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To study and explore the adoption value of magnetic resonance imaging (MRI) in the diagnosis of anterior cruciate ligament
(ACL) injuries, a multimodal feature fusion model based on deep learning was proposed for MRI diagnosis. After the related
performance of the proposed algorithm was evaluated, it was utilized in the diagnosis of knee joint injuries. Thirty patients with
knee joint injuries who came to our hospital for treatment were selected, and all patients were diagnosed with MRI based on deep
learning multimodal feature fusion model (MRI group) and arthroscopy (arthroscopy group). The results showed that deep
learning-based MRI sagittal plane detection had a great advantage and a high accuracy of 96.28% in the prediction task of ACL
tearing. The sensitivity, specificity, and accuracy of MRI in the diagnosis of ACL injury was 96.78%, 90.62%, and 92.17%, re-
spectively, and there was no considerable difference in contrast to the results obtained through arthroscopy (P > 0.05). The positive
rate of acute ACL patients with bone contusion and medial collateral ligament injury was substantially superior to that of chronic
injury. Moreover, the incidence of chronic injury ACL injury with meniscus tear and cartilage injury was notably higher than that
of acute injury, with remarkable differences (P < 0.05). In summary, MRI images based on deep learning improved the sensitivity,
specificity, and accuracy of ACL injury diagnosis and can accurately determined the type of ACL injury. In addition, it can provide
reference information for clinical treatment plan selection and surgery and can be applied and promoted in clinical diagnosis.

1. Introduction

The knee joint is a very important compound joint in the
human body, which not only undertakes frequent and
complex movements but also is the most important weight-
bearing joint of the human body [1]. Therefore, knee injuries
are inevitable in life. Most knee injuries are caused by high-
intensity exercises, sports competitions, and falls from high
altitudes. The most common knee injuries include anterior
cruciate ligament (ACL) injury and meniscus injury, and the
combination of the two injuries is also common. According
to reports, the incidence of ACL injury with meniscus injury
was more than 85%, which may cause joint swelling, pain,
and movement inconvenience in patients, thus substantially
affecting the life and work of patients [2, 3]. In the case of
knee injury, timely and accurate assessment of ACL injury is
helpful to select the best treatment plan and effectively

evaluate the prognosis of patients. It is of great clinical
significance for patients to recover the normal stability and
normal motor function of knee joint and to avoid or reduce
the secondary injury of other knee joint structures [4].
Clinically, complete tears and partial tears are often taken as
the basis for judging ACL damage [5]. All in all, the early and
correct diagnosis after ACL injury is of great significance for
the choice of clinical treatment plan and prognosis [6, 7].
The commonly used methods for diagnosing ACL injury
are roughly classified into three categories, clinical stability
examinations, such as anterior drawer test and axis shift test,
imaging examinations such as ultrasound diagnosis, CT
diagnosis, and MRI diagnosis, and arthroscopy [8]. Ultra-
sound examination and CT examination require high op-
erational experience of medical staff. Arthroscopic diagnosis
is an effective standard for ACL injury, but the inspection
method is limited to the case of trauma [9]. Therefore,
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clinical stability check is an important method for doctors to
check ACL injury. Due to the good tissue resolution and
high spatial resolution, MRI can not only objectively eval-
uate knee joint injuries but also evaluate knee joint injuries
such as meniscus injuries and cartilage injuries [10].

Since MRI examinations show high clinical diagnosis
accuracy of ACL tears and meniscus, knee MRI has be-
come the first choice for the diagnosis of knee joint in-
juries in recent years. The deep learning approaches can
automatically learn multilayer features, which are very
suitable for the auxiliary diagnosis of medical images [11].
At present, deep learning approaches have surpassed
traditional medical image analysis methods and have
made great progress in the field of knee MRI. Mayo et al.
[12] developed a fully automatic knee joint magnetic
resonance cartilage damage detection system based on
deep learning. The system consisted of two CNN net-
works. The first CNN network was utilized for the rapid
segmentation of cartilage and bone, while the second
CNN network evaluated the structural abnormalities of
articular cartilage. The total accuracy of the experiment
reached 98.37%. Therefore, the deep learning-based MRI
cartilage injury detection system of the knee joint shows a
high diagnostic accuracy, can quickly analyze images,
significantly saves the diagnostic time, and improves the
diagnostic efficiency. This diagnosis method is worthy of
promotion and adoption.

In summary, the knee joint injury patients were taken as
the research object in this research. MRI images of patients
were optimized based on deep learning algorithms, which
were then applied to the diagnosis of knee joint injury
patients, and the adoption value of MRI image diagnosis in
ACL injury was evaluated.

2. Materials and Methods

2.1. Research Objects and Grouping. Thirty patients with
knee joint injuries diagnosed in our Hospital from May 2019
to March 2020 were selected as the research objects. All
patients underwent MRI and the results were compared with
those obtained by arthroscopy. There were 21 males and 9
females. The age range of the patients was 18-75 years, and
the average age was (37.82 £ 5.18) years. The patients were
rolled into two groups according to diagnosis methods. One
group was MRI diagnose and the other group was arthro-
scopic diagnose, and they were compared within the groups.
The experimental process had been approved by the ethics
committee of the hospital, and all subjects included in the
study had signed the informed consent forms.

Inclusion criteria: (i) clinical symptoms were joint pain,
swelling, joint instability, etc.; (ii) physical examination
methods (anterior drawer test, Lachman test, etc.) showed at
least one positive sign; (iii) those who aged 18-75 years old.

Exclusion criteria: (i) patients with a previous history of
knee joints, such as tuberculosis arthritis and rheumatoid
arthritis; (ii) the patient’s joints were found to have tumors
or tumor-like lesions through examination; (iii) patients
with a history of knee surgery; (iv) patients whose age was
under 18.
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2.2. MRI Examination. The patient’s original image was sent
to a postprocessing workstation. Three associate chief doctors
with more than five years of experience in MRI diagnosis in the
radiology department performed oblique coronal and cross-
sectional multiplane recombination. The thickness was 0.4 mm,
and there was no spacing between the layers. The three-di-
mensional reconstructed ACL and its surrounding structures
were observed, and consensus was reached and recorded
through consultation. At the same time, the MRI scan se-
quences (T2WI-SPAIR sagittal images, T2WI cross-sectional
images, etc.) were observed and analyzed, and the corre-
sponding diagnostic opinions were recorded. According to the
characteristics, continuity, edge, shape, and signal of ACL
damage, whether ACL was damaged and the extent of damage
were judged. According to the comprehensive literature, MRI
diagnostic criteria of ACL injury were established, and the MRI
signs of ACL injury were classified into four categories [13] as
follows. Grade 0: no abnormalities in initial profile, walk, and
signal. Grade I: the ligament continuity was still good, the
contour was still intact, the ligament was not thickened or
slightly thickened and expanded, small patches or streaks of
signal can be seen, and damage area was less than 50%. Grade
II: ligamentous continuity was poor, but some continuous
fibers were still visible; locally thickened or diffused ligaments
were visible; incomplete or well-defined edges were at the site of
ligament injury, or there were locally notched areas; abnor-
mally high signal can be seen, with damage area greater than or
equal to 50%. Grade III: there was intact rupture of the liga-
ment, characterized by broken continuity of the ligament,
displacement of the bent or broken end, clumpy ligament,
increased signal, and unclear boundary.

After the patient’s medical history and MRI results were
provided, radiologists would observe and analyze the knee
images of the patient to determine whether there was a tear
in the ACL of the knee and the degree of the tear. If there was
a difference of opinion, the three experts could reach a
conclusion after consultation.

2.3. Arthroscopy Examination. Arthroscopy with a diameter
of 4.0 mm and a wide angle of 30 degrees from Stryker and
Smith & Nephew were utilized. The arthroscopy was per-
formed by two joint surgeons. A detailed medical history was
taken before surgery, and a physical examination was per-
formed in combination with X-rays and MRI. The knee ACL
was carefully examined during surgery. If there was a partial
injury, a detailed examination with a probe was performed to
avoid misdiagnosis. If a ligament injury was found arthro-
scopically, the physician could take further appropriate
treatment and recorded the surgical plan and procedure. MRI
findings and arthroscopic findings were studied and analyzed.

2.4. Deep Learning Model Construction Based on Multimodal
Feature Fusion

2.4.1. Deep Feature Extraction. At present, convolutional
neural networks are more and more widely used in the field
of medical image diagnosis and have made good progress.
The mechanism of convolutional neural network refers to
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automatically performing the feature extraction of the image
through the convolution operation of the image, and such
feature has advanced semantic information and is more
robust [14]. Since the deep learning model can only achieve
ideal results when trained on annotated images, transfer
learning is adopted to directly use the second to fifth
convolution blocks of the pretrained VGG16 [15]. The
feature map of the last layer of each convolution block is
extracted, which is H(g), g =1,2,3,4,5. After the up-
sampling K(g—1) of H(g— 1) was obtained, the result
image after 2*2 convolution processing is pixel fused, and
then, 55 convolution kernel is used again to correct the
fused image, which can eliminate the aliasing effect used
above and obtain a new feature map H (g — 1). The pyramid
fusion equation is as follows:

K(g-1) = y,,(H(g-1)),

(1)
H(g-1) = ys5s(H(g)+H(g-1)).

After the last layer H (2) is acquired, it passes through
the batch normalization (BN) layer, the adaptive maximum
pooling layer, and the fully connected layer in turn. The BN
layer can speed up the convergence speed and classification
effect of the model. y " is set as the nth dimension feature of
H (2), the BN layer is H (2) introduced with the parameters
0" and D™, and the indifference estimation is conducted
to output the nth dimension feature as follows:

y(n) P AONONN D", (2)
;l - Si—9q ,
wl+9

(3)

wl ==Y (s-w,). (4)

I=1

In the above equation, equation (3) is the average value
of batch size g, and equation (4) is the variance of batch
size q.

When nonlinear factors are added to the ReLU layer, the
expression ability of the increased model will be weakened.
The activation function of ReLU is as follows:

f (m) = max{0, m}. (5)

The main difference between the adaptive maximum
pooling layer and the standard Max Pooling is that the
former will control the output size (Out) according to the
input size (In), and stride and kernel size are as follows:

I
stride = ﬂoor(—n),
Out

(6)

kernel size = In — (Out — 1) X stride,

Padding = 0.

The fully connected layer can be regarded as the full-scale
convolution of s xu; s and u are the output size of the
previous layer, and finally, 1026-dimensional features
extracted by the convolutional neural network can be
obtained:

h=(hyhy b, Bygge). (7)

2.4.2. Multimodal Feature Adaptive Fusion. Due to the
different features of different modalities [16], a deep learning
model of multimodal feature fusion is constructed to retain
the correlation of multimodality. The model contains a
hidden layer with a number of neurons less than the feature
dimension and a Sigmoid layer. The entire network is trained
by maximizing the energy proportion of the feature layer.
The Sigmoid layer can map the feature interval after feature
fusion to (0, 1), which is the prediction probability. The
feature vector m=(c, 0), and the forward propagation
equation is as follows:

Pe = (5 +1,)9% + B, (8)

W= a<i(5i +1;)9, +ﬂe>- (9)

=1

In the above equations, 0 (k) = 1/1 + n™K, ¢, is the de-
viation of the visible layer, f3, is the deviation of the hidden
layer, and p, is the hidden layer vector. To obtain the optimal
fitting multimodal feature, the energy model is used to adjust
the parameters, and the energy function is as follows:

Hyl0=-Yst- Y Bpe- Y Yty (10
I=1 e=1

I=1e=1

In equation (9), € = (t;,9,., ¥;), H (x, y|€) represents the
total energy of the module.

The marginal probability distribution is defined as
follows:

1 “k(x,
PeAD) = g 2 (11)

1 - X,
(1) :m Zr k(xyle) (12)

In equations (10) and (11), Z(¢) = Y rk@y10 "and the

il
optimization function is defined as follows:

€y = AIg max D 1gP(x;le). (13)
j=1

In equation (12), o is the number of samples. When the
function ¢ takes the maximum value, the energy proportion
of the characteristic layer is high, and the energy of the
hidden layer is small. When data is transmitted within the
network, the direction of the data flow is also the direction of
energy dissipation. After many iterations, the network en-
ergy shows a decay trend, the network tends to be ordered,
or the probability distribution tends to be concentrated.



2.5. Evaluation Index. The performances of different models
were quantitatively evaluated regarding the Accuracy, Re-
call, and AUC.

Accuracy refers to the proportion of the correct samples
predicted by the model to the total samples, which is cal-
culated as follows:

R _ TP+TN
Y = TP Y EN+ TN + FP’
(14)
TP
Recall = ————.
TP + EN

In the above equations, TP (true positive) means that
the segmentation result and the gold standard result are
both true, that is, true positive. FP (false positive) means
that the segmentation result is false, and the gold standard
results are all true. FN (false negative)) indicates that the
segmentation result is true, and the gold standard results
are all false.

The AUC value is defined as the area under the ROC
curve enclosed by the coordinate axis. Since the ROC curve
is generally above the line y = x, the value range of AUC is
between 0.5 and 1. The closer the AUC is to 1.0, the higher
the authenticity of the detection method is.

The observation of concomitant injury of ACL mainly
included common combined injuries such as meniscus tear,
bone contusion, medial and lateral collateral ligament injury,
cartilage injury, and joint effusion.

2.6. Statistical Methods. SPSS 19.0 was employed for data
statistics and analysis. Mean + standard deviation (x + s) was
how measurement data were expressed, and the comparison
of the mean between each group was performed by ¢ test.
Percentage (%) was how count data were expressed, and the
) test was used. The difference was statistically considerable
with P <0.05.

3. Results

3.1. Analysis of the Results of ACL Damage Diagnosis Based on
Deep Learning Algorithms. The results of ACL damage di-
agnosis based on deep learning algorithms were analyzed.
Figure 1 showed that, after fusion of traditional features and
deep learning features, the performance indicators of MRI
were improved to a certain extent, especially in accuracy and
AUC value. The accuracy was up to 90%, and the highest
AUC value was 0.9726. The detection rate of this model for
general positive samples was higher than 92%, and the
detection rate for positive samples of ACL tear and meniscus
tear was high, which was of great significance to assist
physicians in diagnosing high-risk patients.

From the results in Figure 1, the sagittal plane detection
had a great advantage and a high accuracy of 96.28% in the
task of ACL tear prediction. The prediction accuracy of
meniscus tear was low, which was 75.37% (Figure 1(a)). In
the prediction of recall rate, the prediction of ACL tear was
the best on the horizontal axis, the recall rate was 89.56%
(Figure 1(b)), and the AUC value was 0.9726. In the
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prediction of meniscus tear, the sagittal plane was the best,
with a recall rate of 90.57% and an AUC value of 0.923
(Figure 1(c)).

Since each prediction task had only two cases of positive
and negative, the prediction probability of the model
greater than or equal to 0.5 was deemed as a positive
patient, and the prediction probability less than 0.5 was
deemed as a negative patient, so as to better show the
prediction effect of the model. The test results of ACL tear
and meniscus tear were shown in Figure 2. The results
showed that this prediction model had good performance
for ACL tear and meniscus tear predictions, especially for
ACL prediction accuracy and recall rate, and the maximum
AUC value was above 0.96. It indicated that the prediction
model based on deep learning used in this study can be used
as a basis for diagnosing knee joint injuries and had certain
value in clinical adoptions.

3.2. MRI Features of Patients with Knee Joint Injury Based on
Deep Learning. Figure 3 was the schematic diagram of a 55-
year-old male patient with bone contusion (axial displace-
ment sign). In Figure 3(a), once the ACL was torn, the tibia
would move forward relative to the femur, causing the lateral
femoral condyle to collide with the outer and posterior tibia.
Both sides had edema, and the degree of knee flexion de-
termined the location of the femoral condyle. Figures 3(b)
and 3(c) were images of ACL tears observed at different
positions.

Figure 4 showed MRI images of some patients with
knee injuries. Figure 4(a) showed ligament discontinuity.
There was a low signal of the ligament, but the inter-
ruption was discontinuous, the path was low and flat, and
the ligament was curled in a clumpy or wavy shape, which
was generally seen in fresh injuries. In Figure 4(b), there
was abnormal direction of ligament injury (ACL ptosis).
There was a relatively intact ligament with low signal, but
the direction was abnormal and pendulous, which was
usually seen in the old injury of the femoral attachment,
where the damaged ACL dropped and adhered to the PCL.
In Figure 4(c), the ACL was absent. The intercondylar
fossa was empty and there was no ligament signal. The
symptoms were mainly present in prolonged injuries,
where the damaged ACL tear was heavy and horse-tailed,
did not enclose synovium, and was gradually corroded by
enzymes in the joint.

In Figure 5(a), MRI T2WI showed a tear in the posterior
horn of the medial meniscus of the knee. In Figure 5(b), MRI
T2WI plain scan showed the high signal shadow within the
low signal of the posterior cruciate ligament. The arrow
indicated a partial rupture with hyperintensity bleeding
around the rupture. The MRI diagnosis was an incomplete
rupture of the right posterior cruciate ligament.

3.3. MRI Manifestations of ACL Injury. There are 60 knee
joints in 30 patients with knee joint injury. In the exami-
nation results, the MRI examination showed that there were
34 cases of ACL grade III injury, 10 cases of grade II injury,
10 cases of grade I injury, and 6 cases of grade 0 injury.
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F1GURE 1: Analysis of diagnosis results of ACL injury based on deep learning algorithm. Accuracy comparison of transverse plane, coronal
plane, and sagittal plane (a); recall rate comparison of transverse plane, coronal plane, and sagittal plane (b); AUC comparison of transverse
plane, coronal plane, and sagittal plane (c). *indicated that the accuracy, recall rate, and AUC of ACL injury were statistically different from

that of meniscus injury (P <0.05).

Arthroscopy showed that there were 34 cases of ACL grade
III injury, 13 cases of grade II injury, 11 cases of grade I
injury, and 2 cases of grade 0 injury. Compared with the
results of arthroscopy, 3 cases were misdiagnosed as intact
ligaments, 3 cases were misdiagnosed as grade II ligament
injuries, 1 case was misdiagnosed as grade I ligament in-
juries, 4 cases were misdiagnosed as grade 0 injuries, and 2
cases were missed (Figure 6).

Figure 7 showed that the sensitivity, specificity, and
accuracy of MRI in the diagnosis of ACL injury was 96.78%,
90.62%, and 92.17%, respectively, with no substantial dif-
ference from the results of arthroscopy (P <0.05), which
showed that MRI can accurately diagnose ACL injury.

3.4. ACL Injury Classification and Concomitant Injury. In
this research project, there were 34 cases of ACL grade III
injury, including 10 cases of chronic injury and 24 cases of
acute injury, 10 cases of grade II injury, 4 cases of chronic
injury, and 6 cases of acute injury. Among grade I and grade
0 injuries, chronic injuries accounted for 3 cases and acute
injuries accounted for 13 cases. There were 43 cases of acute
injury and 17 cases of chronic injury.

Among the types of ACL injuries, there were meniscus
tears, bone contusions, internal and external collateral lig-
ament injuries, cartilage injuries, joint effusions, etc. The
common concomitant injury was the torn meniscus. There
were 30 patients with acute injury in concomitant injury and
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FIGURE 2: Performance comparison of regression models: (a) comparison of accuracy and recall rate of ACL and meniscus tear;
(b) comparison of AUC of ACL and meniscus tear. *indicated that ACL injury was dramatically different versus meniscus injury (P < 0.05).

F1GURE 3: Schematic diagram of ACL injury. (a) The ACL tear, the arrow indicated the site of the ligament injury, (b) the coronal diagram of
the ligament tear, and (c) the sagittal diagram of the ligament tear.
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F1Gure 4: MRI images of the patients. (a) ACL discontinuity (49-year-old female patient), (b) ACL drooping sign (58-year-old male patient),
and (c) ACL disappearance (55-year-old male patient).
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(a)

F1GURE 5: MRI T2W1I images of the patients (male, 61 years old). (a) Tear of posterior corner of medial meniscus of knee joint (the arrow was
the tear site); (b) MRI T2WI plain scan of posterior cruciate ligament (the arrow indicated a partial rupture of the ligament).
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F1Gure 7: Contrast of MRI diagnosis performance of ACL injury.

meniscus injury. In addition, there were 20 patients with
internal collateral ligament injury, 13 patients with lateral
collateral ligament injury, 15 patients with cartilage injury,
and 10 patients with bone contusion. Among chronic ACL
injuries, 12 patients were accompanied by meniscus tears. In
addition, there were 7 patients with collateral ligament in-
jury, 5 patients with lateral collateral ligament injury, 7
patients with cartilage injury, and 3 patients with bone
contusion. Figure 8 shows the positive rate of ACL con-
comitant injury. The positive rate of acute ACL patients with
bone contusion and medial collateral ligament injury was
considerably higher than that of the chronic patients.
However, the incidence of ACL injury with meniscus tear
and cartilage injury in the chronic group was substantially
higher than that in the acute group, and there was a re-
markable difference between the two (P <0.05).

4. Discussion

The main function of the ACL is limiting the overdevel-
opment of the tibial plateau and the rotation of the knee
joint. During the bending movement of the knee joint, the
fiber bundles in the knee joint obtain the stability of the knee
joint through various stretching modes. When the knee joint
is straightened, the posterolateral branch (PLB) is in tension,
and the anteromedial branch (AMB) is slightly relaxed.
When the knee joint is bent, AMB is in tension and PLB is in
arelaxed state. When an external force acts on the knee joint,
resulting in excessive extension or rotation (for example,
excessive internal and external rotation), it is easy to cause
ACL damage or even fracture. MRI has become the most
ideal examination method for the diagnosis of knee cruciate
ligament injuries due to its advantages of high contrast, high
resolution, noninvasive, and multipart imaging. MRI can
not only clearly show the normal form of ACL but also show
the location, extent, fracture, tear of meniscus, and other
knee joint injuries of injured ACL. In this work, a
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multimodal feature fusion model based on deep learning was
proposed for imaging diagnosis based on MRI. First, the
knee joint MRI image was preprocessed, and the multimodal
features of knee joint injury were extracted based on both
traditional and deep learning. Then, the multilayer neural
network was adopted to perform correlation fusion of the
features. The results showed that the sagittal plane detection
has a great advantage and a high accuracy rate of 96.28% in
the task of ACL tear prediction. The prediction accuracy of
meniscus tear was low, which was 75.37%. In the prediction
of recall rate, the prediction of ACL tear was the best on the
horizontal axis, the recall rate was 89.56%, and the AUC
value was 0.9726. In the prediction of meniscus tear, the
sagittal plane was the best, with a recall rate of 90.57% and an
AUC value of 0.923. This prediction model showed good
prediction performance for ACL tear and meniscus tear. In
particular, the prediction accuracy and recall rate of ACL
were relatively better, and the maximum AUC value was
above 0.96. The results were similar to the conclusions of
Miyaji et al. [17] and both showed that the prediction model
based on deep learning used in this study can be used as a
basis for diagnosing knee joint injuries and had certain value
in clinical applications.

The model was applied to the MRI diagnosis of ACL
injury. The MRI examination results showed that there were
34 cases of ACL grade III injury, 10 cases of grade II injury,
10 cases of grade I injury, and 6 cases of grade 0 injury.
Arthroscopy showed that there were 34 cases of ACL grade
III injury, 13 cases of grade II injury, 11 cases of grade I
injury, and 2 cases of grade 0 injury. Compared with the
results of arthroscopy, 3 cases were misdiagnosed as intact
ligaments, 3 cases were misdiagnosed as grade II ligament
injuries, 1 case was misdiagnosed as grade I ligament in-
juries, 4 cases were misdiagnosed as grade 0 injuries, and 2
cases were missed. The sensitivity, specificity, and accuracy
of MRI in the diagnosis of ACL injury was 96.78%, 90.62%,
and 92.17%, respectively, and there was no great difference
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from the results of arthroscopy (P > 0.05). Namiri et al. [18]
found that the indirect signs of ACL tear had high specificity
(91%~100%) and sensitivity in a retrospective study of the
correlation between MRI imaging and arthroscopy in 100
patients. Therefore, these signs can determine whether the
patient had an ACL tear, which was similar to the conclusion
of this study, indicating that MRI can accurately diagnose
ACL injury. The positive rate of acute ACL patients with
bone contusion and medial collateral ligament injury was
notably superior to the chronic group. However, the inci-
dence of ACL injury with meniscus tear and cartilage injury
in the chronic group was substantially higher than that in the
acute group, with substantial differences (P <0.05). Pedoia
et al. [19] reported a high incidence of combined articular
cartilage damage. However, the literature did not separate
statistics on acute and chronic injuries. In this research topic,
a clear analysis of the types of concomitant damage was
carried out, and the results also provided a certain reference
for the diagnosis of ACL concomitant damage.

5. Conclusion

A multimodal feature fusion deep learning model based on
deep learning algorithms was established in this work and
applied to the diagnosis of ACL injury patients, to explore
the value of MRI based on deep learning in the diagnosis of
ACL injury. The results revealed that deep learning-based
MRI substantially improved the ability to diagnose ACL
damage and increased the sensitivity, specificity, and ac-
curacy of the diagnosis of ligament damage. However, this
study still has some shortcomings. The number of patient
samples selected is small, there is a lack of disease diversity
research, and the scope of adoption of the research results
has certain limitations. In the future work, the research area
and research samples will be further expanded to ensure the
universality of research results. In summary, the ability to
diagnose ACL injuries in MRI images based on deep
learning is improved, which provides a reference for the
diagnosis and treatment of patients with knee joint injuries.
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