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Abstract: Nanotechnology is a fast-expanding area with a wide range of applications in science,
engineering, health, pharmacy, and other fields. Nanoparticles (NPs) are frequently prepared via a
variety of physical and chemical processes. Simpler, sustainable, and cost-effective green synthesis
technologies have recently been developed. The synthesis of titanium dioxide nanoparticles (TiO2

NPs) in a green/sustainable manner has gotten a lot of interest in the previous quarter. Bioactive
components present in organisms such as plants and bacteria facilitate the bio-reduction and capping
processes. The biogenic synthesis of TiO2 NPs, as well as the different synthesis methods and
mechanistic perspectives, are discussed in this review. A range of natural reducing agents including
proteins, enzymes, phytochemicals, and others, are involved in the synthesis of TiO2 NPs. The physics
of antibacterial and photocatalysis applications were also thoroughly discussed. Finally, we provide
an overview of current research and future concerns in biologically mediated TiO2 nanostructures-
based feasible platforms for industrial applications.

Keywords: green synthesis; plants; TiO2 NPs; photocatalysis; dyes photodegradation; antimicro-
bial activity

1. Introduction

Nanotechnology deals with atoms and molecules at the supermolecule scale [1,2].
Due to the escalating surface area to volume, there is a drastic change in the physico-
chemical characteristics of nanomaterials at this level [3]. Along with its size, structure,
and physicochemical and biological characteristics, nanotechnology has a diverse set of
applications in a multitude of fields such as industries, notably mechanical, electronic,
imaging specific targeting, and molecular diagnosis [4]. Nanoparticles (NPs) are being used
in more and more purposes every day, covering medical, cosmetology, pharmaceuticals,
and power. Organic and inorganic NPs are the two basic types of NPs. Micelles, liposomes,
chitosan, ferritin, dendrimers, and other organic NPs are examples. Inorganic NPs are
divided into three groups: metal nanoparticles; semiconductor NPs; and magnetic NPs [5].

Due to their intriguing thermal, optical, electrical, and magnetic characteristics, metal
oxide nanoparticles, particularly TiO2 nanoparticles, are widely employed. Titania is the

Polymers 2022, 14, 1444. https://doi.org/10.3390/polym14071444 https://www.mdpi.com/journal/polymers

https://doi.org/10.3390/polym14071444
https://doi.org/10.3390/polym14071444
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://orcid.org/0000-0002-0424-047X
https://orcid.org/0000-0002-5799-4996
https://orcid.org/0000-0002-4368-8269
https://doi.org/10.3390/polym14071444
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/article/10.3390/polym14071444?type=check_update&version=3


Polymers 2022, 14, 1444 2 of 19

only titanium oxide that occurs naturally [6–9]. TiO2 is an odorless, brilliantly white pow-
der that, under normal conditions, is hydrophobic in nature. It is a highly stable material
that also works well as an opacifier. As a result of its key properties, like minimal cost,
great oxidizing strength, high chemical stability, high refractive index, and the existence
of oxygen-containing functional groups in its lattice, TiO2 NPs are largely employed as a
semiconductor material. In 2011, global TiO2 output surpassed 10,000 tons per year [10].
They can also be employed to biodegrade a variety of microorganisms, including bacteria,
viruses, and cancer cells. UV light resistant oxides, toothpastes, papers, food colorants,
paints, plastics, and inks all contain them. TiO2 NPs are the most efficient solar collectors,
absorbing 3–4% of solar energy. As a result, they are well-known photocatalysts for hy-
drogen production, as well as for the degradation of hazardous chemical compounds in
water [11]. Surface properties and topologies of TiO2 NPs are distinct. TiO2 is a whitish
metal oxide that is a solid inert compound. Anatase, rutile, and brookite are the three
distinct polymorphs found in TiO2 NPs. Anatase and rutile have similar qualities (such as
gloss, rigidity, and densities) and geometric symmetry (tetragonal) [12]. TiO2 is an insoluble,
fire-resistant, high thermal stability metal oxide that is not categorized as dangerous. The atomic
number of titanium in TiO2 is 22 from the IV B group, whereas the atomic number of oxygen is
eight from the VI A group [1]. It also has good characteristics including hydrophobic nature and
a wide bandgap. Dye-sensitized solar cells, self-cleaning, photocatalysis, charge-spreading de-
vices, chemical sensors, microelectronics, electrochemistry, antimicrobial products, and textiles
are all examples of industrial applications [13]. Degradation of harmful compounds is based
on the catalytic oxidation of hydrocarbons [14–18]. TiO2 NPs are likely the most significant
scientific interest across all metal oxides in photocatalytic, antimicrobial, and antibacterial
effective applications due to their superior properties [19–21]. The use of nano-sized TiO2
in photocatalytic wastewater treatment is a very successful method for decomposing and
eliminating resistant organic and inorganic contaminants in wastewater [22–24].

Chemical vapor deposition (CVD), electrochemical deposition, sol-gel technique,
hydrothermal crystallization, and chemical precipitation are the most common ways of
making TiO2 NPs. [25]. All of the processes listed above are time and money-intensive,
and they all require high temperatures, pressures, and harmful chemicals to complete,
limiting their manufacturing and potential medicinal applications [26]. Consequently,
green synthesis is a frequently used process for the production of NPs. Green synthesis is a
naturally adaptable, environmentally sound, and cost-effective technique for large–scale NP
synthesis [27,28]. Plant extracts operate as reducing agents, and the same reducing agent
can be employed to make a variety of metallic nanoparticles [29–33]. Plant extracts that are
used in the synthesis of NPs can be leaves, roots, fruits, seeds, or beans [27,34–37]. Green
TiO2 nanoparticles are prepared using several extracts for multifunctional applications.
Plant-based nanoparticles could be valuable in a variety of industries, including medicinal,
food, catalysis, and cosmetics. According to previous findings, green sources are always
utilized as a stabilizer and reducing agent in the production of NPs with structured shape
and size.

The current review focuses on plant and microorganism-based green synthesis of TiO2
NPs, including detailed methods and practical applications. To begin, the green synthesis
of numerous biological extracts has been thoroughly addressed. Second, using an in-depth
characterization investigation on green synthesized TiO2 NPs, a comprehensive examina-
tion of the morphological and structural characteristics of NPs is explored. Finally, the
benefits of green synthesis, particularly for photocatalysis and antimicrobial applications,
are also discussed. Finally, the conclusion and future outlook have been discussed. We also
gathered paper publishing data from PubMed (Figure 1), which shows that academics are
increasingly interested in green synthesis of TiO2 NPs.
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2. Synthesis of TiO2 NPs by Different Methods

The two primary methodologies for the synthesis of nanomaterials are top-down and
bottom-up approaches as shown in Figure 2.

a. Top-down: size reduction from bulk materials
b. Bottom-up: material synthesis from the atomic level
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2.1. Top-Down Approach

Bulk material is turned into a nano product using a top-down technique. For size
reduction, both physical and chemical approaches were applied. Sputtering, pulse wire
discharge, physical milling/ball milling, etching, evaporation–condensation reaction, pulse
laser ablation, and lithography are some of the processes employed in the top-down
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approach. However, there are certain disadvantages to the top-down approach, the most
significant of which is that defects are imposed on the product’s surface. This could affect
the product’s surface properties and other physical characteristics [38].

2.2. Bottom-Up Approach

The materials were built up from the bottom in the bottom-up approach: atom by
atom, molecule by molecule, and cluster by cluster. Most nanostructures with the po-
tential to make a homogeneity, size, and morphology are synthesized using this process.
Chemical synthesis is offering a broad range of techniques like chemical vapor deposition,
solvothermal, polymer condensation, sol-gel method, aerosol methodology, electrochem-
istry, pyrolysis, thermal decomposition, frameworks, plasma, and spinning also available
Green synthesis, in particular, controlling the process in the bottom-up synthesis to de-
crease particle development. As a result, scientists can state that the bottom-up technique
is crucial in the creation of nanostructures and nanomaterials [39–41]. Almost all of these
nanomaterial synthesis methods are employed, however, if we consider that, the bottom-
up approach is the most efficient as it is beneficial and achieves perfection at the atomic
scale. The bottom-up technique is also used since the green synthesis routes have been
thought-out to be a practical strategy due to the employment of non–toxic, cost-effective,
and ecologically friendly matter [42,43]. Natural various plant extracts are employed in
green synthesis. In green chemistry, the plant extract serves as a capping and reducing
agent, and it is blended with a simple precursor salt [44]. The plant extract’s phytochemicals
can then reduce and stabilize the nanomaterials. With the new revolution, a lot of work
has been done in green synthesis to synthesize a variety of metal NPs such as Cu, Pt, Pb,
Ag, Au, Zn, and so on [45]. Phyto-synthesis of TiO2 NPs utilizing various plant extracts
is discussed in this review. In this regard, recent research has been compiled from the
literature to summarize research efforts [45].

2.3. Green Synthesis

Green synthesis is considered to play a key role in the current engineering and science
field. As a result of their distinctive properties of biosynthesized nanomaterials, which
are used for the treatment of water and contaminated sites [45]. Nanoparticles are of keen
interest due to their special attributes, such as their exceedingly small size, high surface
area to volume ratio, surface modifiability, and size-dependent properties [14,27]. These
nanoparticles also showed their applications in the medical field and pharmacy [38]. Nowa-
days, vast research is being conducted on the biological system. The biological synthesis
of nanomaterials used bacteria, fungi, yeast, and plants. Due to their cost-effectiveness,
these synthesis approaches have been the subject of widespread interest. The biologically
synthesized nanoparticles have a wide range of applications in the field of contaminant
remediation, as well as antibacterial, antifungal, high catalytic, and photochemical ac-
tivity [45]. Au and Ag NPs are two of the most widely produced NPs, with numerous
biomedical applications. The photocatalytic activity of Au and Ag nanoparticles was good.
Nanotechnology and biotechnology, which deal with microorganisms like bacteria, fungi,
yeasts, algae, and plants, are the most promising fields of research. The use of microor-
ganisms to synthesize nanoparticles revealed a prospective mechanism. The inorganic
nanomaterials were produced with the help of the above-mentioned living organisms, and
they showed great results. Solubility plays an important role in the resistance, which is
caused by the bacterial cell for reactive ions [46,47]. The rate of synthesis of NPs with
microbes is very slow and there are limited methods, by which NPs are fabricated with
desirable shape and size. The nanomaterials that are routed by plants are cost-effective
and very simple methods. In these methods, there is no need for high temperature and
toxic chemicals, or high pressure. As a result, these methods are environmentally friendly.
Today’s focus was on green synthesis, and with the help of plants, the NPs were very stable
and in the proper form and size. Another benefit of green synthesis is that the chance of
contamination is quite minimal. The plants contain many phytochemicals, which help in
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the production of nanomaterials and NPs. Plants provide a variety of phytochemicals that
are commonly utilized and inexpensive in the synthesis of nanomaterials and nanoparticles.
The phytochemicals also play an important role as they help at the time of photocatalytic ac-
tivity applications. They help in the oxidation and reduction reactions at the photocatalytic
activity time of the organic dyes.

2.4. Plant-Based synthesis of Titanium Dioxide NPs

The green synthesis studies have been achieved on extracts of leaves as plant extract
contains a rich source of metabolites. Figure 3 shows schematic diagram of the preparation
process of nanoparticles via plant extract. Kashale et al. used Cicer arietinum L. extract to
mediate TiO2 NPs in 2016 using TiCl4 (titanium tetrachloride) as a precursor [48]. They
have reported that the prepared biosynthesized TiO2 (Bio–TiO2) NPs is a worthy way for
the rapid synthesis of NPs. The morphology of Bio–TiO2 NPs showed a crystal structure
and other properties were investigated by Raman spectroscopy, X-ray diffraction (XRD),
thermogravimetric analysis (TGA), transmission electron microscopy (TEM), and BET
surface area measurement system. Rao et al. In 2015 obtained the TiO2 NPs by employing
the leaf extract of Aloe Vera. Aloe Vera plant is the oldest herbal medicinal plant that
contains mineral amino acids and fatty acids and high vitamins. It is also used for skin
and hair. The SEM images indicated that the synthesized NPs were showing irregular
particle structure and the size was ranging from 60–80 nm. TEM revealed that the shape
and structure arrangement were crystalline in nature [49]. The biogenesis of rutile TiO2
NPs was produced utilizing an aqueous extract of Annona squamosa fruit peel. The green
synthesis of rutile TiO2 NPs using agricultural waste is a simple, quick, ecologically sus-
tainable, and less expensive process. In TEM, rutile TiO2 NPs have spherical forms and
sizes ranging from 23 ± 2 nm. This study also includes SEM, UV, XRD, and EDS examina-
tions. The powder particles have slight agglomeration, as evidenced by the SEM by the
closed view of the spherical nanoparticles. The UV–Vis spectrophotometer revealed that
TiO2 NPs resulted in a rapid, having a surface plasmon resonance at 284 nm. The XRD
data revealed the relevant results to the JCPDS data (File No. 99-101-0954) [50]. In 2016,
Madadi and Lotfabad synthesized TiO2 NPs by employing Acanthophyllum laxiusculum
aqueous extract. This procedure of synthesizing nanomaterials is green or eco–friendly.
The plant genus Acanthophyllum contains the richest sources of triterpene glycosides
(saponins). TiO2 NPs are synthesized with the Sol-gel method. The sol-gel method is a
common method for the synthesis of titanium dioxide NPs. In the sol-gel process, two
steps occur: (1) hydrolysis of the Ti precursor in acidic or basic mediums; and (2) polycon-
densation of the hydrolyzed products [51]. This polycondensation can be prevented by
using a surfactant such as natural surface-active compounds (NSAC) such as those that are
utilized in this paper. This results in the formation of a collaborative framework, in which
TiO2 NPs can be maintained. Scanning Electron Microscopy (SEM), TEM, UV, Energy
Dispersive X–rays (EDAX), XRD, and were used to analyze TiO2 NPs. In this report, SEM
images show particle sizes ranging from 20–25 nm, and TEM confirmed SEM data. The UV
spectrum revealed an absorption band at 350 nm that corresponds to the optical band gap
of 3.5 eV. Eventually, the FTIR confirmed the presence of TiO2 in the sample by peaks at 457,
470 cm−1, which revealed O—Ti—O bonding in anatase morphology. The relevant results
of XRD data were found to be similar to JCPDS (File No. 21-1272) [35]. Furthermore, extract
of Psidium guajava was used for the preparation of TiO2 NPs by Santhoshkumar et al.
In 2014. The Synthesized TiO2 NPs were tested by disc diffusion method against human
pathogenic bacteria. The XRD test revealed a dominant peak at 2θ = 27.57◦ and 41.37◦,
respectively, indicating the (110) crystallographic plane of anatase and (111) rutile form of
TiO2 NPs. Peaks in the FTIR spectra of produced TiO2 NPs are 3410 cm−1 for C–H alkynes,
1578 cm−1, 1451 cm−1 for alkanes, and 1123 cm−1 for C–O absorption. FESEM was used to
study the morphological characteristics of produced TiO2 NPs, which revealed a spherical
shape and aggregates with an average size of 32.58 nm. Extracellular organic components
are adsorbed on the surface of metallic nanoparticles, as evidenced by the presence of
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carbon, oxygen, magnesium, and chlorine, which were observed in EDX analysis [52].
In 2012, the TiO2 NPs were prepared using an aqueous extract of Jatropha curcas L by
Hudlikar et al. XRD, Selected Area Electron Diffraction (SAED), TEM, EDAX, and FTIR
spectroscopy were used to characterize the TiO2 NPs samples. The average size of TiO2 NPs
was found to be in the range of 25–100 nm. XRD results were in agreement with JCPDS (File
no. 84-1285) and TiO2 were nanocrystalline in nature and that was fair with TEM analysis.
SAED confirmed the XRD concentric Scherrer planes of TiO2 NPs. The FTIR revealed the
nature of the capping agent might be a peptide. This is due to the presence of C–H stretch,
(N–H) stretch and carbonyl (–C–O–C–) or (–C–O–) stretch vibrations in the amide II and III
bonding, before treatment of latex capped TiO2 NPs with 1% sodium dodecyl sulfate [53].
In 2016, Hunagund et al. employed the hydrothermal approach to synthesize TiO2 NPs
with the support of a novel biogenic source, Piper betel leaf extract, and a chromogenic
source, nitric acid, which acts as capping and reducing agents. Various characterization
techniques were used on the synthesized TiO2 NPs, including UV–vis spectrophotometry,
XRD, FTIR, TEM, which revealed that the NPs were spherical in shape with an average
size of about 8–75 nm, and energy dispersive X-ray spectroscopy (EDS) for their optical,
structural, morphological, and compositional investigations. The production of a rutile
phase of TiO2 with a tetragonal crystal structure was clearly indicated by XRD patterns.
The existence of certain sharp Bragg’s peaks were identified in XRD patterns, which could
be related to the capping agent stabilizing the nanoparticles according to Hunagund et al.
Intense Bragg’s reflection indicates high X-ray scattering centers in the crystalline phase,
which could be attributable to capping agents [54]. Sundrarajan et al. (2017) investigated
the synthesis of TiO2 NPs with the help of M. citrifolia leaves extract via the hydrothermal
method. The TiO2 NPs had higher antibacterial activity against Gram-positive bacteria,
suggesting their antimicrobial efficacy against pathogenic diseases, as per scientists. XRD,
FTIR, UV–Vis diffuse reflectance (UV–Vis DRS), UV–Vis spectroscopy, Raman spectroscopy,
and SEM with EDX techniques were used to evaluate TiO2 NPs. The peaks at 27.3◦ cor-
respond to the (110) lattice plane of the tetragonal rutile TiO2 phase, and the average
crystalline size of the NPs is 10 nm, according to the XRD study. The size of the NPs,
between 15–19 nm, is readily visible in SEM imaging with EDAX spectra, which confirmed
the formation of pure TiO2 nanopowder. Due to the quantum-confinement effect, green
produced TiO2 nanoparticles have lower band gap energy than bulk pure TiO2 nanopar-
ticles, which could have biological significance [55]. In 2013, Solanum trilobatum extract
was used to make TiO2 NPs inhibit Pediculus humanus capitis, Hyalomma anatolicum,
and Anopheles subpictus. XRD, FTIR, SEM, EDAX, and AFM were used to examine the
green-produced TiO2 NPs [55]. Sankar et al. In 2014 prepared the TiO2 NPs by using
aqueous leaf extract of Azadirachta indica under pH and temperature-dependent condition
and the characterization were confirmed by UV–Vis spectroscopy and Fourier transform
infrared spectrum. The interconnected spherical in shape TiO2 NPs with a mean particle
size of 124 nm were revealed by SEM and dynamic light scattering (DLS) investigations
and zeta potential of −24 mV [56]. In 2011, Velayutham et al. reported for the first time on
the employment of aqueous extract of Catharanthus roseus to synthesize TiO2 NPs against
Hippobosca maculata and Bovicola ovis. SEM analysis of the synthesized TiO2 NPs showed
clustered and irregular shapes mostly aggregated and having the size of 25–110 nm [57].
From the kitchen waste collected, soaked Bengal gram beans (Cicer arietinum L.) were used
for the synthesis of TiO2 NPs in this TiCl4 used as precursor. This is studied by Kashale et al.
In 2016. Bio–TiO2 was systematically investigated by XRD, Raman spectroscopy, trans-
mission electron microscopy (TEM), TGA, and BET surface area measurement system [48].
In 2013 Gautam Kumar Naik et al. informed the green synthesis of TiO2 NPs with the help
of Cinnamomum Tamala leaves extract, which acts as the reductant. The structural and
morphological properties of the nanocomposites were studied by X-ray diffraction, UV–
visible diffuse reflectance, FT–IR, and transmission electron microscope [58]. The TiO2 NPs
were prepared by Kandregula et al. using the fruit waste of Orange Peel extract as one of
the precursors as it acts as a reducing agent and contains citric acid as the main source in its
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peel. The results were also shown by XRD, Particle Size Analyzer (PSA), Fourier Transform
Infrared Spectrometer (FT–IR), and Thermo Gravimetric and Differential Thermal Analyzer
(TG/DTA) [59]. With the use of Vigna radiata extract, Chatterjee et al. produced TiO2 NPs
in 2016. Vigna radiata is a suitable source of reductant for the biosynthesis of these NPs.
The findings revealed that oval-shaped TiO2 NPs could be biologically synthesized and
that the particles were effective against both Gram-positive and Gram-negative bacteria.
1631.78 cm−1 and 1641.42 cm−1 in the FTIR spectrum suggested O–Ti–O bonding, while a
peak at 3000 cm−1 occurred due to –OH stretching [60]. The TiO2 NPs manufactured from
various plant species are shown in Table 1 below.
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2.4.1. Preparation of Plant Extract

The fresh leaves are thoroughly washed before being thinly sliced, then put in distilled
water and kept boiling, after which the plant extract is filtered and ready to use, or the
extract can be stored at low temperature for future use [24]. The thermal breakdown
of phytochemicals occurs when leaves are heated. As phytochemicals (phenolic acids,
alkaloids, proteins, including enzymes, and carbohydrates) are present in the plant extract,
they are utilized in the reduction and stabilization stages [61].

2.4.2. Titanium Dioxide (TiO2) NPs

TTIP (titanium tetra isopropoxide), TiCl4, TiO(OH)2 (metatitanic acid or titanyl hydrox-
ide), and TiOSO4 (titanium oxysulphate) are some of the precursors that may be utilized
to make TiO2 NPs (titanium oxysulphate) [62]. Depending on the application, the bulk
TiO2 particles are dissolved in ethanol or distilled water. The obtained extract is then
added into the mixture, drop by drop [63]. After that, the solution was stirred continuously
at an appropriate temperature. The emergence of NPs causes a shift in the color of the
solution [64].

Finally, the obtained NPs are filtered, distilled water washed, dried, and calcined.
The synthesized NPs are stored in a furnace for calcination at temperatures ranging from
400–800 ◦C to remove excess organic groups [65]. Phytoconstituents in plants are supposed
to fulfil at least one of the given functions, according to the classic green chemistry idea:
metal salt reduction, hydrolysis of the Ti4+ precursor, solubilization, and polymerization of
several intermediates [66].
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Table 1. TiO2 NPs prepared by utilizing a variety of plants.

S/N Plant Extract Shape Size (nm) Ref.

1. Ageratina altissima

Spherical

20–25 [35]

2. Azadirachta indica leaves aqueous
extract 124 [56]

3. Curcuma longa 50–110 [67]

4. Aqueous flower extract of
Calotropis gigantea 160–220

[19]

5. Calotropis gigantea 10

6. Nyctanthes leaves Extract 100–150 [68]

7. Leaf aqueous extract
of Psidium guajava Spherical shape and clusters 32 [52]

8. Flower aqueous extract of Hibiscus
rosasenansis Monodispersed and spherical 7 [69]

9. Aqueous leaf extract of Solanum
trilobatum spherical and oval 70 [70]

10. Aloe vera gel extract Almost spherical 80–90 [71]

11. 0.3% aqueous extract of the latex
of Jatropha curcas L.

spherical and
uneven 25–100 [53]

12. Annona squamosa peel extract Polydispersed and spherical 23 [50]

13. Eclipta prostrata Polydispersed and spherical clusters 36–68 [72]

14. Leaf extract of
Catharanthus roseus Clustered 5–110 [57]

15. Aloe vera Irregular 60 [73]

16. Aloe vera leaves extract Irregular structure 32 [49]

17. Peelextractof Citrus reticulata - 24 [59]

2.5. Microorganism–Based Synthesized of Titanium Dioxide NPs

In recent years, the biosynthesis of NPs using microorganisms has gained popularity
as a more ecologically friendly alternative to chemical synthesis methods. These are inex-
pensive reagents with low toxicity and mild temperature and pressure requirements [74].
For various metal and metal oxide NPs, using microorganisms to generate NPs is a novel
method [75]. The optical, chemical, photoelectrochemical, and electrical characteristics of
NPs synthesized with microorganisms piqued researchers’ curiosity [76]. The formation
of nanoscale materials by microbial cells is a promising method for the synthesis of metal
nanoparticles. In environments with high metal concentrations, microbial synthesis can
arise and develop. A variety of microorganisms are known to reduce metal ions into
metal [77–79]. Figure 4 shows schematic diagram of the synthesis process of TiO2 NPs
using microorganisms. In recent years, numerous forms and sizes of TiO2 NPs have been
described. Bacterial extracts were utilized in the creation of green TiO2 NP production
(green review). Bacterial metabolites, like plant extracts, play a key role in the bioreduction
and stability of TiO2. Aeromonas hydrophila extract was used to manufacture 28–54 nm
NPs that demonstrated effective inhibitory action against Staphylococcus aureus (33 mm
inhibition zone) and Staphylococcus pyogenes (31 mm inhibition zone) [80]. The use of fungi
to synthesize metallic NPs has gotten widespread interest, and they claim to have certain
advantages over other bacterial production processes [81]. On the one hand, TiO2 NPs
were manufactured utilizing the Lactobacillus bacterium during the combined action of
oxidoreductase enzymes and glucose at moderate pH, while on the other hand, their possi-
ble pathogenicity and arduous bacterial manufacturing have minimal possibilities of being
commercialized [82]. Mukherjee et al. revealed that the NPs developed had significant
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benefits, including scalability, facile extraction, high surface area, and economic feasibility.
Through enzymatic reactions or metabolites, fungi can transform bulk salt into an atomic
or ionic form [83]. The ability of extracts of Aspergillus flavus to reduce Ti ions precursors
to TiO2 NPs was demonstrated in this study. These NPs demonstrated strong antibacterial
action against E. coli [79]. Figure 5 shows a schematic diagram of the biological process for
producing TiO2 NPs, as well as their characterization and applications. Saccharomyces
cerevisa extract was also utilized to make TiO2 NPs, and SEM analysis revealed that the
size of biosynthetic NPs was 12.6 nm. The existence of quinines and lipid reductases in
the organisms was confirmed using FTIR analysis [82]. The surface properties and ionic
strength of the culture medium too are important in the synthesis of TiO2 NPs. TiO2 NPs
produced by fungi, like bacteria, have safety limits. Nonpathogenic strains, on the other
hand, will eliminate the threat and may be commercially exploited [84]. Table 2 shows the
synthesis of TiO2 NPs by various bacterial species.
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Table 2. TiO2 NPs produced by several bacterial communities.

S/N Bacterial Species Shape Size (nm) Ref.

1. Aeromonas hydrophila
Spherical

40–50 [80]

2. Bacillus amyloliquefaciens 22.1–97.2 [78]

3. Bacillus subtilis 30–40 [85]

4. Bacillus subtilis

Spherical

66–77 [86]

5. Bacillus subtilis 10–30 [75]

6. Lactobacillus 8–35 [82]

7. Lactobacillus 40–60 [87]

8. Planomicrobium 100 [88]

9. Aspergillus niger 73.58 [89]

10. Fusarium oxysporum 10 [90]

11 Aspergillus flavus 62–74 [79]

12. Bacillus mycoides Polydisperse 40–60 [74]

13. Fusarium oxysporum Quasi–spherical 9.8 [91]

14. Aspergillus tubingensis - <100 [92]

15. Aspergillus niger, Rhizoctonia bataticola,
Aspergillus fumigatus, and Aspergillus oryzae. - - [93]

3. Applications of Biogenic TiO2 NPs

The Green technique of NP generation has several applications in mechanical, electri-
cal, and physical sciences, medicine, and engineering technology [94]. As compared to the
biogenic TiO2 NPs, the NPs prepared by the microbial species showed a less significant
number of practical applications. Green synthesis of NPs, on the other hand, shows a lot of
potential when compared to physical and chemical techniques of production. The photo-
catalytic nanomaterials are commonly utilized to clean water and remove pollutants from
the atmosphere [56,95–97]. Greenly produced TiO2 NPs offer a wide range of applications
in electronics, energy generation devices, batteries, and sensors manufacturing [48,74].
The biosynthesized TiO2 NPs have also been used in biosciences, with photodynamic
cancer therapy, antileishmanial agents, and antibacterial medicines among the applica-
tions [79,98,99]. The photocatalytic activity and antimicrobial efficacy of TiO2, as well as the
most often used biomedical applications that apply mechanistic approaches, are discussed
in the sections below.

3.1. Photocatalytic Activity of TiO2 NPs

The valence band has a complete energy level and is populated with electrons, whereas
the conduction band has an unfilled energy level and is isolated from the valence band.
An empty hole in the conduction band receives an electron from the valence band. The elec-
trons in the valence band are transported to the conduction band to give TiO2 NPs their
photocatalytic activity. As TiO2 is a semiconductor, photons of sufficient energy will cause
it to produce electron-hole pairs [100]. The electrons in the valence band moved to the
conduction band and filled the holes when UV light was absorbed on the TiO2 NPs. When
conduction band-activated electrons and valence band holes react with water in the envi-
ronment and oxygen; reactive oxygen species (ROS), hydroxyl radicals, and superoxide
ions are formed [101,102]. In addition to hydroxyl and superoxide radicals, photocatalytic
oxidation of nanoparticles, hydrogen peroxide, and singlet oxygen production occur. All
of these radicals are known to be extremely reactive and can quickly destroy organic
compounds when they come into contact with them [103,104]. Nowadays, household
and industrial wastes contain a variety of hazardous and harmful substances, such as
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poisonous dyes and nitroarene compounds, which pollute the environment and cause
water contamination. Hazardous dyes and other obnoxious substances have poor solubility
and high stability, therefore justifying their tenacity and threat to aquatic life [105]. Freshly
synthesized metallic NPs with a high catalytic capability and a specific structure were
created. These metallic NPs also have a huge surface area, making them good heteroge-
neous catalysts [106]. The nanostructured catalysts also have the advantage of being easily
recovered and recycled with the reaction mixture. The NPs’ toxicity, as well as their aggre-
gation, are crucial aspects [107,108]. As a result of its high stability, low toxicity, optical
properties, and photocatalytic potential, TiO2 NPs have largely been used in catalysis. Sev-
eral studies claimed that green–mediated TiO2 NPs may be utilized to photo–catalytically
reduce different dyes and compounds [56,97,109–113]. The sample was generated with
0.001 mol of TTIP precursor and yielded excellent results with lower particle sizes of
64.18 nm, indicating superior performance in photocatalytic activities [113]. The incubation
composite displayed improved photocatalytic activity, while also degrading the rhodamine
B dye and displaying maximum photocatalytic activity [112]. When green mediated NPs
were compared to chemically synthesized TiO2 NPs for photocatalytic potential, green
mediated NPs outperformed chemically prepared TiO2 NPs. The ability to reduce depends
on phytochemicals found in plant species, the type of dye used, and the temperature [98].
The catalytic potential of doped TiO2 NPs with other metallic NPs was improved [114].
Table 3 shows the photocatalytic performance of TiO2 NPs that synthesized using different
plant extracts [24,56,113,115–119].

Table 3. Photocatalytic effect of Titanium dioxide nanoparticles using different plant extracts.

S/N Dye Concentration
of Dye Catalyst Dosage Exposure Time Percentage

Removal Ref.

1. methylene blue (MB)
dye

6, 10, 20, 40
ppm 0.1–0.4 g 6 mg. L−1 of

MB in 45 min
13.3% [113]

2.

methylene blue,
alizarin red, crystal
violet, and methyl

orange

10 mg/L 50 mL 6 h 86.79%, 76.32%,
77.59% and 69.06% [115]

3. methyl orange - 1 g/dm3 150 min 94% [24]

4. RO–4 dye - 15 mg, 20 mg, 25
mg and 30 mg

180 min at 3.5
pH 91.19% [116]

5. methyl red 10 ppm and 20
ppm 1 g/L 60 min 89% and 83% [117]

6. methyl red 50 mL 10 mg 120 min - [56]

7. Methyl Blue 200 mL 10 mg 75 min - [118]

8. indigo blue dye 1 ppm at pH 6.0 - 150 min 75% [119]

3.2. Antimicrobial Potency of TiO2 NPs

Antimicrobial applications also make use of TiO2. In their investigation, Matsunaga et al.
In 1988 found that TiO2 powder catalysts killed 99% of E. coli bacteria within 0.27 h when
exposed to UV radiation (1800 µE m−2 s−1) [120]. This system is called a photo-sterilization
system, which can be conducted in Figure 6. There are so many investigations that have been
conducted to see the effect of TiO2 NPs catalysts on different bacteria. Maness et al. found that
ROS formed on TiO2 surfaces, causing a lipid peroxidation reaction and the death of E. coli K–12
cells [121]. Numerous investigations have been conducted to examine how TiO2 NPs used
for bactericidal purposes affect bacteria cells such as E. coli, Pseudomonas aeruginosa, S. aureus,
Enterococcus hirae, and Bacteroides fragilis have been killed by the effects of TiO2 nanoparticles
when exposed to UV light [122].
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In the literature, biosynthesized TiO2 NPs were mediated and employed against sev-
eral bacteria types [123]. Biosynthesized TiO2 NPs are ecologically friendly, have a high
oxidizing potential, and are used in biomedicine. Biosynthesize TiO2 NPs were employed
against a variety of bacteria, including strains, fungus, algae, viruses, and microbial tox-
ins [124]. Table 4 reported the antimicrobial effect of TiO2 NPs against different bacteria.
Figure 7 shows simple experimental scheme for photochemical antimicrobial mechanism
of TiO2 catalyst. The impact of TiO2 NPs on microbes is depicted in Figure 8 as a proposed
pathway. When TiO2 NPs come into contact with microbial cells, they form reactive oxygen
species (ROS) [80]. ROS acted to reduce adhesion by killing bacteria by disrupting cell wall
integrity, stopping respiratory cytosolic enzymes from changing macromolecule structures,
and having strong effects on cellular integrity and gene expression. Phosphate uptake and
cellular communication are also inhibited [80,125]. In comparison to both green produced
and chemically generated TiO2 NPs, bio-synthesized NPs showed greater antibacterial
activity. The capping agents obtained from plant extracts are credited with their excellent
antibacterial properties [69]. The antibacterial action of NPs is influenced by their structure,
membrane biology, and bacteria species. Green TiO2 NPs are employed to slow both
Gram-positive and Gram-negative bacteria, albeit Gram-positive bacteria are less reactive
than Gram-negative bacteria due to their structural complexity [19]. If bio–mediated TiO2
NPs are irradiated with UV and fluorescent light, their antibacterial activity can be im-
proved [50,80]. When green-produced TiO2 NPs were introduced to Leishmanial cells, they
demonstrated enhanced antileishmanial activity as well as decreased cell viability, slow



Polymers 2022, 14, 1444 13 of 19

growth, and DNA fragmentation [125]. TiO2 NPs surpassed typical antibiotic discs in terms
of antibacterial activity [52].

Table 4. Antimicrobial effect of Titanium dioxide NPs using different bacteria.

S/N Catalyst Dosage Species Name Zone of Inhibition Ref.

1. TiO2

25 µg mL−1, 20 µg
mL−1, 30 µg mL−1,
10 µg mL−1, 10 µg
mL−1, 15 µgmL−1

A. hydrophila, E. coli,
P. aeruginosa, S. pyogenes,

S. aureus, E. faecalis

23 mm, 26 mm, 25 mm,
31 mm, 33 mm, 16 mm [80]

2. TiO2 20 µg/mL, 40 µg/mL E. coli [74]

3. TiO2 20 µg/mL S. aureus
and E. coli 25 mm, 23 mm [52]

4. TF–TiO2 20 µL of 10 mg/mL S. aureus, S. faecalis, E. coli,
E. faecalis, Y. enterocolitica

11.2 mm, 11.6 mm,
10.8 mm, 11.4 mm,

10.6 mm
[94]

5. A. flavus
synthesized TiO2

40 µg mL−1, 40 µg
mL−1, 80 µg mL−1,

70 µg mL−1, 75 µg mL−1

S. aureus, E. coli,
P. aeruginosa, K. pneumonia,

B. subtilis

25 mm, 35 mm, 27 mm,
18 mm, 22 mm [79]
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4. Future Challenges

Synthetic methods involving fungus, bacteria, and other organisms are complex
due to strain separation and difficulties in growth. These processes are also difficult
owing to the need to maintain the culture media, as well as the physical and chemical
conditions. Plants are selected primarily since they are simple to extract and plentiful.
This approach might be used to regulate the size, shape, and crystalline structure by
adjusting the experimental parameters. Despite this, only a few plants are exploited in the
phyto-synthesis of TiO2 NPs, and additional study is urgently required in this field. These
phyto-synthesized nanoparticles may be used safely not just in biomedical activities, but
also in all other potential applications as they are similarly compatible with chemically
produced nanoparticles. As previously stated, the crucial aspects of NP are determined
by their size and shape. As a result, future difficulties will include figuring out how to
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leverage similar biological techniques to make various forms including triangular, cuboidal,
truncated, ellipsoidal, pyramidal, decahedral, and oval. Scaling up NP production from the
lab to the commercial-scale is a tough process with many challenges and unknowns. There
are two more obstacles to overcome. All across the production process, cost, dependability,
waste, energy consumption, recycling possibilities, material safety, and hazard level should
all be addressed. Furthermore, the properties of nanomaterials may change as they scale
up. The amount of control may be diminished when dealing with large volumes.

5. Summary

The recent research effort in the topic of biogenic synthesis of TiO2 NPs using plants
and microbes has been discussed in this review. It also delves further into the mechanism of
TiO2 NPs’ phyto-synthesis. Despite metallic nanoparticles being formed through different
physicochemical processes, their cytotoxicity, high cost, and time consuming production
have prompted scientists to propose new nanostructures design methods. The formation
of titanium dioxide nanoparticles from various biological sources (plants, microorganisms,
and related bioproducts) has been discussed. Furthermore, the mechanism of their uptake,
translocation, and accumulation in plants are explored. The potential impact of TiO2
has also reported. The green synthesis is being promoted due to a number of significant
advantages associated with this technique. This approach might be used to regulate the
size, shape, and crystalline structure by adjusting the experimental parameters. Despite
this, only a few plants are exploited in the phyto-synthesis of TiO2 NPs, and additional
study is urgently required in this field. These phyto-synthesized nanoparticles may be used
safely not just in biomedical activities, but also in all other potential applications as they
are similarly compatible with chemically produced nanoparticles. Apart from biomedical
and environmental remediation applications, further scientific research should be devoted
to finding practical uses of phyto-synthesized NPs in other fields. To summarize, green
technology via biosynthesis, as discussed in the article, yields outstanding insights that
may encourage foster researchers and beginners to proceed and expand their investigation
of nature’s potential, as well as the development of effective and sustainable methodologies
for nanoparticle synthesis with desirable characteristics, which can be utilized in a variety
of disciplines.
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