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ABSTRACT

Purpose: Several studies have found significant associations between asthma and 
microbiome. However, it is challenging to obtain-sputum and bronchoalveolar lavage 
samples from pediatric patients. Thus, we used voided urine to show that urine microbe-
derived extracellular vesicles (EVs) in asthma are an available source for clinical research.
Methods: Five urine samples were obtained at 2–3-month intervals from each patient 
with asthma (n = 20), and a single voided urine sample were obtained from each 
healthy child (n = 20). After isolating EVs, 16S rDNA pyrosequencing was performed. 
The Chao1 index and principal coordinate analysis (PCoA) were used to assess 
diversity. To predict microbiota functional capacities, Phylogenetic Investigation 
of Communities by Reconstruction of Unobserved States was used based on the 
Kyoto Encyclopedia of Genes and Genomes pathway database. Eight covariates were 
included in the EnvFit analysis to identify significant factors in the asthma group.
Results: The asthma group showed lower Chao1 bacterial richness, and PCoA-based 
clustering differed significantly. Two phyla, and 13 families and genera were enriched or 
depleted. Functional profiling revealed significant differences between the asthma and 
control groups. EnvFit analysis of correlation to age, sex, body mass index, infection, 
season, asthma phenotype, severity, and symptoms was not significant except for infections 
associated with visit 1 and the season of visit 2.
Conclusions: This study showed that microbe-derived EVs were constantly altered in the 
urine of children with asthma, consistent with the findings of previous studies indicating 
microbiome changes in the lung and gut. The urine may reflect the specific pattern of 
microbiome EVs in children with asthma.
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INTRODUCTION

Asthma is a heterogeneous disease characterized by chronic airway inflammation. 
With developments in 16S rRNA sequencing, which have replaced conventional culture 
methods, the associations between asthma and bacterial communities have been widely 
examined. Microbiota composition is considered a key mediator of the immune system 
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that is associated with the development of asthma. Several studies have investigated airway 
microbiota in children with asthma. They found that airway hosts had complex microbial 
communities and suggested that airway dysbiosis and increased bacterial diversity might 
contribute to asthma.1-3 Studies have investigated whether airway or gut microbiota affects 
asthma. Cumulative reports suggest that dysbiosis and low gut microbiota diversity in infancy 
are associated with asthma.4-6 The importance of the lung-gut axis is increasingly recognized 
along with the concept that the microbiome of one organ affects the other.7,8 Association 
between lung and gut microbiome with asthma and the potential use of microbiomes as 
biomarkers have been examined. However, because children under age 5 cannot spit out 
sputum and it is difficult to obtain bronchoalveolar lavage (BAL) and stool samples, it is 
almost impossible to study the microbiomes of young children.

Extracellular vesicles (EVs) are potent vehicles mediating intercellular communication in 
prokaryotes and eukaryotes. EVs are secreted from cells involved in the allergic response, such 
as bronchial epithelial cells, mast cells, dendritic cells, and T cells.9 Pathogen-derived EVs have 
also been shown to affect diseases such as atopic dermatitis-like skin infection, neutrophilic 
pulmonary inflammation, and cystic fibrosis, indicating that EVs can mediate allergic 
disease.10,11 In addition, a previous study showed that bacteria-derived EVs could affect distal 
host cell sites.12 A recent study identified dysbiosis in an asthma group using urine bacteria-
derived EVs, which may be useful to indicate allergic airway disease in children.13

This study uses voided urine to show that urine microbe-derived EVs in asthma are 
an available source for clinical research. We show the differences in microbe-derived 
EVs between pediatric patients with asthma and healthy children, and identify factors 
influencing urine EVs with asthma.

MATERIALS AND METHODS

Participants and sample collection
Patients who were 1–12 years old and visited the outpatient department at Inha University 
Hospital in 2017–2018 were included in this study. Specifically, we recruited patients with asthma 
diagnosed by 2 independent pediatric allergists. Under 5 years old, asthma was diagnosed as 
follows: 1) wheezing or cough without respiratory infection, 2) allergen sensitization as specific 
immunoglobulin E (IgE) or history of eczema, and 3) symptom relief after use of controller for 2 
to 3 months. Over 6 years old, asthma was diagnosed when forced expiratory volume in 1 second 
> 12% increased from baseline after using a bronchodilator. Inclusion criteria for healthy controls 
were patients without respiratory diseases, allergic diseases, or genitourinary diseases. Children 
with chronic diseases or urinary tract infection were excluded from all groups. Overall, the 
pediatric asthma and control groups contained 20 patients each.

Urine samples were collected from the asthma group 5 times at 2–3-month intervals during 
outpatient or inpatient visits to the Department of Pediatrics at Inha University Hospital. 
Controlled status and asthmatic symptoms were assessed at each visit and when the patient 
had experienced fever or upper respiratory infection symptoms during the prior 3 weeks. 
Furthermore, 20 single voided urine samples were collected from the control group. Body 
mass index (BMI) was calculated using the mean height and weight measured at each of 5 
visits. BMIs of < 5%, 5%–85%, 85%–95%, and > 95% were classified as underweight, healthy 
weight, overweight, and obese, respectively. Atopic asthma was defined as a skin prick test 
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showing a ≥ 3 mm wheal in response to at least 1 common aero allergen (house dust mites, 
animals, grass, or mold) or ≥ 0.35 kU/L of specific IgE. As described by the Global Initiative 
for Asthma,14 asthma symptom control was classified as well-controlled, partly controlled and 
uncontrolled, and asthma severity was classified as mild, moderate, and severe.

For urine samples, 20 mL of midstream clean-catch urine were collected in a sterile urine 
bottle to prevent contamination.15 The specimen bottle was labeled with a unique patient 
identifier, and the time of collection was recorded. Immediately after collection, the 
specimen was sent to the laboratory in an ice-box. The urine was subdivided into analysis 
containers and stored at −70°C. This study was approved by the Institutional Review Board 
of Inha University Hospital (IRB No. 2017-05-008), and informed consent was obtained from 
all patients and guardians.

EV isolation and DNA extraction
EVs were isolated from human urine samples by centrifugation at 1,000 × g for 10 minutes at 
4ºC. Bacteria and foreign particles were eliminated by filter sterilization of the supernatant 
through a 0.22 µm filter. To extract DNA from the EV membrane, EVs separated from urine 
in the previous steps were heated for 40 minutes at 100ºC. To eliminate remaining floating 
particles and waste, the supernatant was centrifuged for 30 minutes at 14,953 × g at 4ºC and 
collected. A PowerSoil DNA (MO BIO, Carlsbad, CA, USA) isolation kit was used to remove 
soluble proteins and to extract EV DNA following the manufacturer's instructions. Then, 
each sample was quantified using the QIAxpert system (Qiagen, Hilden, Germany).

Bacterial metagenomics analysis
Bacterial genomic DNA was amplified using 16S_V3_F (5-TCGTCGGCAGCGTCAGATGTG 
TATAAGAGACAGCCTACGGGNGGCWGCAG-3) and 16S_V4_R (5-GTCTCGTGGGCTCGGA 
GATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC-3) primers, which are specific for 
V3–V4 hypervariable regions of the 16S rDNA gene. Libraries were prepared by polymerase 
chain reaction products according to the MiSeq System guide (Illumina, San Diego, CA, 
USA) and quantified using QIAxpert (Qiagen). Each amplicon was then quantified, set at an 
equimolar ratio, pooled, and sequenced using the MiSeq (Illumina) platform according to the 
manufacturer's recommendations.

16S rRNA amplicon sequencing and analysis
Paired-end reads matching the adapter sequences were trimmed using Cutadapt version 1.1.6.16 
The resulting FASTQ files containing paired-end reads were merged with CASPER and then 
quality-filtered using Phred (Q) score-based criteria described by Bokulich.17,18 Any reads shorter 
than 350 base pairs and longer than 550 base pairs after merging were discarded. To identify 
chimeric sequences, a reference-based chimera detection step was performed using a VSEARCH 
against the SILVA gold database.19,20 Next, sequence reads were clustered into operational 
taxonomic units using VSEARCH with a de novo clustering algorithm based on a threshold of 97% 
sequence similarity. Representative sequences of the operational taxonomic units were finally 
classified using the SILVA 128 database with UCLUST (parallel_assign_taxonomy_uclust.py script on 
QIIME version 1.9.1) under default parameters.21 The Chao index, an estimator of the richness of 
taxa per individual, was used to measure the diversity of each sample.

Statistical analysis
Mann-Whitney U tests to compare age and BMI between the control and asthma groups, χ2 test 
to compare sex ratio, and Fisher's exact tests to compare BMI classification were performed 
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using SAS 9.4 software (SAS Institute, Cary, NC, USA). Richness was evaluated using the Chao1 
index to assess α diversity. Principal coordinate analysis (PCoA) based on Bray-Curtis distance 
was used to evaluate β diversity. Taxa comprising less than 1% of the average composition of 
the enriched group were discarded. To predict the functional capacities of the microbiota, 
Phylogenetic Investigation of Communities by Reconstruction of Unobserved States was used 
based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database.22 The 
effect size and significance of each covariate were determined using the ‘EnvFit’ function in 
‘vegan’ (https://cran.r-project.org/web/packages/vegan/index.html) comparing the difference 
in centroids of each group relative to the total variation. Ordination was performed using non-
metric multidimensional scaling based on Bray-Curtis dissimilarity. The significance value 
was determined based on 10,000 permutations. In total, 8 covariates with known associations 
with asthma were included in EnvFit analysis. Specifically, age, sex, asthma phenotype, BMI, 
infection, season, asthma severity, and asthma symptoms were tested. P < 0.05 was considered 
statistically significant, and all statistical analyses were performed using R version 3.3.2 (R 
Foundation, Vienna, Austria).

RESULTS

The control group consisted of 20 participants, 13 boys and 7 girls, with a mean age of 10.9 
years and sex-based mean ages of 11 and 10.6 years, respectively. The mean BMI was 18.8 kg/
m2; 17 participants had a healthy weight, and 3 participants were obese.

The asthma group consisted of 20 participants, 15 boys and 5 girls, with a mean age of 5 
years and sex-based mean ages of 5.4 and 3.8 years, respectively. There was a significant 
difference in age between the control and asthma groups. The mean BMI of the asthma group 
was 17.4 kg/m2; 16 participants had a healthy weight, and 4 participants were obese. For the 
asthma phenotype, 18 and 2 participants had atopic and non-atopic asthma, respectively. 
The 20 asthmatic patients visited the outpatient department or were admitted 5 times each, 
comprising 100 visits. Of these, asthma symptoms were judged to be well-controlled, partly 
controlled, and uncontrolled on 55, 38, and 7 occasions, respectively. Asthma severity was 
mild, moderate, and severe on 65, 28, and 7 occasions, respectively. Of 100 total visits, fever 
or upper respiratory infection symptoms were observed on 28 occasions (Table 1).

We analyzed α diversity between the control and asthma groups based on the Chao1 value, 
which represents microbiome richness. Compared to that of the control group, all visits 
by patients in the asthma group were associated with lower richness (Fig. 1). PCoA showed 
significant differences in clustering between the control and asthma groups (Fig. 2).  
At the phylum level, Verrucomicrobia was significantly more abundant in the control 
group than in samples from all visits of the asthma group, whereas Cyanobacteria were 
significantly more abundant in the asthma group than in the control group. At family and 
genus levels, Pseudomonadaceae and Pseudomonas were significantly more abundant in the 
asthma groups. However, Megamonas, Clostridiaceae, Acinetobacter, Comamonadaceae, 
Enterobacteriaceae, Pasteurellaceae, Haemophilus, Rhodocyclaceae, Acetobacteraceae, 
Verrucomicrobiaceae, and Akkermansia were significantly lower in the asthma group 
(Supplementary Table S1). In particular, Acetobacteraceae and Megamonas increased by more 
than 10-fold in the control group, while Cyanobacteria, Pseudomonadaceae, and Pseudomonas 
increased by more than 10-fold in the asthma group (Table 2).
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Table 1. Demographics of study subjects
Characteristics Controls (n = 20) Asthma (n = 20) P
Age (yr) 10.85 ± 0.81 5.00 ± 2.25 < 0.001*
Boy 11.00 ± 0.81 5.40 ± 2.29 < 0.001*
Girl 10.57 ± 0.79 3.80 ± 1.79 0.004*
Boy:girl 13:7 15:5 0.490†

BMI 18.79 ± 4.57 17.36 ± 3.45 0.110*
Healthy weight:obese 17:3 16:4 1.000‡

Underweight 0 0
Overweight 0 0
Asthma phenotype

Atopic - 18 -
Non-atopic - 2 -

Asthma symptom control
Well - 55 -
Partly controlled - 38 -
Uncontrolled - 7 -

Asthma severity
Mild - 65 -
Moderate - 28 -
Severe - 7 -
Infection - 28 -

BMI, body mass index.
P values were calculated compared to controls using *Mann-Whitney U, †χ2, or ‡Fisher's exact tests.
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Fig. 1. The α diversity based on Chao1 richness index for asthma vs. control groups. Bacterial richness in controls was significantly higher than in asthma groups. 
(A) Control vs.AV1, (B) control vs.AV2, (C) control vs. AV3, (D) control vs. AV4, (E) control vs. AV5. 
AV1, asthma visit 1; AV2, asthma visit 2; AV3, asthma visit 3; AV4, asthma visit 4; AV5, asthma visit 5.



We used 16S data with KEGG pathway abundances to assess whether the functional 
potential of microbe-derived EVs differed between the asthma and control groups; this 
analysis revealed significant differences between asthma and control groups. Classification 
of human disease, organismal functions, and unclassified were excluded. One pathway for 
the first KEGG Orthology (KO) categories and 10 pathways for the second KO categories 
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Fig. 2. PCoA based on Bray-Curtis distance of asthma vs. control groups. Clustering of asthma groups was significantly different from that of control group. (A) 
Control vs. AV1, (B) control vs. AV2, (C) control vs. AV3, (D) control vs. AV4, (E) control vs. AV5. 
PCoA, principal coordinates analysis; AV1, asthma visit 1; AV2, asthma visit 2; AV3, asthma visit 3; AV4, asthma visit 4; AV5, asthma visit 5.



were confirmed to show a significant difference in common. In the first KO categories, 
“environmental information” processing was significantly more abundant in the control 
groups (Fig. 3). In the second KO categories, “energy metabolism”, “folding, sorting and 
degradation,” “cell growth and death,” “metabolism of cofactors and vitamins,” “enzyme 
families,” and “biosynthesis of other secondary metabolism pathways” were more abundant 
in the asthma group compared to controls (Table 3). Next, the third KO categories 
were identified, and 17 pathways were significantly different. In particular, “terpenoid 
backbone biosynthesis,” “porphyrin and chlorophyll metabolism”, “peptidases”, “oxidative 
phosphorylation”, “arginine and proline metabolism,” “RNA degradation,” “cell cycle-
Caulobacter,” “nicotinate, and nicotinamide metabolism,” “glycolysis/gluconeogenesis,” 
“protein export,” and “purine metabolism pathways” were abundant in all asthma visit 
groups (Table 4).

Next, significant factors associated with urine EVs were identified. For statistical analysis, 
covariates were analyzed by stratifying samples into discrete time points (visits 1, 2, 3, 4, and 
5). There were no significant differences except for between infections associated with visit 1 
and the season of visit 2 (Fig. 4).

DISCUSSION

This study showed that urine microbe-derived EVs differ in diversity, specific bacterial taxa, 
and functional profiling between patients with asthma and healthy controls. In addition, 
several factors that were predicted to affect airway or gut microbiomes did not affect urine 
EVs. Studies so far have shown that EVs are an important factor associated with asthma.23 In 
BAL samples, the composition of lipid mediators driven by EVs differed between patients 
with asthma and controls.24 Nasal exosomes influence innate immune cells, which may be 
important for defense against allergens.25 A recent study used a new non-invasive method 
of exhaled breath condensate (EBC) to show a difference in EBC miRNA profiles between 
patients with asthma and healthy controls.26 The study of miRNA using EBC is fertile ground 
for clinical biomarker discovery. However, these methods are difficult to apply to children. 
There was an effort to use urine EVs as a source of biomarkers in neurologic diseases based 
on evidence that EVs can cross the blood-brain barrier and distribute to distal organs.27 
However, the specific source and relative contribution of microbe-derived EVs passing 
through the body to different EV pools of biofluids remain unknown.

81https://e-aair.org https://doi.org/10.4168/aair.2021.13.1.75

Urine Extracellular Vesicles in Asthmatic Children

Table 2. Families and genera significantly more than 10-fold enriched or depleted in asthma groups compared to control group
Phylum/family and 
genus

Control AV1 P Control AV2 P Control AV3 P Control AV4 P Control AV5 P

Cyanobacteria ��0�.0087 ± 
0.0255

0�.1425 ± 
0.1347

< 0.01* 0�.0087 ± 
0.0255

0�.1684 ± 
0.1483

< 0.01* 0�.0087 ± 
0.0255

0�.1300 ± 
0.1339

< 0.01* 0�.0087 ± 
0.0255

0�.0999 ± 
0.0711

< 0.01* 0�.0087 ± 
0.0255

0�.1283 ± 
0.1320

< 0.01*

Pseudomonadaceae 0�.0070 ± 
0.0046

0�.0786 ± 
0.0738

< 0.01* 0�.0070 ± 
0.0046

0�.1174 ± 
0.0803

< 0.01* 0�.0070 ± 
0.0046

0�.0847 ± 
0.0719

< 0.01* 0�.0070 ± 
0.0046

0�.0851 ± 
0.0557

< 0.01* 0�.0070 ± 
0.0046

0�.0918 ± 
0.0839

< 0.01*

Pseudomonas 0�.0069 ± 
0.0045

0�.0778 ± 
0.0730

< 0.01* 0�.0069 ± 
0.0045

0�.1141 ± 
0.0783

< 0.01* 0�.0069 ± 
0.0045

0�.0838 ± 
0.0708

< 0.01* 0�.0069 ± 
0.0045

0�.0804 ± 
0.0528

< 0.01* 0�.0069 ± 
0.0045

0�.0892 ± 
0.0843

< 0.01*

Acetobacteraceae 0�.0109 ± 
0.0464

0�.0000 ± 
0.0000

< 0.01* 0�.0109 ± 
0.0464

0�.0000 ± 
0.0001

< 0.01* 0�.0109 ± 
0.0464

0�.0005 ± 
0.0016

0.01* 0�.0109 ± 
0.0464

0�.0003 ± 
0.0011

< 0.01* 0�.0109 ± 
0.0464

0�.0004 ± 
0.0020

< 0.01*

Megamonas 0�.0211 ± 
0.0121

0�.0007 ± 
0.0026

< 0.01* 0�.0211 ± 
0.0121

0�.0001 ± 
0.0004

< 0.01* 0�.0211 ± 
0.0121

0�.0003 ± 
0.0011

< 0.01* 0�.0211 ± 
0.0121

0�.0026 ± 
0.0117

< 0.01* 0�.0211 ± 
0.0121

0�.0010 ± 
0.0044

< 0.01*

Values are presented as mean ± standard deviation. P values were determined by comparing asthma group to controls using Mann-Whitney U test.
AV1, asthma visit 1; AV2, asthma visit 2; AV3, asthma visit 3; AV4, asthma visit 4; AV5, asthma visit 5.
*Significant.
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Fig. 3. Mean relative abundance of predictive functions at level 1 for asthma vs. control groups. (A) Control vs.AV1, (B) control vs. AV2, (C) control vs. AV3, (D) 
control vs. AV4, (E) control vs.AV5. 
AV1, asthma visit 1; AV2, asthma visit 2; AV3, asthma visit 3; AV4, asthma visit 4; AV5, asthma visit 5.

Table 3. Predictive functions of level 2 with significantly different functions between asthma visit and control groups
Functions Control vs. all visits for asthma

Group P*
Lipid metabolism Control < 0.01
Carbohydrate metabolism Control < 0.01
Membrane transport Control < 0.01
Transcription Control < 0.05
Energy metabolism Asthma < 0.01
Folding, sorting and degradation Asthma < 0.01
Cell growth and death Asthma < 0.01
Metabolism of cofactors and vitamins Asthma < 0.01
Enzyme families Asthma < 0.01
Biosynthesis of other secondary metabolites Asthma < 0.01
Each pathway represents abundant group. P values were determined by comparing asthma group to controls 
using Mann-Whitney U test.
*Significant.



Many previous studies have assessed the relationship among asthma and the diversity of airway 
and gut microbiomes. Samples associated with airways, such as bronchial epithelial brushing and 
sputum, reveal an increased bacterial diversity in asthmatic patients.1,28 In feces, a lower diversity 
of the total microbiota in infancy was associated with asthma. However, the correlation was not 
observed after 1 year, and no association between asthma and bacterial diversity was found in 
adults.4 Our study shows reduced α diversity and significantly different clustering of urine EVs 
based on PCoA in asthmatic children compared to controls. These results suggest that asthma, a 
disease that has occurred in the airways, affects the pool of urine microbe-derived EVs.

Many studies have found special bacterial groups associated with asthma. For example, 
one study showed that Comamonadaceae, Sphingomonadaceae, Oxalobacteraceae, 
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Table 4. Predictive functions of level 3 with significantly different functions between asthma and control groups, 
with each pathway representing an abundant group
Functions Control vs. all visits for asthma

Group P*
ABC transporters Control < 0.01
Butanoate metabolism Control < 0.01
Transcription factors Control < 0.01
Glycerophospholipid metabolism Control < 0.01
Glyoxylate and dicarboxylate metabolism Control < 0.01
Propanoate metabolism Control < 0.01
Terpenoid backbone biosynthesis Asthma < 0.01
Porphyrin and chlorophyll metabolism Asthma < 0.01
Peptidases Asthma < 0.01
Oxidative phosphorylation Asthma < 0.01
Arginine and proline metabolism Asthma < 0.01
RNA degradation Asthma < 0.01
Cell cycle-caulobacter Asthma < 0.01
Nicotinate and nicotinamide metabolism Asthma < 0.01
Glycolysis/gluconeogenesis Asthma < 0.01
Protein export Asthma < 0.01
Purine metabolism Asthma < 0.01
Each pathway represents abundant group. P values were determined by comparing asthma group to controls 
using Mann-Whitney U test.
ABC, ATP-binding cassette.
*Significant.
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Fig. 4. Significance and explained variance of 8 microbiome covariates modeled by EnvFit. Horizontal bars show amount of variance (r2) explained by each 
covariate in the model as determined by EnvFit. 
AV1, asthma visit 1; AV2, asthma visit 2; AV3, asthma visit 3; AV4, asthma visit 4; AV5, asthma visit 5.



Nitrosomonadaceae, and Pseudomonadaceae were associated with the degree of bronchial 
hyperresponsiveness using samples of bronchial epithelial brushings.1 In addition, reduced 
bifidobacteria were related to long-term asthma.29 In this study, several bacterial EV groups 
were associated with asthma. In particular, Cyanobacteria, Pseudomonadaceae, and 
Pseudomonas were associated with asthma, while Acetobacteraceae and Megamonas were 
frequently observed in subjects without asthma. Previous studies of the airway and gut 
microbiomes demonstrated that urine is affected by EVs produced by the whole body. EVs 
produced by airway and gut microbiomes alone would not have had a statistical impact. 
Because specific bacterial EV groups differed between patients with asthma and controls, we 
suggest that asthma impacts the specific bacterial EV groups of urine.

Several predictive functional profiles distinguished between patients with asthma and 
healthy controls. Some pathways were related to asthma in recent studies of samples 
obtained from the airway, gut, and serum. In a previous study, acetate, propionate, and 
butyrate were major short-chain fatty acids30 that bind G-protein-coupled receptor 43 
to affect inflammatory responses in the gut.31 In the lung, ATP-binding cassette (ABC) 
transporters are modulated to increase the level of ornithine metabolism (polyamines and 
proline).32,33 Plasma levels of nicotinamide were significantly higher in patients with asthma 
than in controls.34 In animal studies, allergen-induced early asthmatic response in rat 
lungs was associated with glycolysis,35 and purine metabolism was affected in the blood of 
ovalbumin-induced asthmatic mice.36 In this study, “propanoate metabolism,” “butanoate 
metabolism,” and “ABC transporter pathways” were significantly more abundant in the 
control group. In contrast, “arginine and proline metabolism,” “nicotinate and nicotinamide 
metabolism,” “glycolysis/gluconeogenesis,” and “purine metabolism pathways” were more 
abundant in the asthma groups. We expect that urine microbe derived-EVs are a useful tool 
for identifying patients with asthma because the bacterial diversity, specific bacterial taxa, 
and functional profiling differ between patients with asthma and control patients.

Previous studies have shown that factors, such as age, sex, asthma phenotype, BMI, 
infection, season, asthma severity, and asthma symptoms, are related to the microbiome. 
When the gut microbial composition was immature at 1 year old, the asthma risk rises 
at age 5 years.37 The infant gut microbiota showed a difference between boys and girls 
when there was maternal asthma during pregnancy.38 A recent report demonstrated 
that bacterial richness, diversity, and composition differ between neutrophilic and non-
neutrophilic asthma.39 Moreover, obesity changes the bacterial community of the gut 
and may play a role in obesity-related asthma.40 Another study that evaluated changes 
in the nasopharyngeal microbiome according to the seasons showed that specific 
nasopharyngeal bacterial groups were different between summer and fall.41 In addition, a 
report found that specific microbiota is altered in Asthma Control Questionnaire scores and 
the use of inhaled corticosteroids.2 Almost all covariates in this study, such as age, sex, BMI, 
infection, season, asthma phenotype, severity, and symptoms, did not show any significant 
difference in urine EVs from asthmatic children. This may be because these covariates do 
not affect urine EVs, but further studies of more patients are needed.

This is the first study to analyze urine EVs. The strength of this study is that urine samples 
were collected 5 times each from 20 children each, and that the impact of changes in 
8 covariates was evaluated. However, this study also involves some limitations. First, 
it included a relatively small number of participants. Among 100 visits, groups with 
uncontrolled asthma symptoms or with severe asthma accounted for only 7 visits. 
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Secondly, the age range of asthma and control groups did not completely match. Age 
was not a significant covariate in our study, but previous studies reported that the urinary 
microbiome differs between children and adults.42 Infant gut microbial communities 
remain remarkably dynamic until approximately 3 years of age.43 Thirdly, we could not 
investigate some factors that may affect the microbiome, including food habits, visitation 
of other clinics, and medication prescribed at other clinics. Further studies are needed to 
determine changes in urine EV compositions with age.

In conclusion, this study showed that urine microbe-derived EVs of children with asthma 
differ as shown in previous studies, indicating that changes in lung and gut microbiomes 
were associated with allergic airway diseases. We suggest that urine microbe-derived EVs 
can be a source for clinical research.
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