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Abstract

Texture analysis is an important topic in Ultrasound (US) image analysis for structure seg-

mentation and tissue classification. In this work a novel approach for US image texture

feature extraction is presented. It is mainly based on parametrical modelling of a signal

version of the US image in order to process it as data resulting from a dynamical process.

Because of the predictive characteristics of such a model representation, good estima-

tions of texture features can be obtained with less data than generally used methods

require, allowing higher robustness to low Signal-to-Noise ratio and a more localized US

image analysis. The usability of the proposed approach was demonstrated by extracting

texture features for segmenting the thyroid in US images. The obtained results showed

that features corresponding to energy ratios between different modelled texture frequency

bands allowed to clearly distinguish between thyroid and non-thyroid texture. A simple k-

means clustering algorithm has been used for separating US image patches as belonging

to thyroid or not. Segmentation of thyroid was performed in two different datasets obtain-

ing Dice coefficients over 85%.

Introduction

Texture analysis is the term used for methods developed to quantify image texture through

description of image properties by textural features. In general, these features aim to mea-

sure smoothness, coarseness, and regularity of pixels, which form an image [1, 2]. Feature

extraction methods are usually followed by classification or clustering and can be applied for

image segmentation, image characterization, and for estimation of image similarity metrics

[3].

Generally used approaches for computing texture features are based on statistical and fre-

quency domain techniques. Statistical approaches compute histograms, entropy, homogeneity,

mean and variance values for estimating features from the texture. Frequency domain tech-

niques or spectral techniques collect a distribution of filter responses to extract different

aspects from the texture [1]. Gabor filters and Wavelet decomposition are examples of this

type of approach.
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The main drawback of these approaches is that they are mainly data-driven, meaning that

the computation of texture characteristics is performed directly from the pixel values. With

that the estimation of texture characteristics is limited by the amount of data and the Signal to

Noise Ratio (SNR) of the image.

In medical imaging, texture describes internal structures of human tissues or organs or

pathological changes. Different modalities such as Magnetic Resonance, Computer Tomogra-

phy and Ultrasound (US) require texture analysis and characterization for applications such as

segmentation, registration ans lesion classification [3]. From all these modalities, US is known

to be the most challenging because of the presence of characteristic artifacts such as speckles

and shadows as well as due to the low SNR and resolution.

In this work, a novel approach for image texture feature extraction in US images is pre-

sented mainly based on parametrical modelling. The main idea behind this approach is to

analyze the texture as data resulting from a dynamical process and to estimate the different

dynamics involved in the texture in order to use mathematical operations between these

dynamics as possible texture features. For that a signal version of the image is first computed,

where the independent variable is the space, then the signal is decomposed in different

frequency bands using Wavelet Transformation and finally an Autoregressive (AR) parame-

trical model of the decomposed signals provides spectral characteristics used for features

computation.

The main advantage of this approach is that good estimations of texture characteristics can

be obtained with less data due to the predictive characteristics of the model representation.

Moreover, using an appropriate model order noise can be optimally handled and a better esti-

mation of the dynamical properties of the texture can be obtained, even under really complex

SNR characteristics as usually seen in US data.

The usability of the proposed approach was demonstrated with US data for segmenting thy-

roid texture. The obtained results showed that features corresponding to energy ratios between

different modelled texture frequency bands allow to clearly distinguish between thyroid and

non-thyroid texture regions.

The thyroid is one of the largest endocrine glands in the human body and it is involved in

several significant body mechanisms. Diseases of the thyroid gland are among the most fre-

quent endocrine disorders and changes of the thyroid volume are often the symptom of these

common pathological conditions. For this reason, it is essential to track and monitor changes

on thyroid volume over time and segmentation of the thyroid is one of the main steps for this

purpose.

Many approaches have been presented in the literature for extracting features in US thyroid

image analysis, mainly for thyroid segmentation and nodule characterization and classification.

Recent surveys demonstrate that these two topics for thyroid analysis are highly active research

fields [4–7]. Following this trend, many new methods have been proposed in the last years.

Concerning thyroid segmentation in [8] three semi-automatic algorithms based on general seg-

mentation approaches such as active contours, graph cut and pixel based classifier were evalu-

ated and compared with two machine learning approaches based on Convolutional Neural

Networks and Random Forest (RF). In [9] the segmentation of the thyroid is made by taking

into account apriori information based on the physics of the US imaging process and by apply-

ing Iterative Random Walks and RF based techniques. Furthermore, several type of features

have been proposed for tissue characterization in order to classify nodules or lesions in thyroid

US images. Among the most used features are statistical features [10–12], Spectral-based fea-

tures [13, 14], higher order statistics based features [15, 16], Wavelet-based features [2, 17, 18]

and Fractal-based features [13, 19]. Additionally other works have proposed machine learning

algorithms [20, 21] and neutrosophic clustering for thyroid tissue characterization.

Parametrical modelling for ultrasound texture characterization
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As in the general literature for US feature extraction, the main drawback in thyroid US fea-

ture computation is that most of the proposed approaches are data driven operating directly

from the pixel values of the image. We propose a completely different approach where the pre-

processing or image aspects decomposition is made over a signal and not an image and where

the features are computed not from the pixels values but from a parametrical model of each esti-

mated image aspect. We believe that the predictive characteristics of such parametrical approach

will be able to better deal with the low SNR of thyroid US images and will also allow to obtain

better estimation of features with lower quantity of data than direct pixel feature computation.

The main purpose of this paper is not to propose a new thyroid segmentation algorithm but

to show how features computed with a completely novel approach can be valuable for US tex-

ture characterization. However, to assess the performance of the proposed approach the algo-

rithm was evaluated using two thyroid datasets obtaining Dice coefficients higher than 85%

in both databases. Additionally, the results were compared with the ones obtained by other

approaches proposed in the literature.

Methods

As mentioned above, one of the major issues with US imaging is the quality of the data, which

particularly affects segmentation applications or texture characterization that are strongly

influenced by the relatively low quality of clinical US images, causing that tissue echogenic

characteristics and boundaries are often drowned in noise. Decomposition and parametriza-

tion of each characteristic aspect of the data could reduce the noise and enhance the valuable

information. These aspects could correspond to different type of noises or artifacts or to differ-

ent levels of irregularity or granularity in the US image.

The core idea presented in this paper is to treat an US image as texture that can be repre-

sented as data resulting from a dynamical process, which depends on space as an independent

variable and whose dynamical patterns can then characterize such a texture. These dynamics

can be modelled using a parametrical approach and the estimated parameters can be taken as

a mathematical representation of the texture that are used to compute valuable features that

characterize the US texture at a given location.

Fig 1 illustrates the basic idea. A thyroid ultrasound image is shown and a sub-image or

patch (red box) is selected in such a way that it contains thyroid (Texture 1 in the figure) and

non-thyroid textures (Texture 2 in the figure). The boundary between the two textures (thy-

roid and non-thyroid) is not evident but in the mesh representation of the sub-image on the

top right of Fig 1 it is possible to visualize the different texture characteristics of the two tissue

types. If we extract a line profile passing through both textures (red dashed line in the US

image) then it is possible to verify that the texture signals (inside the dashed rectangle over

the line profile plot) involve different frequency components or more general, different signal

dynamics that are characteristics of each texture.

The idea is now to model these texture dynamics using a parametrical approach to perform

features computation not by operating the matrix data itself, but by operating the parameters

of the modelled texture that represent the information that the image contains in terms of

dynamical distribution. By using an optimal model order such an approach can be highly

robust to the typical speckle noise of US images as well as to low trend intensity inhomogene-

ity. Additionally, because of the predictive characteristics of such a model representation, good

estimations of characteristics of a texture can be obtained with less data than with standard

methods.

The block diagram of Fig 2 displays the main steps for feature computation of a US image

patch in order to characterize its texture. First, the image patch gray-level matrix is converted
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into four texture signals using two different image to signal conversion procedures. Then, each

of the texture signals is decomposed in four signal bands using Continuous Wavelet Transfor-

mation (CWT). The 16 resulting narrow-band texture signals are then modelled using an

Autoregressive (AR) parametrical model to finally compute features from ratios between dif-

ferent energy bands of the decomposed signals. In the following, each step of the algorithm

will be detailed.

Image to signal conversion

In order to track dynamical texture characteristics of an US image resulting from a dynamical

process, the matrix data is first converted into a signal. For that we use ZigZag (following the

rows direction) and spiral conversion of the US matrix image and of their 90 degrees rotation

matrix versions (see Fig 3. The output of this first step results in four texture signals, one per

each conversion (ZigZag, spiral and their 90 degrees conversions).

Continuous wavelet texture frequency band decomposition

The second step decomposes each one of the four texture signals in several frequency bands,

each containing one different aspect of the texture. We assume that an image texture is

Fig 1. Illustration of the main principle behind the proposed US texture characterization approach.

https://doi.org/10.1371/journal.pone.0211215.g001

Fig 2. Main steps of the general concept of the signal processing algorithm for texture modelling and feature extraction in US images.

https://doi.org/10.1371/journal.pone.0211215.g002
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composed of several dynamics representing irregularity characteristics of the texture such as

smoothness or roughness. Therefore the signals can be decomposed into several dynamics that

can represent levels of irregularities presented in the image/texture. Each signal is separated in

different frequency components or scales and we then reconstruct several narrow band signals

that should contain information of different levels of texture irregularity.

Since the four signals resulting from the image to signal conversion step can contain com-

ponents that are not necessarily oscillatory, they are decomposed using scale decomposition

instead of frequency Fourier- based decomposition. For that the CWT was applied to decom-

pose the signal in different scales and then reconstructing new signals using scales equivalent

to three frequency bands representing low, middle and high frequency components (LF, MF

and HF) using a Daubechies mother wavelet. Additionally a fourth frequency band called

Total Band (TB) was computed using the full frequency band of the signals but erasing the

Very Low Frequency components Wavelet scales, which correspond to low trend image inten-

sity inhomogeneity.

In summary this step results in 16 texture narrowband signals, four per texture signal. They

are denoted in the sequel as yBi ½n�, where n represent the discrete index (independent variable),

i = 1, 2, 3, 4 denotes the signal conversion type (1, 2 for ZigZag and its rotated version, 3, 4 for

spiral and its rotated version) and B denotes the type narrowband signal LF, MF, HF or TB.

Fig 4 shows an example of CWT decomposition of three texture signals (ZigZag non

rotated conversion versions) at different positions in the US image denoted IUS1, IUS2 and IUS3
in the figure. Two patches, IUS1 and IUS2, were taken from inside the thyroid and the patch IUS3
was taken outside the thyroid, but in a region with similar texture characteristics as thyroid. At

the right side of Fig 4 the CWT spectrum concatenated for the three patches is displayed. It is

possible to visualize in the spectrum the scale frequency bands that were taken for constructing

the narrow-band texture signals HF, MF and LF.

The TB, HF, MF and LF bands for the ZigZag signal version for each patch are shown also

at the right of Fig 4 by concatenating the resulting signals in order to observe the dynamical

difference between textures at different image locations. It is possible to observe that for IUS1
and IUS2, belonging both to patches located inside the thyroid, the dynamics of the decom-

posed signals are similar in MF, HF and TB, while the dynamics resulting from IUS3 are clearly

different. Particularly in HF it is evident that the frequency components and the amplitude

are different inside compared to outside the thyroid. In LF even if the difference is low we

can observe tiny changes in amplitude when we compare inside and outside thyroid patches.

Given this analysis, what we want is to quantify these dynamical differences between image

textures inside and outside the thyroid, and as explained in the next section, this will be done

using a parametrical model of the different extracted texture signals.

Fig 3. Conversion of a matrix by traversing the matrix and its transposed in ZigZag and in spiral.

https://doi.org/10.1371/journal.pone.0211215.g003
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Ultrasound texture parametrical modelling

The size of a patch should be small enough in order to perform highly localized texture feature

characterization. This requirement results in two characteristics of the data that a texture char-

acterization method must deal with: the small quantity of dynamical changes (texture variabil-

ity involving limited number of oscillations or damped oscillations) and the under-sampled

characteristics of the data due not only to the size of the patch, but also to the resolution of the

US image modality. Moreover, a texture characterization method should also be able to deal

with the low SNR characteristics of US imaging. Under these conditions, classical methods

for feature extraction, such as spectral or statistical based ones and in general data-driven

approaches, no longer can obtain a good estimation of texture characteristics. This is why we

propose in this work to use parametrical modelling of the resulting 16 texture signals from the

CWT decomposition. These signals present narrow-band characteristics that are well suited

to be modelled with an autoregressive (AR) approach. Our approach consist of a parametric

representation of signal dynamics, which can deal with the drawbacks of the generally used

current methods.

AR modelling is a well-known and well published technique for parametrical spectral esti-

mation that has shown advantages over non-parametrical based methods (for detailed infor-

mation about AR modelling we suggest [22]). The advantages of the AR representation is that

it is possible to obtain good estimation of the spectrum and higher spectral resolution using

less data than classical methods and that it provides a parametric way to analyze the data.

The AR model for each one of the sixteen yBi ½n� texture signals consists of a linear combina-

tion of past samples of the respective signal and a white zero mean noise e[n] of variance σ2:

yBi ½n� ¼ �
XpB

k¼1

aBiky
B
i ½n � k� þ e½n� ð1Þ

where aBikfk ¼ 1; 2; . . . ; pBg are the estimated AR parameters for the narrowband signal yBi ½n�.
In this work the model order pB is dependent on the band B and was set on 100, 50, 30 and 80

respectively for B = LF, B =MF, B =HF and B = TB. The AR parameters were estimated using

the Yule-Walkermethod [22].

Fig 4. Example of a CWT decomposition of a thyroid US image when three image patches are taken from different locations of the US image.

https://doi.org/10.1371/journal.pone.0211215.g004
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Feature extraction and selection procedure

From Eq (1) power spectral densities can be computed for each one of the 16 narrowband sig-

nals. Since the textural dynamics should be different from one type of tissue to another, the

main estimated components of the spectrum should vary between different tissues. Addition-

ally, the different degrees of texture irregularities in a given tissue should be manifested by

different contributions on energy of the frequency bands characterizing the texture signal.

Therefore features related to spectral energy of the 16 texture signals (resulting after CWT

decomposition) are used in this work.

To compute spectral energy features the Power Spectral Densities SBi ðf Þ for each one of the

16 narrowband signals have to be first computed from the AR parameters. For that the Z-

transform can be applied to Eq (1) and then the AR spectrum can be computed from the

resulting transfer function:

SBi ðf Þ ¼
1

1þ
XpB

k¼1

aBikej2pfn
�
�
�
�
�

�
�
�
�
�

2

ð2Þ

Fig 5 shows an example of the information that the AR spectrum can provide for character-

izing tissue. The AR spectra of patches IUS1, IUS2 and IUS3 for LF, MF, HF and TB signals of Fig

4 are displayed. It is possible to observe that for both patches located inside the thyroid (IUS1
and IUS2) the AR spectra (in blue and red lines respectively) main components are similar for

the four narrowband texture signals. For the patch located outside the thyroid (IUS3) the AR

spectral characteristics are completely different in terms of main frequency components and

spectral energy.

These parametrical characteristics can be exploited using the spectral energy of the esti-

mated spectra. Therefore, the features computed in this novel approach are based on band

energy ratios computed between the different frequency bands of the AR spectra. These type

of AR features have already been used for Heart Rate Variability analysis for extraction of

dynamical relationships between sympathetic and parasympathetic activities of the Autono-

mous Nervous System [23]. Analog to that, we assume that in one US texture the relation-

ship between its different levels of irregularity can provide information for classifying tissue

echogenicity.

Taking into account the number of spectra from the different texture signals belonging to

the different conversions, the number of possible spectral energy ratios to be used as potential

Fig 5. AR spectra for the patches IUS1, IUS2 and IUS3 (in blue, red and black lines respectively) for the four narrowband signals belonging to the

ZigZag matrix to signal conversion.

https://doi.org/10.1371/journal.pone.0211215.g005
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features is 256. Therefore a procedure of features selection has been performed using an ana-

lytic test. First, inconsistent energy ratios were eliminated from the analysis. Then different

US images were selected from a US thyroid image dataset (Dataset 1, which will be introduced

in the next section). For each image 100 patches (20 × 20 pixels) were selected manually, 50

patches belonging to thyroid and the other 50 belonging to non-thyroid regions. In order to

evaluate the ability of a feature to distinguish between thyroid and non-thyroid texture, the

patches belonging to regions outside the thyroid were divided in three classes according to the

visual level of texture similarity that a non-thyroid region has with respect to thyroid texture:

similar, semi-similar and dissimilar. The set of energy ratio features were computed for all the

selected patches and the results were plotted using a color-map matrix as shown in Fig 6. Each

column of this matrix correspond to an energy ratio feature and allows to visually analyze the

ability of an energy ratio feature to distinguish between thyroid and non-thyroid tissues for

different levels of similarity degrees.

Following the analysis of the matrix of Fig 6, 30 energy ratios were selected from the previ-

ous analysis. According to their characteristics, they can be divided into two types of energy

ratios (ER). 4 ERs are computed as the energy of the maximal spectral peak divided by the total

spectral energy in a same frequency band and 26 ERs are computed as ratios between total

energy of different frequency bands:

ER1� 4 ¼

Xf¼f2

f¼f1

SNUMðf Þ

Xf¼1

f¼0

SDENðf Þ

ER5� 30 ¼

Xf¼1

f¼0

SNUMðf Þ

Xf¼1

f¼0

SDENðf Þ

ð3Þ

where f1 and f2 are the frequency onset and offset respectively of the main peak and SNUM and

SDEN are the AR spectra used in the numerator and denominator of Eq (3) and are shown in

Table 1 for each of the 30 ERs.

The feature extraction algorithm was fully implemented in Matlab R2015b and executed on

a PC with a CPU operating at 2.60 GHz resulting in an execution time of 0.06 seconds for com-

puting the 30 features in one patch.

Results

This section shows the usability of the proposed approach for US feature extraction. 2D US

data from thyroid is used in order to analyze the capabilities of the 30 extracted ER features

to differentiate between thyroid and non-thyroid tissue in order to use them for segmenting

thyroid.

Thyroid US data description

Two different real US image datasets have been used to evaluate the proposed approach. The

first dataset (in the sequel Dataset 1) has been introduced in [24] and involves six healthy

human subjects freehand US images acquired using a Logiq E9 US device with a linear probe

and equipped with an electromagnetic tracking system. This database has a total of 675 2D US

slices with a 760 × 500 pixels with between 53 and 189 US slices per subject. The second dataset

(in the sequel Dataset 2) has been presented in [25] and can be downloaded in http://opencas.

webarchiv.kit.edu/?q=node/29. It involves freehand US images of 16 healthy subjects, each

acquired also with a GE Logiq E9 system but operated by a different clinician in a different

hospital than in the Database 1 case. From this dataset, a total of 1600 slices belonging to the

16 subjects (100 slices per subject) were used with a size of 760 × 1020 pixels per 2D US slice.
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Fig 6. Color-map of the computed features in patches belonging to thyroid and three classes of non-thyroid regions.

https://doi.org/10.1371/journal.pone.0211215.g006
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For each 2D slice the thyroid was manually segmented by an expert clinician (ground

truth) and was then divided into patches of 20 × 20 pixels labelled as thyroid or non-thyroid

according to the ground truth. It is important to notice that in both datasets the number of

patches belonging to thyroid are less that the ones belonging to non-thyroid. This is because

the ground truth was used for the automatic patch labelling and usually in a US image the

region of thyroid is smaller than the non-thyroid one.

Average value differences between thyroid and non-thyroid patches for the

selected features

In order to observe the capacity and suitability of the selected features for distinguishing

between thyroid and non-thyroid texture, the average and standard deviation (STD) of the fea-

ture values were computed for the six subjects belonging to Dataset 1 (see Figs 7 and 8). It is

possible to visualize that for the whole set of selected ER features, the average values are clearly

different between thyroid (red) and non-thyroid (blue) tissues. Moreover, in most of the ER

features the thyroid and non-thyroid average values do not strongly change from one subject

to another one. Concerning the STD, it is possible to observe that some ER features works bet-

ter than others. This is the case for example of features ER3 and ER6 where the STDs inside the

thyroid are much smaller than outside the thyroid, what is consistent to the homogeneity of

texture inside one healthy organ.

Features evaluation for thyroid segmentation

The proposed approach have been tested on the 359712 patches of Dataset 1 and on the

1791397 patches of Dataset 2. For each patch, the 30 ERs of Eq (3) were computed and ana-

lyzed to see their suitability to distinguish between thyroid and non-thyroid tissues.

In Fig 9 3D scatters are displayed for 12 ERs (in groups of three features) computed from

Dataset 1 clearly showing the differences of these ratio values for thyroid (in red) and non-thy-

roid (in blue). This confirms that the AR characterization of US texture is well suited to obtain

features that are able to be used for classification of thyroid tissue.

Table 1. Spectra used in the numerator (NUM) and denominator (DEN) of Eq (3) for computing the 30 energy ratio features.

Features1−15 NUM DEN Features16−30 NUM DEN
ER1 SHF

1
SHF

1
ER16 SLF

2
SHF

2

ER2 SMF
1

SMF
1

ER17 SLF
2

SHF
3

ER3 SLF
1

SLF
1

ER18 SLF
2

SHF
4

ER4 STB
1

STB
1

ER19 SLF
3

SHF
2

ER5 SHF
1 STB

1
ER20 SLF

3
SHF

3

ER6 SHF
2 STB

2
ER21 SLF

3
SHF

4

ER7 SMF
1 STB

1
ER22 SLF

4
SHF

2

ER8 SMF
2 STB

2
ER23 SLF

4
SHF

3

ER9 SLF
2 STB

2
ER24 SLF

4
SHF

4

ER10 SLF
3 STB

3
ER25 SMF

1
SHF

2

ER11 SLF
4 STB

4
ER26 SMF

1
SHF

3

ER12 SLF
1

SHF
2

ER27 SMF
1

SHF
4

ER13 SLF
1

SHF
3

ER28 SMF
2

SHF
2

ER14 SLF
1

SHF
4

ER29 SMF
2

SHF
3

ER15 SLF
2

SHF
1

ER30 SMF
2

SHF
4

https://doi.org/10.1371/journal.pone.0211215.t001
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Fig 7. Mean and standard deviation of values of ERs features 1 to 15 of thyroid and non-thyroid patches for the 6 subjects of

the Dataset 1.

https://doi.org/10.1371/journal.pone.0211215.g007

Parametrical modelling for ultrasound texture characterization

PLOS ONE | https://doi.org/10.1371/journal.pone.0211215 January 29, 2019 11 / 17

https://doi.org/10.1371/journal.pone.0211215.g007
https://doi.org/10.1371/journal.pone.0211215


Fig 8. Mean and standard deviation of values of ERs features 16 to 30 of thyroid and non-thyroid patches for the 6

subjects of the Dataset 1.

https://doi.org/10.1371/journal.pone.0211215.g008
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To evaluate the performances of our approach, the computed ER features were used to seg-

ment the thyroid. Because our goal is to show the usability of the extracted AR features for tex-

ture characterization in US images, complex classification procedures were avoided. Therefore

only a simple K-Means algorithm for clustering the patches as thyroid or non-thyroid using

the 30 features computed in both datasets was used in this work. As an unsupervised classifica-

tion for thyroid segmentation, this automatic labelling was then used in each US image to sep-

arate the patches belonging to that image as thyroid and non-thyroid.

Fig 10 shows some example results of the thyroid segmentation for eight slices: four exam-

ples for correct segmentation (first row) and four involving some false positives (second row).

In solid red line the ground truth is displayed and the green squares correspond to the 20 × 20

patches that were classified as thyroid by applying our approach to each one of the US images.

We displayed US images belonging to different subjects and also to different positions of the

2D slices with respect to the thyroid volume.

In order to globally evaluate our approach with both datasets, the Dice coefficient (DC) is

computed from all the 2D segmentations for each Dataset. Additionally, the sensitivity (SE)

and specificity (SP) are also computed. The approach obtains a DC of 89.66% with a SE of 0.95

and a SP of 0.70 for the Dataset 1 and a DC of 86.89% with a SE of 0.89 and a SP of 0.62 for the

Dataset 2.

In order to analyze the significance of our results, the proposed approach was compared

with other thyroid segmentation methods proposed in the literature. For that the comparison

results reported in [8] and in [9] are used.

Fig 9. Example of obtained AR spectral energy ratios when the approach is applied to the full set of patches extracted from the thyroid US

Dataset 1.

https://doi.org/10.1371/journal.pone.0211215.g009

Fig 10. Examples of thyroid segmentation using the proposed approach and comparison with the ground truth.

https://doi.org/10.1371/journal.pone.0211215.g010
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In [8] five thyroid segmentation algorithms are compared using ten subjects, where six of

them are taken from Dataset 1 used in this work. The algorithms that this work compares in

terms of Dice Coefficient are Active Contour Without Edges (ACWE), Graph Cut (GC), Pixel-

Based Classifier (PBC), Random Forest Classifier (RFC) and Convolutional Neural Network

(CNN). The first three are semi-automatic requiring different levels of interaction with the

operator and the other two are automatic. The results of this comparison are displayed in

Table 2 showing that our approach outperforms the other five algorithms.

In [9] an algorithm based on Iterative Random Walks and Random Forest (IRWRF) was

evaluated with the Dataset 2 used in this work. They have compared their approach with four

other algorithms presented in the literature: Echogenicity-based Quantization (EBQ), Joint

Classification-Regression (JCR), RBF Neural Network (RBF), and Feedforward Neural Net-

work (FNN). However the reported results for the other algorithms do not use the same data-

set. Despite this fact, we display the results of this comparison in Table 3. The algorithm were

compared in terms of DC, SE and SP.

Conclusions and discussions

In this work a novel approach for ultrasound image feature extraction was presented. The

approach is based on characterizing ultrasound texture through parametrical modelling. The

image was transformed into a signal, which was decomposed in several dynamics representing

different aspects of the texture. We showed that features consisting on frequency band based

energy ratios between the different signal dynamics contain valuable information about tex-

ture and can be useful for US image texture classification.

The usability of the proposed approach was demonstrated in US thyroid segmentation. The

30 extracted AR features computed from energy ratios of the parametrical AR spectra obtain

very good and reproducible results for differentiating thyroid and non-thyroid regions in US

images. Using a simple K-Means procedure we demonstrated that thyroid patches were suc-

cessfully clustered for thyroid segmentation. The approach was evaluated with two datasets

and compared with ten other algorithms proposed in the literature, obtaining Dice Coeffi-

cients over 85% and outperforming other methods.

We strongly believe that this approach can be used in a variety of US applications, not only

for segmentation, but also for data comparison, pattern recognition and possibly others. The

presented research contribution and scientific innovation could lead to an objective character-

ization and differentiation of tissues in US, but likely also be used for other bio-medical imag-

ing methods.

Table 2. Comparison of the proposed approach in terms of Dice Coefficient using the Dataset 1 with algorithms compared in [8].

ACWE GC PBC RFC CNN this work

80.53% 74.52% 66.68% 85.53% 87.22% 89.66%

https://doi.org/10.1371/journal.pone.0211215.t002

Table 3. Comparison of the proposed approach using Dataset 2 with five algorithm results reported in [9].

IRWRF EBQ JCR RBF FNN this work

DC 85.4% 83.9% 47.9% 51.2% 40.0% 86.9%

SE 98.9% 95.5% 56.4% 87.4% 47.3% 89.0%

SP 92.3% 88.9% 92.6% 56.0% 86.4% 62.0%

https://doi.org/10.1371/journal.pone.0211215.t003
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One of the drawbacks of the proposed approach is that edges between two tissues are prone

to segmentation errors. This is due to the patch approach that we have used. In order to deal

with this problem the next steps is to implement a space-variant AR modelling, analogue to

the time-variant version generally used for non-stationary signal processing. This not only

should deal with tissue border problems but also should allow to process signal trajectories in a

volume in order to perform voxel characterization.

The main focus of this paper was not on thyroid segmentation but on analyze the usabil-

ity of features that have never been used in the literature for US image analysis. These novel

proposed features, even if they are linear, they have obtained interesting results in signal

processing in application fields such as biosignal processing or tool wear monitoring. We

wanted to analyze how this type of features could work for extracting characteristics from

US images. However, in the near future many aspect of this research should be treated in

order to think in clinical significant results for US texture characterization. First, a more

exhaustive analysis and optimization needs to be performed for AR features selection. It is

not only necessary to revise the spectral energy based features but also to see how other AR

features (such as pole-based or space variant features) can be used for US texture characteri-

zation. Second, a next step should focus on analyze how AR features together with nonlinear

features (such as higher order statistics or entropy-based features) and a deep learning pro-

cedure can work not only for thyroid segmentation but also for thyroid lesion classification.

Finally, in order to show clinical significance, further research is required in order to see the

behaviour of the proposed features in larger datasets involving unhealthy thyroids, different

US acquisition parameters, different probes and US devices. This is the main next step for

our approach.
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