (governed by Eq. 12 in Materials and Methods) with
N = 1,000 and average degree d̄ = 10 for L = 20. (B) Computational time
of the algorithm for the network used in A as the number of nodes N
is varied (obtained using 12 cores of an Intel Xeon E7-8867v4 processor).
(C) Performance of the algorithm for the network model in A with |D| = 950,
where the red line indicates λmin(W∞

c ) for the optimal driver placement
identified by the algorithm, and the histogram shows λmin(W∞

c ) for 5,000
random placements. (D) Performance of the algorithm with |D| = 2,500 for
the dynamics of the 3,907 generators in the Eastern US power grid used
in Fig. 4. (E) Performance of the algorithm with |D| = 2,200 for epidemic
spreading over the global air-transportation network between 2,290 major
cities. (F) Performance of the algorithm with |D| = 600 for the neuronal
dynamics in the brain network of 638 cortical areas. The results in D–F are
visualized as in C. The empirical network systems in D–F are constructed from
data as described in SI Appendix, Text 2, with Eq. 3 for each network specified
in Materials and Methods.

component W∞
ci of the Gramian can be approximated accurately

by solving Eq. 8 independently.

Driver-Placement Algorithm Exploiting Locality. We now con-
sider the problem of optimally placing drivers on the network
to maximize the smallest eigenvalue of the controllability
Gramian given an allowed number of drivers dmax. The localized
methods developed above to approximate the smallest eigenvalue
(as validated in Fig. 3) and the Gramian itself (Fig. 4 and
SI Appendix, Table S1) can be combined to design a scalable
algorithm for the driver-placement problem. Here, we propose a
gradient-based greedy algorithm (Algorithm 2 in Materials and
Methods), which at each iteration seeks to add a driver node
leading to the largest increase in λ̃min(W̃

∞
c ) and can be used

to obtain a provably near-optimal solution. This is based on the
fact that λmin(W

∞
c ) is a submodular function of the driver set

(43), meaning that the gain in λmin(W
∞
c ) from adding a driver

is larger when the original driver set is smaller. Our algorithm
far outperforms random placement, while requiring computation
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time that scales only subquadratically with the network size, as
demonstrated for model networks in Fig. 5 A–C. The advantage
over random placement is substantial also for empirical networks,
as observed in Fig. 5 D–F.

Localized Optimal Control

Locality of the Optimal Responses. We can now proceed to
explore network locality in the optimal control problem, in which
we seek a control strategy that achieves the best trade-off between
dynamical performance and control effort. The problem is math-
ematically formulated as

min
u∈L2[0,+∞)

J =

∫ ∞

0

x (τ)TQx (τ) + u(τ)TRu(τ)dτ

s.t. ẋ =Cx +Bu , x (0) = x 0,

[9]

whose objective J is an integral quadratic functional with positive
definite weighting matrices Q and R for the node states and
control inputs, respectively. The control task in this formulation is
to drive the system state toward the origin, which does not involve
loss of generality since many practical problems with nontrivial
target states, such as equilibrium stabilization, trajectory tracking,
and command following, can be cast in this form (Materials and
Methods). The global optimal control strategy takes the form of a
state feedback:

u(t) =Kx (t) =−R−1BTPx (t), [10]

where P is the stabilizing solution of the Riccati equation.
We now show that, if the network system is localized, locality is

preserved in the optimal responses, and the computation needed
to approximate the optimal feedback law can be performed locally
and in parallel at different driver nodes. Our arguments are based
on the theory of system-level synthesis (44, 45). Based on this theory,
the time-domain problem in Eq. 9 can be Laplace-transformed
and decomposed into N independent problems in the complex
s-domain given by

min
φj ,h j∈ 1

s RH∞

∥∥∥∥
[
Q1/2

R1/2

] [
φj (s)
h j (s)

]∥∥∥∥
2

H2

s.t. [sI −C −B ]

[
φj (s)
h j (s)

]
= e j ,

[11]

for j = 1, . . . ,N . For each j , this optimization problem seeks
the optimal response of the system for the initial condition
x 0 = e j , which is fully concentrated on node j . In particular,
h j (s) and φj (s) represent the transfer functions for the opti-
mal control u(t) and the corresponding optimal state response
x (t), respectively. The solution of the problem in Eq. 11 is
given by φj (s) =Φ(s)e j and h j (s) =H (s)e j , where Φ(s) =

(sI −C +BR−1BTP)−1, H (s) =−R−1BTP(sI −C

+BR−1BTP)−1, I is the identity matrix, andP is the solution
to the Riccati equation (see SI Appendix, section 6 for details). It
has been proved in ref. 35 that, if the matrices C , BR−1BT ,
and Q all belong to the Banach algebra Lv ,ρ, then the solution
P is also localized and belongs to Lv ,ρ. This implies that the
optimal feedback matrix K =−R−1BTP exhibits off-diagonal
decay and is concentrated on small information neighborhoods of
the driver nodes. In addition, since Lv ,ρ is closed under matrix
addition, multiplication, and inversion, the coefficient matrices
Φ(s) and BH (s) both belong to Lv ,ρ. Furthermore, φj (s)
and Bh j (s) are the j th column blocks of Φ(s) and BH (s),

respectively, and, hence, by the definition of Lv ,ρ, there exist
constant κ1 and κ2 such that

∥∥[φj (s)]i
∥∥≤ κ1 · v(ρ(i , j ))−1

and ‖[Bh j (s)]i‖ ≤ κ2 · v(ρ(i , j ))−1. That is, the magnitude
of the i th elements of φj (s) and Bh j (s) decay at least at a
near-exponential rate as the information distance between nodes
i and j increases. This result has an explicit physical meaning:
The optimal controller always seeks to confine the disturbance to
the information neighborhood of the disturbance location, and
the control action to achieve this is also concentrated within the
information neighborhood. In other words, both the disturbance
propagation and control intervention must be localized in order
for the controller to be optimal.
Localized Control Design. Considering the locality of system
responses under optimal control, we approximate the problem in
Eq. 11 by a reduced problem involving only the system data
and decision variables within the information neighborhood
Nj of the initial disturbance at node j , where we use Nj as a
short for Nj (τ). Let T j be the projection matrix that maps
the entire input space R

r to the input subspace R
|Tj | associated

with the neighborhood Nj , where Tj = {1≤ k ≤ r | [B ]ik �=
0 for some i ∈Nj}. Using T j along with the projection matrix
N j defined earlier for the state space, we let C̃ j =N jCNT

j ,
B̃ j =N jBTT

j , Q̃ j =N jQNT
j , R̃j =T jRTT

j , and
ẽ j =N je j . Eq. 11 can then be rewritten in terms of C̃ , B̃ ,
Q̃ , R̃, and ẽ j to obtain a projected version of the problem,
whose solution (φ̃j (s), h̃ j (s)) is given by φ̃j (s) = (sI −
C̃ j + B̃ j R̃

−1

j B̃
T

j P̃ j )
−1ẽ j and h̃ j (s) =−R̃

−1

j B̃
T

j P̃ j φ̃j (s),
where P̃ j is the solution of the projected Riccati equation

C̃
T

j P̃ j + P̃ j C̃ j − P̃ j B̃ j R̃
−1

j B̃
T

j P̃ j + Q̃ j = 0. Once this
is solved for all j , we can construct the full optimal control
law as u(s) = K̃ (s)x (s) = H̃ (s)Φ̃(s)−1x (s), where Φ̃(s)

and H̃ (s) are the concatenations of NT
j φ̃j (s) and TT

j h̃ j (s),
respectively. We expect the solution (φ̃j (s), h̃ j (s)) of the reduced
problem to approximate (φj (s),h j (s)) well if the size of the
information neighborhood Nj is not too small. We show that
controllers designed using these projected models do enjoy
stability and a near-optimality guarantee when implemented
on the actual original system in Eq. 3. We refer to this
formulation as disturbance-oriented localization, since it is based
on the decomposition of the optimal control problem into N
independent problems given in Eq. 11, each localized around the
perturbed node (see SI Appendix, section 7 for details).

To respond optimally to disturbances, a driver at node i must
react to perturbations at all nodes belonging to its control neigh-
borhood Ci = {1≤ j ≤N |i ∈Nj }, i.e., the set of nodes whose
information neighborhoods contain node i . Although the opti-
mal control law from each subproblem is a static-state feedback
K̃ j (SI Appendix, section 7, Eq. S36), the aggregate controller
K̃ (s) may not be static because two different subproblems may
ask for different feedback gains from the same state–driver pair
(SI Appendix, section 7, Eq. S42). To resolve this issue, we take a
driver-centric viewpoint and design a control law for the driver
at node i by projecting the original problem onto the informa-
tion neighborhood of Ci , which we call the controller-oriented
localization (see SI Appendix, section 8 for details). This approach
leads to a fully decentralized method to design localized near-
optimal static controllers (Algorithm 3 in Materials and Methods),
in which each driver only needs feedback signals from its control
neighborhood.
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Applications to Nonlinear Dynamical Networks. Our local con-
trol approach is applicable to nonlinear networks in general,
which follows by employing suitable linearization methods in
the control design. This significantly extends the scope of our
theory since most real networks are nonlinear. The performance
in nonlinear networks will depend on the control task and lin-
earization method used. We present the general solutions to
three control tasks—equilibrium stabilization, trajectory track-
ing, and command following—using two linearization methods,
specifically, the Jacobian linearization and the extended lineariza-
tion (see SI Appendix, section 9 for details). We demonstrate the
effectiveness of the proposed localized control design through
four concrete applications, namely, the synchronization control
of Kuramoto oscillators, the stability control of the Eastern US
power grid, the mitigation of epidemic spreading through the
global air-transportation network, and the control of patholog-
ical brain network dynamics for managing Alzheimer’s disease.
The formulation of the problems and control methods are pre-
sented in Materials and Methods, with the data sources given in
SI Appendix, section 2.
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Fig. 6. Synchronization control of coupled Kuramoto oscillators. (A–C) Sim-
ulations of the oscillator network under global control (A), local control (B),
and no control (C), with 100% of the nodes controlled directly. The oscillators
are coupled by a (weighted) WS network with N = 1,000, d̄ = 20, and p = 0.1.
The natural frequencies and the initial phases of the oscillators are both
sampled uniformly from the interval (−π, π). The control problem is to
track a frequency-synchronized trajectory, whose common frequency ω∗ is
the average of the natural frequencies over all nodes. (D) Evolution of the
order parameter r = 1

N
∑N

i=1 ejθi in A–C. (E and F) Phase trajectories under
global (E) and local (F) control with only 50% of nodes randomly selected
and directly controlled. When only part of the nodes are directly controlled,
ω∗ is set to be the average of the natural frequencies over the uncontrolled
nodes. (G) Evolution of the order parameter when different fractions of nodes
are directly controlled by using the localized method, where each curve
corresponds to 100 realizations for randomly selected nodes. The information
neighborhood size used is L = 10.

In the synchronization control of coupled Kuramoto oscilla-
tors, complete phase synchronization is achieved when all nodes
are controlled by the global or the local method, while the
synchrony is lost when they are not controlled (Fig. 6 A–D).
When 50% of the nodes are directly controlled, only frequency
synchronization can be achieved by both global (Fig. 6E) and
local (Fig. 6F ) control. The higher the fraction of nodes directly
controlled, the higher the phase coherence that can be achieved in
the frequency-synchronized orbit (Fig. 6G). However, regardless
of the fraction of driver nodes, the local control performs similarly
to the global control. For the stability control of the Eastern US
power grid, we visualize in Fig. 7A the information neighborhood
network among generators for L= 10 on top of the physical
network topology. The figure shows a stark contrast between the
information and physical topology of the network. When the
system is disturbed by intermittent renewable generation, both
global (Fig. 7B) and local (Fig. 7C ) methods are effective to
control the system toward the target equilibrium points, while the
system would lose stability in the absence of control (Fig. 7D).

In our application to epidemic control, we visualize in Fig. 8A
the information distances between New York City and all other
major cities on top of the global air-transportation network. The
local and global methods generate vaccination and treatment
strategies that result in similar curves of infected population,
and they are comparably effective in suppressing the outbreak, as
shown in Fig. 8 B–D. In the application to brain network control,
we also visualize the information distances between one particular
node and all other nodes of the brain coactivation network (Fig. 9
A and B). As shown in Fig. 9C, by applying the brain-stimulation
strategy generated by the local control method, the electrical activ-
ity in a brain under a pathological condition is led to closely follow
the activity observed under healthy conditions. Thus, within this
model, local interventions are predicted to alleviate the symptoms
of Alzheimer’s disease.

As evidenced in Figs. 7A, 8A, and 9A, proximity in the
network-topological and geographical/physical distance does
not necessarily imply proximity in information distance. As
already noted in Fig. 1, this indicates that the information
distance captures quantitative features of direct and indirect
interactions beyond what is captured by commonly used network
representations. Fig. 10A verifies the off-diagonal decay in
K for all application examples. Fig. 10B visually shows for
the Eastern US power grid that the localized feedback matrix
obtained with Algorithm 3 closely matches the exact optimal
feedback matrix. We find that the localized controllers can
achieve performance levels close to those of global controllers
with relatively small information neighborhoods and orders-of-
magnitude less computational time, as illustrated in Fig. 10C
for both model and empirical networks. Our application results
show that, despite the diversity of systems and tasks, the local
control drives the system toward the same state (albeit with slightly
different transients) as the global optimal control and achieves the
control objective with near-optimal dynamical performance.

Discussion

In many real-world applications, the ability to implement a con-
trol method locally is not just an additional benefit—it is a neces-
sity, for two reasons. First, it would be costly, if not impossible, to
build the communication infrastructure that allows real-time all-
to-all information exchange, as needed for global control. Second,
the nonlinearity of the system would require the feedback strategy
to be updated in real time, and, hence, the computation would
have to be faster than the system dynamics being controlled.

8 of 12 https://doi.org/10.1073/pnas.2122566119 pnas.org

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2122566119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2122566119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2122566119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2122566119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2122566119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2122566119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2122566119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2122566119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2122566119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2122566119/-/DCSupplemental
https://doi.org/10.1073/pnas.2122566119


CBA

ED

Fig. 7. Stability control of the Eastern US power grid. (A) Physical topology of the power grid along with its information neighborhood network for L = 10,
constructed by creating a link between nodes i and j if node j is among the first L information neighbors of node i. A black dot represents one generator or a
set of colocated generators. To assess the control performance, we simulate a scenario in which the system suddenly loses 80% of the renewable generation
(accounting for 30% of the total load) at t = 1 s, recovers to 50% of the original level of renewables at t = 4 s, and then fully recovers at t = 7 s. (B–D) Transient
responses under global control (B), local control (C), and no control (D). (E) Relative distances to the target power angles (obtained from the postcontingency
power-flow solution) under the three control scenarios in B–D. In C and E, the local control is for the same information neighborhood network as in A. For
comparison purposes, the frequency and angle deviations under no control are shown beyond what power-system operation allows without actually triggering
protection actions.

As a result, global control would be prohibitive in terms of
both communication and computation requirements for large-
scale nonlinear dynamical networks, such as those considered

A

CB

D

Fig. 8. Controlling epidemic spreading through the global air-transportation
network. (A) Network of 2,219 major cities connected by 59,151 edges rep-
resenting the flow of passengers between the cities. The warmer color and
larger size of the circles represent shorter information distances ρ to New
York (largest red circle). (B) Total infected population worldwide as a function
of time from the onset of the spreading under no control, local control, and
global control. (C) Computed control actions (the number of people treated
and vaccinated per day) under local control (blue curves) and global control
(red curves). (D) Distribution of the infected population around the world
(indicated by the sizes of the orange dots) on day 63 of the outbreak under
no control (Left) and local control (Right). The information neighborhood size
used is L = 20 for B–D.

here. However, as our results show, many empirical networks
enjoy a high degree of locality, even when the network is densely
connected. Crucially, for such networks, our results show that
communication and computation limited to small information
neighborhoods of the driver nodes are sufficient to generate near-
globally optimal control actions.

These results also suggest natural extensions to be explored
in future research. In particular, based on the concept of target
controllability (28, 46), the analysis can be generalized to the
control of a target subset of nodes (instead of the entire network)
to establish that the target nodes can be controlled with small
control effort only if they lie in a small information neighborhood
of the set of driver nodes (SI Appendix, section 3). By the duality
between controllability and observability (47), the analysis on
full and target controllability Gramians also carry over to their
observability counterparts. In all cases, an outstanding question
for future research is: In addition to locality, are there other
network properties that can further help control the system? For
example, symmetries in the network may be inherited by the
optimal control strategy and potentially simplify the analysis and
design problems [regardless of the impact of network symmetries
on controllability itself (48)]. More broadly, this study shows
that it is promising to pursue structure-exploiting network con-
trol, capitalizing on common network-specific properties (beyond
purely topological ones) to develop improved control approaches
that are effective, efficient, and broadly applicable to complex
systems across diverse domains.

Materials and Methods

Algorithms. The pseudocode for the three algorithms introduced above are
shown in Algorithms 1–3: the UCS algorithm to construct information distances
and information neighborhoods (Algorithm 1), the gradient-based greedy algo-
rithm to solve the driver-placement problem (Algorithm 2), and the local control-
design algorithm for optimal controllers (Algorithm 3). Our MATLAB implemen-
tation of these algorithms and four example applications are available at our
GitHub repository (49).

Control of Synchronization in Kuramoto Oscillator Networks. Consider N
phase oscillators coupled through a weighted directed network:
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A

C

B

Fig. 9. Controlling a whole-brain network by electrical stimulation. (A) Physi-
cal layout of the network, with 638 nodes representing predefined regions of a
human brain and 18,625 edges representing coactivations of pairs of different
areas. The node colors represent the information distances ρ to the reference
node indicated by the arrow. Warmer colors and larger circles indicate shorter
information distances. (B) Flattened layout of the same network for the same
node color scale. (C) Trajectory of the reference node’s state for the network
under a healthy condition and a pathological condition with and without the
local control implemented. The trajectories for the other nodes are similar.
The information neighborhood size used is L = 10.

θ̇i = ωi +
N∑

j=1

Aijsin(θj − θi) + biui, [12]

where ωi and θi are, respectively, the natural frequency and the phase of the ith
oscillator; Aij denotes the elements of the (generally weighted and asymmetric)
adjacency matrix of the network; and ui is the control input to the ith oscillator
with the coefficient bi = 1 if the oscillator is directly controlled, and bi = 0
otherwise (50).

We consider a trajectory-tracking task in which the target trajectory is a so-
lution of the system synchronized to a common frequency ω∗. Such a target
trajectory can be expressed asθi(t) = θ∗i + ω∗t, where the constantsθ∗i are ob-
tained by solving the nonlinear equationω∗ = ωi +

∑N
j=1 Aijsin(θ∗j − θ∗i ) +

biu∗
i , 1 ≤ i ≤ N. Here, ω∗ can be chosen to be any value for which this equation

has a solution. By further setting u∗
i = ω∗ − ωi, a sufficient condition for the

solvability of the steady-state equation is given by
∥∥L†ω̃

∥∥
∞ < 1, where L†

denotes the Moore–Penrose inverse of the corresponding Laplacian matrix L, and
the vector ω̃ ∈ R

N is such that ω̃i = ω∗ − ωi if the ith oscillator is uncontrolled,
and ω̃i = 0 otherwise (51). The equation is then neither underdetermind nor
overdetermined and can be solved by using the Newton–Raphson method. In
the extreme case of directly controlling all nodes (i.e., bi = 1, ∀i), the equation
always admits the phase-synchronized solution θ∗1 = θ∗2 = · · ·= θ∗N = 0 for
any given ω∗. In the typical case of directly controlling a subset of nodes, there
will be nonzero phase differences among the oscillators in the target trajectory.

Defining Δθi = θi − θ∗i − ω∗t and Δui = ui − u∗
i , we have Δθ̇i =∑N

j=1 Aijsin(Δθj −Δθi) + biΔui, 1 ≤ i ≤ N. Given the sinusoidal form
of the coupling terms, we consider feedback laws of the form Δui =∑N

j=1 Kijsin(Δθj), which are generalizations of the control law in ref. 5.
Employing the Jacobian linearization around the equilibrium Δθi = 0, ∀i, we
obtain Δθ̇ =−LΔθ + BKΔθ. The feedback matrix K can then be designed
by using Eq. 10 (global control) and Algorithm 3 (local control), in which the
weighting matrices in the control objective function are set to Q = 5IN and
R = I.

Algorithm 1 (UCS for ρ(i, ·))

1: Initialize F = {i},H= ∅,ρ(i, i) = 0,ρ(i, j) = +∞ for all j �= i.
2: while F �= ∅ do
3: k = arg min

j∈F
ρ(i, j).

4: for each node p adjacent to node k in G̃ do
5: ρ(i, p) := min{ρ(i, p), ρ(i, k) + ρ̃kp}.
6: If p �∈ F and p �∈ H,F := F ∪ {p}.
7: end for
8: F := F \ {k},H :=H∪ {k}.
9: end while

10: Output: ρ(i, ·) and an ordered set H of information neighbors.

Algorithm 2 (Gradient-Based Greedy Driver Placement)

1: Input the target for controllability measure λ∗
min.

2: Input the maximum number of drivers dmax.
3: Initialize X =N , D = ∅, W̃c = 0, λ̃min = 0, j = 1, v i = Niei for i =

1, 2, . . . , N.
4: while λ̃min < λ∗

min and |D|< dmax do
5: for k ∈ X such that Nk ∩Nj �= ∅ do
6: gk = vT

j NjNT
kW̃ckNkNT

j v j.
7: end for
8: i = arg maxk∈N gk .
9: W̃c := W̃c + NT

i W̃ciNi.
10: X := X \ {i},D :=D ∪ {i}.
11: for k ∈N do
12: (λk , vk) is the smallest eigenvalue pair of NkW̃cNT

k .
13: end for
14: λ̃min = mink∈N λk , j = arg mink∈N λk .
15: end while
16: Output: the driver node set D.

Algorithm 3 (Local Control Design)

1: Obtain the system data C , B, Q, and R.
2: Choose an information neighborhood size L.
3: Construct the neighborhood Nj of size L for each node j.
4: for i = 1, 2, . . . , N do in parallel
5: Construct control neighborhood Ci = {1 ≤ j ≤ n | i ∈Nj}.
6: Construct N̂i =

⋃
j∈Ci

Nj and projection matrix N̂ i.

7: Construct T̂i = {1 ≤ k ≤ r | [B]jk �= 0, for somej ∈ N̂i} and
projection matrix T̂ i.

8: Set Ĉ i = N̂iCN̂
T
i , B̂i = N̂iB̂T

T
i , Q̂i = N̂iQN̂

T
i , and R̂i = T̂iRT̂

T
i .

9: Solve equation Ĉ
T
i P̂i + P̂iĈ i − P̂iB̂iR̂

−1
i B̂

T
i P̂i + Q̂i = 0.

10: Define K̂i =−R̂
−1
i B̂

T
i P̂i.

11: Calculate the control law at node i: ki = fT
i T̂

T
i K̂iN̂i.

12: end for
13: Output: full feedback control matrix K = [kT

1, kT
2, · · · , kT

N]
T .

Control of Stability in Power-Grid Networks. We consider the classical
model for the electro-mechanical dynamics of a power grid (52):

δ̇i = ωi − ωs, ω̇i =
1
Γi

(
Pmi − Pei − Di(ωi − ωs)

)
, [13]

where ωs is the nominal frequency of the system; δi and ωi are, respectively,
the rotor angle and frequency of the ith generator; Γi and Di are the gener-
ator’s inertia and damping constants; and Pmi is the generator’s mechanical
power input. Here, Pei is the generator’s electrical power output given by Pei =∑N

j=1 EiEj[Im(Yij)sin(δi − δj) + Re(Yij)cos(δi − δj)], where Ei is its internal
voltage and Y = (Yij) is the effective admittance matrix of the network.
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CBA

Fig. 10. Locality of optimal responses and performance of localized control design. (A) Off-diagonal decay of the globally designed optimal feedback matrix K
for the model networks in Fig. 3 and empirical networks in Fig. 5 D–F. Here, K(L) = 1

N
∑N

i=1
∑

j∈N̂i(L)/N̂i(L−1)|Kij|/|Kii| is the average relative magnitude of the
matrix elements corresponding to the Lth information neighbor. For the model networks (ER, BA, and WS), the magnitude is further averaged over 100 network
realizations, and the shadings around the curves indicate one SD. (B) Exact optimal feedback matrix (Top), optimal feedback matrix designed by our localized
method (Middle), and thresholded version of the exact optimal feedback matrix (Bottom) for the Eastern US power grid, showing a close match between the
middle and bottom rows. The thresholding removes all elements with magnitude < 10−2 for the feedback from δ to u and < 10−3 for the feedback from ω to u.
(C) Control performance vs. computational time for the networks in A of Algorithm 3 for the local optimal control, color-coded by the size L of the information
neighborhood used, where the subscripts distinguish the localized and global design quantities. For the localized design, the computational time is the average
time it takes for one driver to determine its localized optimal control law. For model networks, the quantities on the vertical and horizontal axes are averaged
over 100 network realizations. For the model networks in A and C, we used the coupled Kuramoto oscillator dynamics, as described in Materials and Methods.
For all networks, a driver is placed at each node.

In a steady state, a power system operates at an equilibrium in which gener-
ation matches consumption. However, since such balance is continuously chal-
lenged by the time-varying power generation and consumption, the system has
to be operated in a series of quasi-steady states. Thus, the control problem is an
equilibrium-stabilization problem, where the target equilibrium at each time is
determined by the power-flow equation (52). The desired equilibrium is specified
by the target power-flow solution (E∗, δ∗) and target frequency ω∗ = ωs1,
where 1 denotes the vector of all ones. Assuming that the internal voltages
are directly set to target values by the excitation systems, we seek a strategy to
control the mechanical power input of the generators to drive the system toward
the target and then stabilize it there. Noting that the target (E∗, δ∗) satisfies
P∗

mi = P∗
ei =

∑N
j=1 E∗i E∗j [Im(Yij) sin(δ∗i − δ∗j ) + Re(Yij) cos(δ∗i − δ∗j )], and

applying the Jacobian linearization, we obtain

[
Δδ̇
Δω̇

]
=

[
0 I
−P −Γ−1D

] [
Δδ
Δω

]
+

[
0

Γ−1

]
ΔPm, [14]

whereΔδ = δ − δ∗,Δω =ω −ω∗, andΔPm = Pm − P∗
m. Here,Γ and

D denote the diagonal matrices with Γi and Di on their diagonals, respectively,
and P denotes the equilibrium-dependent matrix, whose elements are given by

Pij =
E∗i E∗j
Γi

[Re(Yij) sin(δ∗i − δ∗j )− Im(Yij) cos(δ∗i − δ∗j )] for i �= j and Pij =

−
∑

k �=i Pik for i = j. Then, Eq. 14 leads to the feedback law of the form Pm =

P∗
m + Kδ(δ − δ∗) + Kω(ω −ω∗). The feedback matrix K = [Kδ Kω] can

be designed by using Eq. 10 and Algorithm 3 for global and local control,
respectively, in which the weighting matrices are set to Q = 10I2N and R = I.

Control of Epidemic Spreading through the Air-Transportation Net-
work. We consider a human infectious disease, whose spread is mediated
by the global air-transportation network (53). To suppress the spreading, we
implement a control intervention through treatment and vaccination. We
consider the epidemic dynamics governed by the network-coupled susceptible–
infectious model:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ṡk =−βsk�k −
∑
j �=k

ajk
sk

νk
+

∑
j �=k

akj
sj

νj
− vk ,

�̇k = βsk�k − α�k −
∑
j �=k

ajk
�k

νk
+

∑
j �=k

akj
�j

νj
− wk ,

[15]

where each node k represents a population of size νk . Here, sk and �k are,
respectively, the sizes of the susceptible and infected populations at node k;
β is the infection rate; α is the recovery rate; and ajk represents the rate at
which people travel from node k to node j. For the air-transportation network
considered, ajk is the number of travelers per day, and each node represents an
airport and the main city served by that airport. The control variable vk represents
reduction of the susceptible population at node k through vaccination, while
wk represents reduction of the infected population through treatment. The goal
is to design a vaccination/treatment strategy that can suppress the epidemic
spreading using minimal medical resources. We formulate this as an optimal
control problem, in which we seek a control strategy u(t) = [v(t)T w(t)T ]T to
minimize the quadratic cost function

∫∞
0 �T(t)Q�(t) + u(t)T Ru(t)dt, where

the first term measures the severity of the epidemics and the second quantifies
the cost of the control strategy. This is a trajectory-tracking problem, in which the
feasible trajectory is the manifold of disease-free solutions �k = 0, ∀k. To solve
this problem, we first write the system in Eq. 15 as ṡ = L′s − β diag(s)�− v,
�̇= β diag(�)s + (L′ − αI)�− w, where L′ is a Laplacian-like matrix de-
fined by L′kj =

akj
νj

, k �= j, and L′kk =−
∑

j �=k
ajk
νk

. Applying the extended lin-

earization to this system, we obtain the state-dependent system matrix C(s, �) =[
L′ −β diag(s)

β diag(�) L′ − αI

]
. The state-dependent feedback law

[
vT wT

]T
=

K(s, �)
[

sT �T
]T can then be designed by using Eq. 10 and Algorithm 3 for

global and local control, respectively. In this case, the weighting matrices are set
to Q = diag(0N, IN) and R = diag(5IN, 500IN).

Control of Alzheimer’s Disease Dynamics in Brain Networks. Brain stim-
ulation has been an active area of research in neuroscience for its potential
to treat various neurological disorders, such as Alzheimer’s disease, epilepsy,
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and Parkinson’s disease (54–56). It has been widely reported that neurological
disorders often manifest themselves as distinctive patterns of electrical activity
detectable by electroencephalogram (EEG). For example, abnormal activity may
be characterized by high-amplitude regular spike-wave oscillations (55) and
can be modeled by a network of nonlinear oscillators. For Alzheimer’s disease,
coupled Duffing oscillators given by

ẋi = yi, ẏi =−αxi − γx3
i + β

N∑
j=1

Wijxj + ui [16]

have been used to describe the electrical activity of connected regions of the
brain (57). Here, the state variables x = (xi) and y = (yi) describe excitatory
postsynaptic potentials and their derivatives, respectively; the coupling matrix
W = (Wij) reflects the relative connection strengths among brain regions; and
the parametersβ and γ capture the overall coupling strength and oscillator non-
linearity, respectively. In addition, EEG activities under different conditions are
modeled by different values of parameter α: A higher-value α= αh produces
low-amplitude, high-frequency oscillations representing those observed under
healthy conditions, whereas a lower value α= αp yields high-amplitude, low-
frequency oscillations representing those observed under pathological condi-
tions. The control problem is then to generate an electrical stimulus u = (ui) that
steers the pathological system (with α= αp) toward a trajectory of the healthy
system (with α= αh). This can be regarded as a command-following task, in

which the healthy system generates a command signal for the pathological
system to follow.

Using the procedure for command following presented above, we augment
the system by introducing an integral state. That is, we write the controlled
pathological system as ẋp = yp, ẏp =

(
− αI − γ diag(x2

p) + βW
)

xp + u,
and żp = xp − xh, where xh is the state of the healthy system that serves as
the command signal. This system is already in a form suitable for extended
linearization, with the linearized equation defined by matrices

C(xp) =

⎡
⎣ 0 I 0
−αI − γ diag(x2

p) + βW 0 0
I 0 0

⎤
⎦, B =

⎡
⎣0I
0

⎤
⎦.

The state-dependent feedback law u = K1(xp)(xp − xh) +K2(xp)yp +

K3(xp)zp can once again be designed by using Eq. 10 and Algorithm 3 for global
and local control, respectively, in which the weighting matrices in the control
objective function are set to Q = diag(100IN, 0N, IN) and R = 10−6IN.

Data Availability. Codes and algorithm implementation data have been de-
posited in GitHub (https://github.com/cduan2020/LocalizedControl) (58).
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