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Bayesian and non-Bayesian moment-based inference methods are commonly

used to estimate the parameters defining stochastic models of gene regulat-

ory networks from noisy single cell or population snapshot data. However, a

systematic investigation of the accuracy of the predictions of these methods

remains missing. Here, we present the results of such a study using synthetic

noisy data of a negative auto-regulatory transcriptional feedback loop, one

of the most common building blocks of complex gene regulatory networks.

We study the error in parameter estimation as a function of (i) number of

cells in each sample; (ii) the number of time points; (iii) the highest-order

moment of protein fluctuations used for inference; (iv) the moment-closure

method used for likelihood approximation. We find that for sample sizes

typical of flow cytometry experiments, parameter estimation by maximizing

the likelihood is as accurate as using Bayesian methods but with a much

reduced computational time. We also show that the choice of moment-

closure method is the crucial factor determining the maximum achievable

accuracy of moment-based inference methods. Common likelihood approxi-

mation methods based on the linear noise approximation or the zero

cumulants closure perform poorly for feedback loops with large protein–

DNA binding rates or large protein bursts; this is exacerbated for highly

heterogeneous cell populations. By contrast, approximating the likelihood

using the linear-mapping approximation or conditional derivative matching

leads to highly accurate parameter estimates for a wide range of conditions.
1. Introduction
In recent years, it has been shown that a significant percentage of genes in bac-

teria and yeast are auto-regulated [1–3], i.e. a transcription factor activates or

represses the expression of its own gene. We here choose to focus on negative

auto-regulation (repression) because this motif confers significant advantages

to cellular function including the reduction of intrinsic noise [4] and the speed-

ing up of the response time [5]. It is also the case that the molecular mechanism

of circadian oscillators relies on negative autoregulation of gene expression

[6,7]. Given the widespread availability of experimental data on the number

of mRNAs and proteins at the single cell level [8–11], a natural question

is how can we use these data to infer the rate constants and other relevant

parameters of negative auto-regulatory transcriptional feedback loops.

A number of early studies used rate equations to identify the underlying

network structure of gene regulatory networks or to infer rate constants

[12,13]. However, clearly this is not the ideal framework since rate equations

are deterministic while it is well known that gene expression is highly stochastic

[14]. Thus, there has been considerable effort at devising methods to infer

parameters of auto-regulatory gene regulatory networks from noisy time

course data using the chemical master equation (the discrete state and continu-

ous time stochastic description of reaction kinetics [15]) or one of its numerous
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Figure 1. (a) Schematic of the negative auto-regulatory transcriptional feed-
back loop and the parameters to be inferred: the protein production rate ru,
the mean protein burst size b, the degradation rate d, and the promoter
switching rates sb and su. The burst size distribution is geometric and
given by c(i) (see text for justification). (b) Five (independent) single
cell trajectories generated using the SSA for the parameter set: ru ¼ 13,
b ¼ 3, d ¼ 1, sb ¼ 0.001 and su ¼ 0.1.
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approximations [16–22]. These studies can be distinguished

according to the type of kinetics used to describe auto-

regulatory networks (mass-action or non-mass-action)

and by the choice of method used to perform parameter

inference (approximate Bayesian computation, Markov

chain Monte Carlo (MCMC) algorithms and maximum

likelihood methods).

Studies assuming mass-action kinetics, such as [16–19],

describe the interactions of DNA, mRNA and protein using

the first- and second-order reactions while those using non-

mass action kinetic models [20–22] employ Hill or logical

functions to describe effective interactions between mRNA

and protein without an explicit description of the DNA.

Approximate Bayesian computing approaches perform

exhaustive stochastic simulations using the stochastic simu-

lation algorithm (SSA) [23] and accept parameter values if

the differences between simulation and experimental data

are sufficiently small [19,24,25]. These methods are asympto-

tically exact, but they suffer from poor computational

efficiency due to the very large number of required SSA

runs. Inference using the Finite State Projection (FSP) algor-

ithm is usually more efficient than that using the SSA;

however, this is limited to small reaction networks [26]. A

different approach, which is relatively more computationally

efficient, involves approximating the likelihood (by approxi-

mating the chemical master equation) and then using a

random walk scheme (MCMC), to explore parameter space

and thus to finally obtain the posterior distributions of

parameters [16,18,21,22,27,28]. The most common approxi-

mations used are the linear-noise approximation (LNA) and

the two-moment approximation (2MA), presumably because

these are the simplest and most well-known approximations

of the chemical master equation in the literature of stochastic

chemical kinetics [29]. A third (non-Bayesian) approach is

typically the most computationally efficient of the approaches

mentioned thus far and involves a direct maximization of the

approximate likelihood using numerical optimization tech-

niques [17,30,31]. We collectively label the aforementioned

MCMC and maximum likelihood methods under the

umbrella of moment-based inference because they involve sol-

ving a closed set of ordinary differential equations for the

approximate moments. We emphasize that approximations

are necessary because the chemical master equation can

rarely be solved for all times when the reaction system has

bimolecular reactions [29], and such reactions are very

common in vivo, e.g. the protein–DNA binding reaction in

an auto-regulatory transcriptional feedback loop.

All auto-regulatory networks have two properties in

common: (i) they are typically very noisy particularly as pro-

teins are produced in short bursts due to translational

bursting [32] and (ii) they all have at least one protein–

DNA bimolecular reaction which controls the strength of

feedback. Unfortunately, common approximation methods,

such as the LNA and the 2MA, are valid in the limit of

small noise [33] and the error between their predictions and

the exact solution of the chemical master equation increases

with the size of bimolecular rate constants [29,33,34]. The

question of how accurate the parameter estimates are is

thus a pressing one and it has not been addressed properly

because published studies to date have focused on method

development and only verified the method’s accuracy on a

few parameter sets. In this article, we fill this gap in the litera-

ture by performing an exhaustive systematic analysis to
understand the factors affecting the accuracy of parameter

prediction in auto-regulatory transcriptional feedback loops

using moment-based inference methods. In particular, we

study how the accuracy of parameter estimation, using both

MCMC and maximum-likelihood methods, varies across

large swaths of parameter space and how the accuracy is

affected by the number of time points of the observed data,

the number of cells from which data are collected, the highest

order of the moments used for inference and the choice of

moment-closure method used to approximate the likelihood.

Our results show that for cases where large bursts in protein

production are evident and/or where strong feedback is

suspected, approximation of the likelihood using the LNA

and 2MA leads to large errors in the parameter estimates;

this can be avoided by the use of more sophisticated

moment-closure techniques.
2. Methods
2.1. Model of an auto-regulatory transcriptional

feedback loop
The auto-regulatory (repressive) genetic feedback loop which is

the centre of this study is shown in figure 1a. When a gene is

in the ON state (G), proteins are produced and subsequently

degraded via a first-order reaction. The protein can bind to the

gene and turn it OFF (denoted as the state G*); in this state,

the protein can only be degraded. The proteins are produced in

bursts with a mean burst size b. Note that the latter is the

mean number of proteins produced per mRNA during its life-

time. The burst size distribution is chosen to be geometric; this

distribution was previously derived for the common case of
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fast mRNA decay (translational bursting) [35] and has been also

verified experimentally [32]. Hence, while mRNA is not expli-

citly described in our model, its effects are implicitly described

through the protein burst size distribution. Note that transcrip-

tional bursting (bursts of mRNA occurring when the promoter

spends a long time in the OFF state) is also implicit by the

same reasoning.

If the cells are identical, then the model has five parameters

to be estimated: ru (rate of protein production), d (rate of protein

degradation), b (mean protein burst size), sb (the binding rate of

protein to gene in the ON state) and su (the rate at which the

gene switches from OFF to ON). If the cells are non-identical,

then we assume a lognormal distribution in ru (see §3.2 for

justification and detailed discussion of cellular heterogeneity)

and there are six parameters to be determined: the mean and

standard deviation of ru, b, d, sb and su.

2.2. Synthetic data
Consider an experimental set-up where the number of molecules

of a certain protein is measured for N cells at L different time

points. This is usually done by using an empirical formula

to convert the fluorescence of a tagged protein in a cell to the

number of molecules in that cell. If xi(tl) is the number of proteins

in cell i at the lth time point tl, then we can calculate the set of kth

central moment measurements, i.e. m̂k ¼ {m̂k(t1), . . . , m̂k(tL)}

where:

m̂1(tl) ¼
1

N

XN

i¼1

xi(tl) and

m̂k(tl) ¼
1

N

XN

i¼1

(xi(tl)� m̂1(tl))
k, k . 1: (2:1)

The experimental set-up can be of two types: (i) fluorescence from

the same N cells is measured at each time point, i.e. single cell data

where individual cells can be tracked or (ii) population snapshot

data whereby N cells are randomly selected from a much larger

cell population such that the chances that the same cell is

measured at different time points are negligible, e.g. flow cyto-

metry. For both cases, we will make the simplifying assumption

that there is no correlation between fluorescence measurements

at any two different points in time. This assumption is naturally

enforced when collecting population snapshot data. For single

cell data, this assumption holds provided the interval between

consecutive time points is much larger than the autocorrelation

time of protein fluctuations.

We simulate an experiment and generate synthetic data using

the SSA. The time series data for the auto-regulatory circuit

shown in figure 1a (the number of proteins sampled at a

number of equidistant time points) are generated for a certain

set of values of the parameters using the SSA. Specifically the

algorithm simulates the following set of reactions:

G�!ru GþmP, Gþ P�!sb G�, G� �!su G and P�!d ;, (2:2)

where m is a discrete random variable sampled from the geo-

metric distribution c(m) ¼ bm/(1 þ b)mþ1. The initial condition

is zero proteins in state G. Each realization of the SSA simulates

temporal data measured from a single cell (figure 1b shows typi-

cal single cell trajectories). For each time point, we then compute

the moments of the molecule numbers across the population of

cells using equation (2.1). This is the data input to the inference

methods which are described next.

2.3. Bayesian inference
We will assume that the number of cells in our experiments

is quite large such that by the central limit theorem the

sample moments are approximately Gaussian distributed. This
assumption is readily fulfilled in flow cytometry experiments

where measurements of tens of thousands of cells or more

[27,36] are routine. It is less clear if the assumption is valid

for microfluidic set-ups which collect single cell data and

which typically can at most sample of the order of a thousand

cells [37].

The simplest method of inference would involve using

only mean data but unfortunately for our auto-regulatory

circuit this method does not enable the identification of all

parameters—this is since ru and b appear as a product in the

rate equations for the mean concentrations (see equation (B 3)

in appendix B) which makes their individual estimation imposs-

ible (the implicit reason is that the effective mean rate of protein

production at any time is rub). Hence at least the mean and

variance of protein numbers at each time point are needed to

identify all parameters. Now it is known that the covariance

between the sample mean and the sample variance at each

time point tends to zero as the sample size increases [38].

Hence for large cell numbers, the likelihood that at time point tl

we measure the first and second central moments {m̂1(tl), m̂2(tl)}

given the parameter vector u, can approximately be written as

the product of two Gaussians, one for the mean and one for

the variance:

Ll(m̂1(tl), m̂2(tl)ju) ¼
Y2

k¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ps2

k (tl)
q exp � (m̂k(tl)� ~mk(tl, u))2

2s2
k (tl)

 !
,

(2:3)

where the variance s2
k (tl) is related to moment measurements by

the equations:

s2
1(tl) ¼

1

N
m̂2

2(tl) and s2
2(tl) ¼

1

N
m̂4(tl)�

N � 3

N � 1
m̂2

2(tl)

� �
,

(2:4)

and ~uk(tl, u) is the kth moment at time tl as predicted by the

chemical master equation given the parameter vector u. Since

most master equations cannot be solved when there are

protein–DNA binding reactions [29], an approximation of the

master equation is necessary to calculate the likelihood above.

Zechner et al. [27] used the 2MA whereby one obtains closed

approximate equations for the first two moments from the

chemical master equation by assuming that the third-order

cumulants are zero [33,39]. However, generally the approxi-

mation method used can be any type of moment-closure

method (see next section).

Due to the independence of fluorescence measurements at

any two different points in time, it then follows that the likeli-

hood that we measure the moment vectors m̂1, m̂2 (the first two

moments measured at L time points) given the parameter

vector u, is as follows:

L(m̂1, m̂2ju) ¼
Y2

k¼1

YL

l¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ps2

k (tl)
q exp � (m̂k(tl)� ~mk(tl, u))2

2s2
k (tl)

 !
:

(2:5)

Thus within a Bayesian framework the posterior distribution of

the parameter vector u is given by

p(ujm̂1, m̂2)/ L(m̂1, m̂2ju)p(u), (2:6)

where p(u) is the prior distribution on u. A parameter search can

then be performed to maximize the parameter posterior using an

adaptive Metropolis–Hastings MCMC sampler (see appendix A

for a description of the algorithm, choice of prior and proposal

distributions, burnin time, etc.). MCMC samples converge in dis-

tribution to the posterior, and as such any statistics computed

using a finite sample (after the burnin time) is an approximation

to the posterior. We define the highest mode of the posterior
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distribution (the maximum a posteriori, MAP) to be the parameter

estimate and the width of the distribution is a measure of uncer-

tainty. The use of an adaptive sampler prevents the chain getting

easily stuck by adapting to the global covariance of the posterior

distribution. The MCMC was coded in the Julia language [40]

and its typical runtime (to achieve convergence of the chain)

for the applications discussed in this paper was many hours, in

some cases as high as 20 h (all simulations run on a single core

of an Intelw Xeonw Silver 4114 CPU @ 2.20 GHz). The R̂ ratio

[41] was very close to 1 for times larger than the burn-in time

which is a strong indicator of chain convergence.

We note that this method can be easily extended to include

information about higher-order moments than two. For

example, if we wished to use the first three central moments of

the protein number data for inference, then equation (2.5)

would be replaced by

L(m̂1, m̂2, m̂3ju) ¼
Y3

k¼1

YL

l¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ps2

k (tl)
q exp � (m̂k(tl)� ~mk(tl, u))2

2s2
k (tl)

 !
,

(2:7)

where the variance s2
k (tl) is related to moment measurements by

equation (2.4) and one further equation

s2
3(tl) ≃

1

N
(m̂6(tl)� m̂2

3(tl)): (2:8)
2.4. Maximum-likelihood estimator
An alternative frequentist method of estimation involves find-

ing the parameter vector that maximizes the likelihood. It is

immediately clear from the form of equation (2.5) that this is

tantamount to minimizing the negative logarithm of the likeli-

hood. To be specific, the parameter vector is found by solving

the optimization problem:

min
u

X2

k¼1

XL

l¼1

(m̂k(tl)� ~mk(tl, u))2

s2
k (tl)

: (2:9)

This is the maximum-likelihood estimator (MLE) that we use

throughout this paper. Note that the pre-factors are neglected

due to their constant values. The positivity constraint on

the parameter values can be easily handled by the ln 2 exp

transformation. Specifically, equation (2.9) is equivalent to:

min
ue

X2

k¼1

XL

l¼1

(m̂k(tl)� ~mk(tl, exp (ue)))2

s2
k (tl)

,

allowing ue to be the optimization variables over the entire real

space, and the actual parameters can then be deduced from exp

(ue). Of course, this estimator can also be extended to include

information about higher-order moments than two by changing

the upper limit of the sum over k. The MLE estimator here used

can be seen as a special case of the generalized method of

moments estimator used in [42].

Since the variances s2
1(tl) and s2

2(tl) converge to 0 when the

number of cells N tends to infinity, the normal distributions in

the likelihood equation (2.5) turn to Delta functions which

are only non-zero for m̂k(tl) ¼ ~mk(tl, u). Thus it follows that in

the infinite cell number limit, the MAP estimate from MCMC

will be equal to the value of u which minimizes the mismatch

between the predictions and measurements of moments, which

is the same value obtained from the MLE equation (2.9). This

is of course only true if the support of the prior distribution

is wide enough.

MLE is computationally very efficient compared to moment-

based Bayesian inference using an adaptive MCMC sampler;

this is its main advantage. A main difference from Bayesian infer-

ence is that it leads to a point-wise estimate of the model
parameters (rather than a posterior distribution). The MLE

was computed using an adaptive differential evolution

Algorithm [43,44] implemented in the Julia language [45].

This leads to an efficient global numerical optimization with a

typical runtime under a minute for the applications discussed

in this paper.
2.5. Computation of error in parameter estimates
The set of synthetic moments generated by the SSA is the input

to the MLE and MCMC algorithms described in the previous sec-

tions which subsequently output predictions for the parameter

values. We then compute two types of fractional errors for

each parameter ui:

FEMLE�MAP ¼
jui,MLE � ui,MAPj

ui,MAP
, (2:10)

FEMAP�True ¼
jui,MAP � ui,Truej

ui,True
(2:11)

and FEMLE�True ¼
jui,MLE � ui,Truej

ui,True
: (2:12)

The first error quantifies the difference between the MLE and the

mode of the MCMC-derived posterior (the MAP estimate), while

the second and third errors quantify the error between the MAP

estimate (or the MLE estimate) and the true parameter value, i.e.

the parameter values input into the SSA and used to generate the

synthetic data.
2.6. Choices for the moment-closure approximation
method

Since the chemical master equation of the feedback loop can only

be solved in steady state [46], the likelihoods need to be approxi-

mated by a moment-closure method. There are a wide variety of

such methods [47], each with their own advantages. We shall

consider six types of approximations: LNA [15], the three

moment approximation (3MA) [33], derivative matching (DM)

[48], conditional derivative matching (CDM) [49], conditional

Gaussian approximation (CG) [49] and the linear-mapping

approximation (LMA) [50]. The LNA was described in the Intro-

duction. The 3MA is an elaboration of the 2MA explained

earlier; while in the latter we assume the third cumulant is

zero, in the former we assume that the fourth cumulant is

zero. The 3MA gives a closed set of equations for the first

three moments and is a more accurate approximation of the

chemical master equation than the 2MA [33,51]. Hence, in this

article, we use the 3MA instead of the more common 2MA.

DM involves matching time derivatives of the exact (not

closed) moment equations with that of the approximate

(closed) moment equations at some initial time. CDM is a con-

ditional version of DM, i.e. where DM is performed

conditional on the state of the low abundance species, e.g. the

promoter states. CG is a special case of the conditional method

of moments developed earlier by Hasenauer et al. [52]; it can

also be seen as a conditional version of the 2MA, again where

the conditioning is on the promoter state. The LMA is a not a

true moment-closure method in the usual sense of the word

because it actually gives approximate expressions for the time-

dependent probability distributions of a wide class of gene regu-

latory networks (which moment-closure methods cannot give).

The LMA is based on an approximate mapping of the dynamics

of a gene regulatory system with protein–DNA binding reac-

tions to a system with no binding reactions. Appendices B and

C contain the equations defining each of these closures for the

auto-regulatory transcriptional feedback loop for the case of

identical and non-identical cells, respectively.
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3. Investigating the factors that influence the
accuracy of inference

3.1. Inference from identical cells
In this section, we study the various factors that influence the

accuracy of inference of the parameters of a negative auto-

regulatory genetic feedback loop from synthetic data

generated for a population of cells using the SSA (§2.2)

where the inference is done using a Bayesian and a frequentist
method (§§2.3 and 2.4, respectively). We systematically inves-

tigate the error in the parameter predictions as a function of all

user-input variables: (i) the number of cells at each time point;

(ii) the number of time points; (iii) the highest-order moment

used for inference; (iv) the moment-closure method used for

likelihood approximation.

Testing the independence assumption of the likelihood function.
We first explicitly confirm the assumption behind our

method of inference, namely that the sample mean and

sample variance are independent at each time point such
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that we can write the likelihood as a product of likelihoods

for each moment (see §2.3). We fix the parameters in the

SSA to ru ¼ 13, b ¼ 3, d ¼ 1, sb ¼ 0.001 and su ¼ 0.1, gener-

ate the synthetic data for a number of N cells at 30 time

points (interval 1), compute the central moments using

equation (2.1) and the correlation coefficient of sample

mean and sample variance for time tl using the following:

r(m̂1(tl), m̂2(tl)) ¼
cov(m̂1(tl), m̂2(tl))

s1(tl)s2(tl)
¼ m̂3(tl)

Ns1(tl)s2(tl)
: (3:1)

Note that the last step uses an exact result for the covariance

of sample mean and sample variance derived in [38]. In

figure 2a, we show r(m̂1(tl), m̂2(tl)) averaged over all 30 time

points (denoted as L) as a function of N. The very small

value of the time-averaged correlation coefficient of sample

mean and sample variance is practically negligible for popu-

lations with more than a hundred cells and hence the

assumption of independence of sample mean and sample

variance in our inference methods holds. This was found to

be the case for all parameter values explored in this study.

Quantifying the differences between the MLE and MAP esti-
mate as a function of N. We now fix the moment-closure

method of approximating the likelihood to be the 3MA and

fix the number of time points to 30 (with interval 1). In

figure 2b, we plot FEMLE2MAP (see equation (2.10)) as a func-

tion of N which quantifies the difference in the parameters

obtained using the MLE and the MAP estimate of MCMC.

The fractional errors decrease rapidly with increasing N
showing rapid convergence of the two estimates. The

number of cells in flow cytometry measurements (we shall

refer to this as the sample size from now on) tends to be

much larger than 104 and hence the difference between the

two estimates (for all five parameters) is less than 3%. In

figure 2d, we show the corresponding posterior distributions

obtained from MCMC for each of the five parameters as a

function of N, while the vertical green dashed line shows

the MLE. Note that these results do, of course, depend on

the choice of prior distribution but are independent of the

particular choice, we always found that the fractional error

between the MLE and MAP estimates decreases rapidly

with N (this is, of course, expected as the amount of informa-

tive observations increases, the effect of the prior is diluted).

The very small differences between the two estimators make

a strong case for the use of the MLE rather than the MCMC

method for typical flow cytometry sample sizes since the

computational time of the former is at most a few minutes,

while of the latter is many hours.

Quantifying the differences between the inferred and true
parameter values as a function of N. In figure 2c, we plot

FEMAP2True (see equation (2.11)) as a function of N which

quantifies the difference between the MAP estimate of the par-

ameter and the true value of the parameter. This figure clearly

shows that the percentage error does not significantly decrease

with N and can be as high as 40% for typical flow cytometry

sample sizes. Now the sampling error due to the finite cell

number N and the error due to assuming independence

of sample mean and sample variance rapidly go to zero as

N! 1. The only error remaining in this limit is the systematic

error which is the error due to likelihood approximation by the

moment-closure method. Hence, figure 2c shows that the sys-

tematic error due to likelihood approximation by the 3MA by

far dominates the other errors. The differences between the

MAP estimate and the true value (red vertical line) can be
better appreciated in figure 2d where we plot the posteriors

of the parameter distributions as a function of N. In particular,

the case N ¼ 105 (last row of figures in figure 2d) is remarkable

since the red vertical line (the true value) is way off from the

narrowly peaked (converged) posterior. Note that since the

differences between MLE and the MAP estimate are very

small (figure 2b), the error computed between the MLE and

the true value, FEMLE2True, is very similar to that reported in

figure 2c for FEMAP2True.

Quantifying the systematic error in the inferred parameter
values as a function of the type of moment-closure approximation
for the likelihood. We have previously found that the systematic

error was very large using the 3MA. Next we investigate how

this error varies with the choice of moment-closure approxi-

mation. Since it is computationally unfeasible to generate a

very large number of cell samples using the SSA, for this

study we use the FSP algorithm [53]) to directly obtain the

time-dependent probability distribution of the genetic feed-

back loop, from which we calculate the moments for 30

time points (interval one). Because we truncated the FSP to

a very large protein number compared to the mean protein

number, the results obtained from FSP are practically the

same as the exact solution of the master equation, i.e.

the limit N!1 of the SSA. In particular, by comparing the

mean and variance from FSP with that from SSA, for various

parameter sets, we estimated that the relative error in FSP’s

moments is less than 1% for all times. We then use the

moments of the probability distribution at the 30 time

points to generate the MLE of the five parameters. These

and the true parameter values are used to calculate the

fractional error for each parameter using equation (2.12). In

figure 3, we show a heat map of the fractional error averaged

over all five parameters as a function sb, b and ru for the six

different types of moment-closure approximations mentioned

in the §2.6. The heat map shows that the systematic error

increases rapidly with increasing rate of protein–DNA bind-

ing sb and with increasing mean burst size b (there is only a

weak dependence on the translation rate of proteins in the

ON state ru). This dependence is to be expected since (i) sb

controls the strength of the only bimolecular reaction in the

feedback loop and we know that it is the presence of this reac-

tion which necessitates the use of moment-closure

approximation (from the master equation of a system with

only zero or first-order reactions, one can derive a closed

set of moment equations and hence no approximation is

necessary in this case [29]). (ii) b controls the size of protein

number fluctuations and we know that most approximations

are valid for small noise only [29,33]. Note that the maximum

systematic error using the 3MA and the LNA is of order 1,

while the maximum systematic error using the LMA, CDM,

DM or CG is of order 1022. The 2MA (the lesser accurate ver-

sion of the 3MA) and the LNA have been the methods of

choice for inference in the literature, presumably because of

their simplicity. Hence our results make a strong case for

the use of the more sophisticated LMA, CDM, DM or CG

for cases where large bursts in protein production are evident

and/or where strong feedback is suspected.

We further corroborated the results in figure 3 by generat-

ing synthetic SSA data for two points in parameter space, ru ¼

13, d ¼ 1,sb ¼ 0.001,su ¼ 0.1 and b ¼ 3 or b ¼ 10 with N ¼ 105

cells and 30 time points and then estimating the parameters

using MLE and MCMC with the likelihood approximated

using 3MA, LNA, LMA and CDM (the other two types of
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moment-closure, DM and CG, give very similar results to the

LMA and CDM and hence we have not included them). The

results are shown in figure 4. The LMA and CDM percentage

errors (averaged over all five parameters) are in the range 0.6–

2%, while the 3MA and LNA errors are in the range 22–41%

which is in good agreement with the heat map in figure 3 gen-

erated with MLE using FSP synthetic data. This figure,

however, provides additional important information: it

shows the error for each parameter and the posterior distri-

butions obtained from MCMC. The error in the protein–

DNA binding rate sb is the largest or the second largest error

among the five parameters when the LNA and 3MA are

used to approximate the likelihood. It is visually clear that

the posteriors generated using the LMA and CDM (blue and

red distributions, respectively, in the first and third rows of

figure 4) are centred or almost centred on the true parameter

value (red vertical line)—this is obviously not true for the pos-

teriors generated using the LNA and 3MA (yellow and green

distributions, respectively, in the second and fourth rows of

figure 4). However, the posteriors from the LMA and CDM

are not necessarily narrower than those from the LNA and

3MA and hence the choice of moment closure scheme does

not appear to significantly impact the uncertainty in the

MAP estimate. In tables 1 and 2, we compare the MAP esti-

mate of MCMC in figure 4 with the MLE for the same

synthetic SSA data as well as with the MLE using synthetic

FSP data (reported in figure 3). All three are in good agreement

for the four moment-closures tested, thus providing another

verification of the superiority of LMA/CDM over LNA/

3MA for moment-based inference.
In the electronic supplementary material, we also demon-

strate the accuracy of distribution reconstruction from

inferred parameters, the robustness of the MLE estimates to

external noise and the convergence of the MCMC chain. A

short description of each follows. In electronic supplementary

material figure S1, we reconstruct the time-dependent distri-

bution of molecule numbers (using FSP) based on 3MA and

CDM inferred kinetic parameters reported in table 1. We find

that both methods lead to a distribution that is visually close

to that generated using the true parameter values, with the

accuracy being highest for the CDM-reconstructed distri-

bution which is virtually indistinguishable from the true

distribution. We have also tested the robustness of the MLE

inference method to noise added to the measured moments;

this additional noise mimics sources of noise other than

intrinsic noise inherent in the synthetic SSA data. In electronic

supplementary material, figure S2, we show that the frac-

tional error averaged over all parameters increases linearly

with the size of added noise. In electronic supplementary

material, figure S3, we plot the Gelman–Rubin R̂ ratio as a

function of the number of iterations of the MCMC chain

where the likelihood is approximated using the LMA

moment equations—the ratio quickly tends to 1 after the

burn-in time demonstrating chain convergence. Note that

the same quick convergence is seen for all MCMC results

reported in this article.

Quantifying the differences between the inferred and true par-
ameter values as a function of the number of time points L and the
highest-order moment used for inference. Thus far, we have fixed

the number of time points to L ¼ 30 and the highest-order
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moment used to two. Now we relax both of these. In figure 5,

we show the fractional error averaged over the five par-

ameters computed using the MLE as a function of the cell

numbers N for a total number of time points L ¼ 10, 30,

100; the first and second row of figures use two and three

as the highest-moment order, respectively. Data are shown

for four types of moment-closure approximations: 3MA,

LNA, CDM and LMA. In all cases, the parameter set is

fixed to ru ¼ 13, b ¼ 5, d ¼ 1, sb ¼ 0.001 and su ¼ 0.1. There

are two main observations to be made: (i) the increase in

the number of time points does not significantly change the

mean fractional error; and (ii) the inclusion of measurements

of third-order central moment improves the inference using

the LMA and CDM, but makes the inference using the

3MA worse (see the third row of figures in figure 5). The

LNA is insensitive to the inclusion, because the third-order

central moments are always zero as per the underlying

assumption of a Gaussian distribution. This analysis shows

that the mean fractional error using the MLE depends

strongly on the choice of moment-closure approximation
and on the sample size N, less strongly on the highest-

order moment used for inference and weakly on the

number of time points. Results using the MAP estimate of

MCMC lead to very similar results.
3.2. Inference from non-identical cells
Thus far, we have assumed inference from a population of

identical cells, but, of course, this is an ideal which does

not exist in nature. Variability between cells can be modelled

by choosing rate constants to vary from one cell to another

one. Generally, rate constants might even change with time

in a single cell, but this is likely a secondary effect compared

to cell-to-cell variation in the rate constants. In particular, pre-

vious experimental studies have shown that one of the major

sources of gene expression variability in yeast is cell-to-cell

variation in transcription factor expression [54]. In our

model, the protein is the repressing transcription factor and

its expression is controlled by the rate constant ru. Hence

we choose this constant to vary from cell to cell, while the
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other rate constants are identical across cells. In agreement

with previous studies, the distribution of ru across cells is

chosen to be lognormal [55]. Specifically we fix the parameter

set to b ¼ 5, d ¼ 1, sb ¼ 0.001, su ¼ 0.1 and ru to be lognor-

mally distributed (across cells) with mean 13 and standard

deviation 0.1 or 0.3. Hence the parameters to be inferred

are now six: the mean and standard deviation of ru, b, d, su

and sb. Figure 6 shows the MCMC posterior distributions

for these six parameters using the 3MA, LMA and CDM

moment-closure approximations. The mean percentage

error across all parameters is 57–95% using the 3MA, 7–8%

using the LMA and 2% using the CDM. In comparison, the

mean percentage error across all parameters is 25–41%

using the 3MA, 0.6–2% using the LMA and 0.6–1% using

the CDM for the case of identical cells (figure 4). The main

conclusions to be drawn are as follows: (i) inference for

non-identical cells leads to parameter predictions with sig-

nificantly larger errors than that for identical cells; (ii) the

LMA and CMD closure leads to much more accurate results

than the 3MA—the CDM is particularly accurate and seems

the best choice. We did not test the LNA, but since for iden-

tical cells the LNA and 3MA always fared very similar, we

expect the same in this case too. In tables 3 and 4, we com-

pare the MAP estimate of MCMC in figure 6 with the MLE
using the same synthetic SSA data; as expected, we find the

MLE and MAP estimates to agree very closely for all six par-

ameters and using all moment-closure approximations.
4. Discussion and conclusion
In this article, we have reported the results of an exhaustive

study of the factors influencing the accuracy of moment-

based MCMC and MLE methods for an auto-regulatory

transcriptional feedback loop. Using the Bayesian method

devised in [27] and its corresponding MLE, we showed that

using only the first two moments of synthetic protein data,

the accuracy of parameter estimation for large sample sizes

is largely controlled by the choice of moment-closure

method used to approximate the likelihood. The errors

were found to increase with the size of the protein–DNA

binding rate, the mean protein burst size and the heterogen-

eity of transcription rate across the cell population. We

showed that using only mean data is not sufficient to identify

all parameters and that at least mean and variance are needed

to perform such a task. Using more than two moments of

synthetic protein data does not necessarily lead to better

accuracy—in particular this does not affect the accuracy
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identical cells and as a function of the moment-closure type. The cells have identical parameters except for the protein production rate ru which is chosen to be a
lognormal with mean krul ¼ 13 and standard deviation s(ru) ¼ 0.1 or 0.3. The percentage error averaged over all parameters is summarized in the legend. The
synthetic data are generated using the SSA with sample size 106 and 30 time points. The LMA and CDM have an average error which is at least an order of
magnitude less than that of the 3MA.

Table 3. Extrinsic noise s(ru) ¼ 0.1.

moment-closure type
LMA CDM 3MA

inference method MCMC MLE MCMC MLE MCMC MLE true

kinetic parameter estimate krul 13.59 13.58 13.23 13.26 14.84 14.87 13

s(ru) 0.07 0.06 0.11 0.10 0.14 0.14 0.1

b 5.03 5.03 4.96 4.95 4.96 4.95 5

d 1.06 1.06 1.01 1.01 1.30 1.30 1

sb(�1023) 0.99 0.99 0.99 0.99 1.26 1.26 1

su 0.10 0.10 0.10 0.10 0.33 0.33 0.1

mean FE �100% 7.85% 8.18% 1.76% 1.60% 57.29% 57.17% 0

Table 4. Extrinsic noise s(ru) ¼ 0.3.

moment-closure type
LMA CDM 3MA

inference method MCMC MLE MCMC MLE MCMC MLE true

kinetic parameter estimate krul 13.90 13.90 13.84 13.87 23.68 23.99 13

s(ru) 0.30 0.30 0.30 0.30 0.38 0.38 0.3

b 4.94 4.94 4.86 4.85 3.11 3.09 5

d 1.11 1.11 1.03 1.03 1.35 1.35 1

sb(�1023) 1.05 1.05 0.99 0.99 1.69 1.69 1

su 0.12 0.12 0.10 0.10 0.42 0.42 0.1

mean FE �100% 6.89% 6.89% 2.39% 2.42% 95.43% 96.00% 0
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when using the LNA and makes the predictions using the

3MA even worse than using only two moments. For

sample sizes larger than about a thousand, the number of

time points used did not significantly affect the accuracy.

By contrast, the choice of moment-closure method made a

huge difference in the accuracy of parameter estimation.
Our computational study of the error over large swaths of

parameter space conclusively showed that the popular

choice of LNA and of closures based on zero cumulant

(such as the 3MA) leads to large maximum percentage

errors in the estimated parameters in the approximate range

60–100%, while other types of closures such as the CDM
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boasted very small maximum errors of about 1%. Our study

also confirms that for sample sizes typical of flow cytometry

(tens of thousands of cells) MLE approaches are more favour-

able than Bayesian methods since both methods lead to

virtually indistinguishable estimates (if the same likelihood

approximation is used), but the computation of MLE takes

a few minutes, while MCMC takes many hours. Of course,

MCMC approaches have the additional advantage of estimat-

ing the uncertainty in the parameter estimates; however, this

could also be computationally efficiently estimated using

normal approximations to the posterior [41].

Our study was specifically for a negative auto-regulatory

feedback transcriptional feedback loop which does not incor-

porate cooperativity in the protein–DNA binding reaction

nor protein dimerization reactions, as some previous studies

did. Incorporating both of these would lead to a higher

degree of nonlinearity in the law of mass action (since both

cooperativity and dimerization imply more second-order

reactions in our model). Under such conditions, one would

expect even larger errors from the prediction of moment-

based inference methods than what we have found because

moment-closure approximations naturally perform best for

systems with weakly nonlinear mass action laws [29]. It

would also be interesting to investigate (i) whether the results

here found for negative feedback loops extend to positive

feedback loops and (ii) how the present inference method

can be extended for use with spatially extended data [56].

These are topics for a future study.

In few instances [16], some studies have used the chemi-

cal Fokker–Planck equation (CFPE) as a means to compute

the approximate likelihood. This method cannot be used in

our moment-based inference because the moment equations

of the CFPE are not closed. However, given that it was

proved in [33,57] that the 3MA is more accurate than the

CFPE (in the limit of large system sizes) and that the

CFPE’s predictions for the protein distributions of auto-

regulatory gene regulatory networks [58] can be very

different from those of the chemical master equation, it

appears highly likely that Bayesian inference methods

based on the CFPE cannot outperform the LMA, CDM, DM

and CG moment-based methods described in this article.

It remains to be seen whether particular moment-closures

are more advantageous compared to others when one is

interested in the more general problem of inferring both the

network connectivity and the parameter values. However,

given the large translational mean protein bursts measured

in vivo (in the approximate range of 1 to 1000; see fig. 5a in

[8]) and the rapid increase in estimation error with mean

burst size that we identified in this study, it seems likely

that new techniques (such as those based on the concept of

convergent moments [59]) may be needed to ensure accurate

inference of complex noisy gene regulatory networks with

multiple interconnected feedback loops.
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Appendix A. Implementation of adaptive Markov
chain Monte Carlo
Our initial exploration used a traditional non-adaptive Metro-

polis–Hastings algorithm (as in [27]) but we noted that this

often resulted in the chain getting stuck for very long periods

of time. This problem can be traced to the very narrow like-

lihoods at large sample sizes. Since it is well known that

the choice of proposal distribution strongly affects the time

taken for the chain to converge, we opted to instead use an

adaptive MCMC which removes the need of a particular

choice by automatically tuning the proposal distribution

using the history of the process [61]. This led to convergence

in a reasonable amount of time. The particular updating

mechanism we used is a variant of algorithm 4 in [62]. The

pseudocode of the adaptive MCMC is presented below.

1. Extract statistics m̂k(tl) (sample mean and sample variance)

and s2
k (tl) (variance of sample mean and variance of

sample variance) for k ¼ 1, 2 for all time points using the

formulae equations (2.1) and (2.4).

2. Select wide lognormal prior p(u) in equation (2.6) and initi-

alize uold [ RJ .

3. Select lognormal proposal distribution q(unewjuold) and initi-

alize covariance matrix as identity matrix C I [ RJ�J .

4. Initialize the adaptive parameters: (i) the starting point

and termination point of adaptation I1 ¼ 100 and I2 ¼

5 � 105, respectively; (ii) the optimal acceptance rate opt

(0.23 in this paper); (iii) learning gain K (100 in this

paper); (iv) Robbins–Monro order 1 [ (0, 1] (0.9 for this

paper); (v) sd is initially set equal to (2.38)2/J; (vi) par-

ameter for preventing singularity ed ¼ 2 � 1025I.

(* Do Adaptive Metropolis–Hasting MCMC *)

5. For i from 1 to Number_of_samplings

6. Sample u from uniform distribution U [0,1];

7. Sample unew from proposal distribution q(unewjuold);

(* Calculate Probability *)

8. Calculate moment predictions ~mk(tl, u) from moment

equations for all tl and k and for both unew and uold;

9. Calculate p(ujm̂1, . . . , m̂n) as per equation (2.6) for both

unew and uold in which p(m̂k(tl)ju) is approximated

by using normal distribution equation (2.5);

10. Calculate both q(unewjuold) and q(uoldjunew);

11. Calculate acceptance probability

a ¼ min 1,
p(unewjm̂1, . . . , m̂n)q(uoldjunew)

p(uoldjm̂1, . . . , m̂n)q(unewjuold)

( )
;

(* Update and Record Estimates *)

12. If u � a
13. uold unew and record uold in ur;

14. Set marker ind ¼ 1;

15. else

16. Reject unew;

17. Set marker ind ¼ 0;

18. end

https://github.com/edwardcao3026/MAP-MLE
https://github.com/edwardcao3026/MAP-MLE
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19. (* Adaptive Mechanism for Proposal Covariance

Updating *)

20. Update d according to d ¼ i21K(ind 2 opt);

21. Update sd according to sd exp (ln(sd) þ d);

22. (* Adaptation initiates at the I1-th trial and termi-

nates at I2-th trial *)

23. if i . I1 and i , I2

24. C sdcov(u`
r )þ sded;

25. end

26. end

27. Calculate the probability distribution of all the recordings

of uold in the last 2/3 chain length—this is the posterior.

28. Pick the mode of the posterior for each parameter as the

MAP estimate for that parameter.

Remark 1 (early adaptation termination)
In practice, we use the early-adaptation-termination adaptive

MCMC in which the adaptation is terminated after 5 � 105

runs after the acceptance a reaches steady state (the change

on a is below the tolerance). The motivation of early termin-

ation on adaptation is to circumvent the ever-increasing

computation demand on the calculation of covariance in

step 24.
Remark 2 ( prior)
The prior for system without extrinsic noise is selected as

LN (mpr, spr), where

mpr ¼ [6, 1, 2, 2� 10�3, 0:2]` and

spr ¼ diag[1, 1, 0:5, 0:5, 0:5]`

for ru, b, d, sb and su, respectively, whereas for extrinsic noise

the parameters of the prior are chosen as

mpr ¼ [6, 0:2, 1, 2, 2� 10�3, 0:2]` and

spr ¼ diag[1, 0:5, 1, 0:5, 0:5, 0:5]`,

for krul, s(ru), b, d, sb and su, respectively.
Remark 3 (uold initialization)
The adaptive MCMC’s uold is initiated with the estimates of

MLE obtained using the same dataset.

Remark 4 (convergence)
Generally, the posterior calculated up to chain length equal to

106 is virtually indistinguishable from that calculated with a

chain length which is an order of magnitude longer and

hence we chose to terminate the entire chain at 107. In all

cases this guaranteed a converged posterior. The computation

time of the full chain takes 10 h or more for the identical cell

case and at least 20 h for the heterogeneous cell case.

Appendix B. Moment closures for an auto-
regulatory transcriptional feedback loop in a
system of identical cells
The associated (conditional) chemical master equations of the

auto-regulatory transcriptional feedback loop shown in

figure 1a are given by

dP0(np, t)
dt

¼ ru

X1
i¼0

bi

(1þ b)iþ1
P0(np � i, t)� ruP0(np, t)

þ d(np þ 1)P0(np þ 1, t)� dnpP0(np, t)
� sbnpP0(np, t)þ suP1(np � 1, t)

and
dP1(np, t)

dt
¼ d(np þ 1)P1(np þ 1, t)� dnpP1(np, t)

þ sb(np þ 1)P0(np þ 1, t)� suP1(np, t):

The moment equations derived from these master equations

are not closed and hence require a moment-closure scheme.

Next, we describe the equations specifying the six types of

moment-closure used in this article.

B.1. Three moment approximation
@thnpi ¼ (rub� su)hngi � dhnpi � sbhnpngi þ su,

@thngi ¼ �sbhnpngi � suhngi þ su,

@thn2
pi ¼ 2rubhnpngi þ ru(2b2 þ b)hngi � 2dhnp

2i þ dhnpi þ sbhnpngi � 2sbhn2
pngi þ su(1� hngi þ 2hnpi � 2hnpngi),

@thn2
gi ¼ sbhnpngi � 2sbhnpn2

gi þ su þ suhngi � 2suhn2
gi,

@thnpngi ¼ rubhn2
gi � dhnpngi þ sb(hnpngi � hnpn2

gi � hn2
pngi)þ su(1� hn2

gi þ hnpi � hnpngi),

@thn3
pi ¼ rub(6b2 þ 6bþ 1)hngi þ 3rub(1þ 2b)hnpngi þ 3rubhn2

pngi � dhnpi þ 3dhn2
pi � 3dhn3

pi � sbhnpngi þ 3sbhn2
pngi

� 3sbhn3
pngi þ su(1� hngi þ 3hnpi � 3hnpngi þ 3hn2

pi � 3hn2
pngi),

@thn2
pngi ¼ rub(1þ 2b)hn2

gi þ 2rubhnpn2
gi þ dhnpngi � 2dhn2

pngi þ sb(� hnpngi þ hnpn2
gi þ 2hn2

pngi � 2hn2
pn2

gi � hn3
pngi)

þ su(1� hn2
gi þ 2hnpi � 2hnpn2

gi þ hn2
pi � hn2

pngi),

@thnpn2
gi ¼ rubhn3

gi � dhnpn2
gi þ sb(� hnpngi þ 2hnpn2

gi � hnpn3
gi þ hn2

pngi � 2hn2
pn2

gi)þ su(1þ hngi � hn2
gi � hn3

gi þ hnpi

þ hnpngi � 2hnpn2
gi)

and @thn3
gi ¼ sb(� hnpngi þ 3hnpn2

gi � 3hnpn3
gi)þ su(1þ 2hngi � 3hn3

gi):

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

(B 1)
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To close the moment equations in equation (B 1) up to third

order, we assume that the fourth cumulant is zero. This is

enforced by the following set of algebraic equations:
cietypublishing.org/journal/r
hn3
pngi ¼ 3hnpngi(�2hnpi2 þ hn2

pi)þ hngi(hn3
pi þ 6hnpi3 � 6hnpi hn2

pi)þ 3hnpi hn2
pngi,

hnpn3
gi ¼ 6hngi3hnpi �6hn2

gi hnpngi þ 3hnpngi hn2
gi þ 3hngi(�2hnpi hn2

gi þ hnpn2
gi)þ hnpi hn3

gi

and hn2
pn2

gi ¼ 2(hnpngi2 � hnpi2hn2
gi þ hnpi hnpn2

gi þ hngi(�4hnpi hnpngi þ hn2
pngi))þ hngi2(6hnpi2 � 2hn2

pi)þ hn2
pi hn2

gi:

9>>>=
>>>;
sif
J.R.Soc
B.2. Linear-mapping approximation
To use the LMA to close the moment equations, we derive the

moment equations for the equivalent linear gene regulatory
network (this is done by replacing the bimolecular reaction

Gþ P�!sb G� by the first-order reaction G�!�sb G�):
.In
terface
16:20180967
@thnpi ¼ rubhngi � dhnpi,
@thngi ¼ ��sbhngi þ su(1� hngi),

@thnpngi ¼ rubhngi þ suhnpi � (dþ �sb þ su)hnpngi,

@thn2
pi ¼ 2rubhnpngi þ rub(1þ 2b)hngi � 2dhn2

pi þ dhnpi,

@thn2
pngi ¼ (2rubþ d)hnpngi þ rub(1þ 2b)hngi � (2dþ su þ �sb)hn2

pngi þ suhn2
pi

and @thn3
pi ¼ 3rubhn2

pngi þ 3rub(1þ 2b)hnpngi þ rub(1þ 6bþ 6b2)hngi � dhnpi þ 3dhn2
pi � 3dhn3

pi,

9>>>>>>>>>>>>=
>>>>>>>>>>>>;
where the equivalent parameter �sb is determined by

�sb ¼ sb

hnpngi
hngi

:

B.3. Conditional derivative matching
The moment equations are
@thnpi ¼ (rub� su)hngi � dhnpi � sbhnpngi þ su,

@thngi ¼ �sbhnpngi � suhngi þ su,

@thn2
pi ¼ 2rubhnpngi þ ru(2b2 þ b)hngi � 2dhn2

pi þ dhnpi þ sbhnpngi � 2sbhn2
pngi þ su(1� hngi þ 2hnpi � 2hnpngi),

@thnpngi ¼ rubhngi � dhnpngi � sbhn2
pngi þ su(1� hngi þ hnpi � hnpngi),

@thn3
pi ¼ rub(6b2 þ 6bþ 1)hngi þ 3rub(1þ 2b)hnpngi þ 3rubhn2

pngi � dhnpi þ 3dhn2
pi � 3dhn3

pi � sbhnpngi þ 3sbhn2
pngi

� 3sbhn3
pngi þ su(1� hngi þ 3hnpi � 3hnpngi þ 3hn2

pi � 3hn2
pngi)

and @thn2
pngi ¼ rub(1þ 2b)hngi þ (2rubþ d)hnpngi � 2dhn2

pngi � sbhn3
pngi þ su(1� hngi þ 2hnpi � 2hnpngi þ hn2

pi � hn2
pngi),

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;
(B 2)
and they are closed by approximating hn3
pngi by

hn3
pngi ¼

hn2
pngi
hnpngi

 !3

hngi:
B.4. Derivative matching
DM proposes to close (B 2) by the means of

hn3
pngi ¼

hn2
pngi
hnpngi

 !3
hnpi
hn2

pi

 !3

hn3
pi hngi:
B.5. Conditional Gaussian
CG proposes to close (B 2) by the means of

hn3
pngi ¼

3hn2
pngi hnpngi
hngi

�
2hnpngi3

hngi2
:

B.6. Linear-noise approximation
The mean numbers of protein and gene, knpl and kngl,
respectively, follow the deterministic rate equations:

@thnpi ¼ rubhngi � dhnpi � sbhnpi hngi þ su(1� hngi) and

@thngi ¼ �sbhnpi hngi þ su(1� hngi):
(B 3)
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The second-order central moments follow the following

Lyapunov equation:

@tS ¼ JSþ SJ` þD,

where
lishing.org/journal/rsif
J.R.
J ¼
�d� sbhngi rub� sbhnpi � su

�sbhngi �sbhnpi � su

" #
,

D ¼
rub(1þ 2b)hngi þ dhnpi þ sbhnpi hngi þ su(1� hngi) sbhnpi hngi þ su(1� hngi)

sbhnpi hngi þ su(1� hngi) sbhnpi hngi þ su(1� hngi)

" #
Soc
and
.Interface
16:201809
S ¼ cov(np, np) cov(np, ng)
cov(np, ng) cov(ng, ng)

� �
:

Appendix C. Moment closures for an auto-
regulatory transcriptional feedback loop in a
system of non-identical cells
C.1. Conditional derivative matching
The moment equation are
 67
@thnpi ¼ bhrungi � dhnpi �sbhnpngi �suhngi þsu,

@thngi ¼ �sbhnpngi �suhngi þsu,

@thn2
pi ¼ 2bhrunpngi þ (2b2þ b)hrungi � 2dhn2

pi þ dhnpi þsbhnpngi � 2sbhn2
pngi þsu(1� hngi þ 2hnpi � 2hnpngi),

@thnpngi ¼ bhrungi � dhnpngi �sbhn2
pngi þsu(1� hngi þ hnpi � hnpngi),

@thn2
pngi ¼ b(1þ 2b)hrungi þ 2bhrunpngi þ dhnpngi � 2dhn2

pngi �sbhn3
pngi þsu(1� hngi þ 2hnpi � 2hnpngi þ hn2

pi � hn2
pngi),

@thrunpi ¼ bhr2
ungi � dhrunpi �sbhrunpngi �suhrungi þsuhrui,

@thrungi ¼ �sbhrunpngi �suhrungi þsuhrui,

@thrunpngi ¼ bhr2
ungi � dhrunpngi �sbhrun2

pngi þsu(hrui � hrungi þ hrunpi � hrunpngi)

and @thr2
ungi ¼ �sbhr2

unpngi �suhr2
ungi þsuhr2

ui,

9>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>;
which are closed by the following algebraic equations:

hrun2
pngi ¼

hn2
pngi
hrungi

 !
hrunpngi
hnpngi

� �2

hngi,

hr2
unpngi ¼

hr2
ungi
hnpngi

� � hrunpngi
hrungi

� �2

hngi

and hn2
pngi ¼

hn2
pngi
hnpngi

 !3

hngi:

9>>>>>>>>>>>=
>>>>>>>>>>>;
C.2. Linear-mapping approximation
The moment equations are

@thnpi¼bhrungi�dhnpi,
@thngi¼��sbhngiþsu(1�hngi),

@thn2
pi¼2bhrunpngiþb(1þ2b)hrungi�2dhn2

piþdhnpi,

@thnpngi¼bhrungiþsuhnpi�(dþ�sbþsu)hnpngi,

@thrunpi¼bhr2
ungi�dhrunpi,

@thrungi¼��sbhrungiþsu(hrui�hrungi),

@thr2
ungi¼��sbhr2

ungiþsu(hr2
ui�hr2

ungi)

and @thrunpngi¼bhr2
ungiþsuhrunpi�(dþ�sbþsu)hrunpngi,

9>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>;

in which �sb is determined by

�sb ¼ sb

hnpngi
hngi

:
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C.3. Three moment approximation
The moment equations used are
cietypublishing.org/journal/rsif
J.R.Soc.Interface

16:20180967
@thnpi ¼ bhrungi � dhnpi � sbhnpngi � suhngi þ su,

@thngi ¼ �sbhnpngi � suhngi þ su,

@thn2
pi ¼ 2bhrunpngi þ (2b2 þ b)hrungi � 2dhn2

pi þ dhnpi þ sbhnpngi � 2sbhn2
pngi þ su(1� hngi þ 2hnpi � 2hnpngi),

@thnpngi ¼ bhrun2
gi � dhnpngi þ sb(hnpngi � hnpn2

gi � hn2
pngi)þ su(1� hn2

gi þ hnpi � hnpngi),

@thn2
gi ¼ sbhnpngi � 2sbhnpn2

gi þ su þ suhngi � 2suhn2
gi,

@thn3
pi ¼ b(6b2 þ 6bþ 1)hrungi þ 3b(1þ 2b)hrunpngi þ 3bhrun2

pngi � dhnpi þ 3dhn2
pi � 3dhn3

pi

� sbhnpngi þ 3sbhn2
pngi � 3sbhn3

pngi þ su(1� hngi þ 3hnpi � 3hnpngi þ 3hn2
pi � 3hn2

pngi),

@thn2
pngi ¼ bð1þ 2bÞhrun2

gi þ 2bhrunpn2
gi þ dhnpngi � 2dhn2

pngi

þ sbð�hnpngi þ hnpn2
gi þ 2hn2

pngi � 2hn2
pn2

gi � hn3
pngiÞ

þ su(1� hn2
gi þ 2hnpi � 2hnpn2

gi þ hn2
pi � hn2

pngi),

@thnpn2
gi ¼ bhrun3

gi � dhnpn2
gi þ sb(� hnpngi þ 2hnpn2

gi � hnpn3
gi þ hn2

pngi � 2hn2
pn2

gi)

þ su(1þ hngi � hn2
gi � hn3

gi þ hnpi þ hnpngi � 2hnpn2
gi),

@thn3
gi ¼ sb(� hnpngi þ 3hnpn2

gi � 3hnpn3
gi)þ su(1þ 2hngi � 3hn3

gi),

@thrunpi ¼ bhr2
ungi � dhrunpi � sbhrunpngi � suhrungi þ suhrui,

@thrungi ¼ �sbhrunpngi � suhrungi þ suhrui,

@thr2
unpi ¼ bhr3

ungi � dhr2
unpi � sbhr2

unpngi � suhr2
ungi þ suhr2

ui,

@thr2
ungi ¼ �sbhr2

unpngi � suhr2
ungi þ suhr2

ui,

@thrun2
pi ¼ 2bhr2

unpngi þ (2b2 þ b)hr2
ungi � 2dhrun2

pi þ dhrunpi þ sbhrunpngi � 2sbhrun2
pngi þ su(hrui � hrungi þ 2hrunpi

� 2hrunpngi),

@thrunpngi ¼ bhr2
un2

gi � dhrunpngi þ sb(hrunpngi � hrunpn2
gi � hrun2

pngi)þ su(hrui � hrun2
gi þ hrunpi � hrunpngi)

and @thrun2
gi ¼ sbhrunpngi � 2sbhrunpn2

gi þ suhrui þ suhrungi � 2suhrun2
gi,

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;
which are closed by
hn3
pngi ¼ 3hnpngi(�2hnpi2 þ hn2

pi)þ hngi(hn3
pi þ 6hnpi3 � 6hnpi hn2

pi)þ 3hnpi hn2
pngi,

hnpn3
gi ¼ 6hngi3hnpi � 6hn2

gi hnpngi þ 3hnpngi hn2
gi þ 3hngi(�2hnpi hn2

gi þ hnpn2
gi)þ hnpi hn3

gi,

hn2
pn2

gi ¼ 2(hnpngi2 � hnpi2hn2
gi þ hnpi hnpn2

gi þ hngi(�4hnpi hnpngi þ hn2
pngi))þ hngi2(6hnpi2 � 2hn2

pi)þ hn2
pi hn2

gi,

hrun2
pngi ¼ 2hrunpngi hnpi þ hrungi hn2

pi þ hrui hn2
pngi þ 2hrunpi hnpngi þ hrun2

pi hngi

� 2(hrungi hnpi2 þ 2hnpngi hrui hnpi þ 2hrunpi hnpi hngi þ hngi hrui hn2
pi � 3hngi hrui hnpi2),

hrunpn2
gi ¼ 2hrunpngi hngi þ hrunpi hn2

gi þ hrui hnpn2
gi þ 2hrungi hnpngi þ hrun2

gi hnpi

� 2(hrunpi hngi2 þ 2hnpngi hrui hngi þ 2hrungi hnpi hngi þ hnpi hrui hn2
gi � 3hnpi hrui hngi2),

hr2
unpngi ¼ 2hrunpngi hrui þ hnpngi hr2

ui þ hngi hr2
unpi þ 2hrungi hrunpi þ hr2

ungi hnpi

� 2(hnpngi hrui
2 þ 2hrunpi hrui hngi þ 2hrungi hnpi hrui þ hnpi hngi hr2

ui � 3hnpi hngi hrui
2),

hrun3
gi ¼ 6hngi3hrui � 6hn2

gi hrungi þ 3hrungi hn2
gi þ 3hngi(�2hrui hn2

gi þ hrun2
gi)þ hrui hn3

gi,

hr2
un2

gi ¼ 2(hrungi2�2hrui
2hn2

gi þ hrui hrun2
gi þ hngi(�4hrui hrungi þ hr2

ungi))þ hngi2(6hrui
2 � 2hr2

ui)þ hr2
ui hn2

gi

and hr3
ungi ¼ 3hrungi(�2hrui

2 þ hr2
ui)þ hngi(hr3

ui þ 6hrui
3 � 6hrui hr2

ui)þ 3hrui hr2
ungi:

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;
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