
The relationship between road traffic collision
dynamics and traumatic brain injury pathology
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Road traffic collisions are a major cause of traumatic brain injury. However, the relationship between road traffic collision dynamics
and traumatic brain injury risk for different road users is unknown. We investigated 2065 collisions from Great Britain’s Road
Accident In-depth Studies collision database involving 5374 subjects (2013–20). Five hundred and ninety-five subjects sustained a
traumatic brain injury (20.2% of 2940 casualties), including 315 moderate–severe and 133 mild–probable injuries. Key pathologies
included skull fracture (179, 31.9%), subarachnoid haemorrhage (171, 30.5%), focal brain injury (168, 29.9%) and subdural haema-
toma (96, 17.1%). These results were extended nationally using.1 000000 police-reported collision casualties. Extrapolating from
the in-depth data we estimate that there are �20000 traumatic brain injury casualties (�5000 moderate–severe) annually on Great
Britain’s roads, accounting for severity differences. Detailed collision investigation allows vehicle collision dynamics to be understood
and the change in velocity (known as delta-V ) to be estimated for a subset of in-depth collision data. Higher delta-V increased the risk
of moderate–severe brain injury for all road users. The four key pathologies were not observed below 8 km/h delta-V for pedestrians/
cyclists and 19 km/h delta-V for car occupants (higher delta-V threshold for focal injury in both groups). Traumatic brain injury risk
depended on road user type, delta-V and impact direction. Accounting for delta-V, pedestrians/cyclists had a 6-times higher likelihood
of moderate–severe brain injury than car occupants.Wearing a cycle helmet during a collision was protective against overall andmild-
to-moderate-to-severe brain injury, particularly skull fracture and subdural haematoma. Cycle helmet protectionwas not due to travel
or impact speed differences between helmeted and non-helmeted cyclist groups.We additionally examined the influence of the delta-V
direction. Car occupants exposed to a higher lateral delta-V component had a greater prevalence of moderate–severe brain injury,
particularly subarachnoid haemorrhage. Multivariate logistic regression models created using total delta-V value and whether lateral
delta-V was dominant had the best prediction capabilities (area under the receiver operator curve as high as 0.95). Collision notifica-
tion systems are routinely fitted in new cars. These record delta-V and automatically alert emergency services to a collision in real-time.
These risk relationships could, therefore, inform how routinely fitted automatic collision notification systems alert the emergency ser-
vices to collisions with a high brain injury risk. Early notification of high-risk scenarios would enable quicker activation of the highest
level of emergency service response. Identifying those that require neurosurgical care and ensuring they are transported directly to a
centre with neuro-specialist provisions could improve patient outcomes.
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Abbreviations: ACN= automatic collision notification; AIS= abbreviated injury scale; AUC= area under the curve; CI= confidence
interval; DAI= diffuse axonal injury; MW=Mann–Whitney; RAIDS=Road Accident In-Depth Studies; ROC= receiver operator
characteristic; RR= relative risk; RTC= road traffic collision; SAH= subarachnoid haemorrhage; SDH= subdural haematoma;
TBI= traumatic brain injury; TRL=Transport Research Laboratory; VRU= vulnerable road user

Graphical Abstract

Introduction
Each year, 1.35 million people are killed in road traffic colli-
sions (RTCs) globally, with at least 50 million people surviv-
ing after sustaining injuries.1 Traumatic brain injury (TBI) is
a leading cause of death and disability following RTCs, with
an estimated 34 million people sustaining TBI in RTCs glo-
bally each year.2 Almost 70% of all RTC fatalities involve
a head injury, with 32% due to isolated head injuries.3 In
Europe, RTCs are the commonest cause of severe TBI.4–6

The majority of those injured are ‘active adults’ aged
16–55 years. This produces major long-term socioeconomic
impacts, with TBI estimated to cost the global economy
approximately $US400 billion annually.7

RTCs commonly lead to a range of TBI pathologies. The
type of injury relates to the RTC dynamics.8,9 However, des-
pite the global impact of TBI, there is limited understanding

of this relationship. This is a key knowledge gap because re-
ducing the risks associated with RTCs depends on an under-
standing of how forces produced during a collision cause
TBI. A large in-depth database has been developed in
Great Britain (GB) in recent years that provides detailed in-
formation about dynamics from real-world collisions as
well as information about any TBI sustained. The Road
Accident In-Depth Studies (RAIDS) database is collected
on behalf of the UK Government’s Department for
Transport with the aim of reducing serious injuries and fatal-
ities on British roads.10 It contains information about both
the collision scenario (including vehicle dynamics) and clin-
ical information from hospital records and post-mortem
reports. The availability of this data allows a detailed inves-
tigation of the risk of TBI associated with specific types of
collision in different types of road users, including those
more vulnerable to injury such as cyclists and pedestrians.
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RTC reconstruction enables the vehicle dynamics and bio-
mechanics of vulnerable road users (VRUs) involved in a col-
lision to be estimated from evidence collected after the event,
such as scene photographs, CCTV or dashcam footage and
vehicle damage profiles.11 This information provides the op-
portunity to investigate the causation of TBI. The total
change in velocity during the impact phase of each vehicle in-
volved in a collision (delta-V ) is a key measure. This can be
calculated retrospectively and is known to predict overall in-
jury severity.12,13 Delta-V provides an indication of the
change in kinetic energy a vehicle is exposed to during a col-
lision, some of which is transferred to the occupants causing
injury. Total delta-V takes into account both lateral
(side-to-side) and longitudinal (front-to-back) delta-V, with
this directionality influencing injury risk.14

Severe TBI is more common in car occupants involved in
side-impact collisions, which are dominated by lateral
delta-V.14 Previouswork has often used compoundmeasures
of injury severity such as the abbreviated injury scale
(AIS).15–17 This approach limits the ability to investigate
the causation of different TBI pathologies as it can be difficult
to accurately obtain information about the underlying TBI
pathology from the AIS region severity score recorded in da-
tabases and some types of TBI can be omitted from the indi-
vidual AIS injury codes.18–20 A small amount of work has
focused on the relationship between specific TBI pathologies
and RTC dynamics. Two studies showed that collision dy-
namics (including delta-V ) correlate with the volume of sub-
dural and intraventricular haemorrhage.21,22 RAIDS allows
us to extend this work by providing detailed information
about the nature of TBI pathology both from clinical records
and post-mortem reports of more than 5000 subjects in-
volved in over 2000 collisions. This allows the specific inves-
tigation into the relationship between RTC dynamics and
TBI pathologies including subdural haematoma (SDH), sub-
arachnoid haemorrhage (SAH), extradural haematoma, fo-
cal brain injuries and diffuse axonal injury (DAI).

The effects of collisions are different for different types of
road users. VRUs constitute significant numbers of the over-
all casualties, with motorcyclists making up 24% of all cas-
ualties in one study, and pedestrians and cyclists 17%
each.23 There is a higher risk of TBI in VRUs which includes
pedestrians, cyclists and motorcyclists. For example, one
European study showed increased odds ratios for severe
TBI compared with restrained car occupants of 18.1 for non-
helmeted motorcyclists, 9.2 for pedestrians, 3.9 for unrest-
rained car occupants and 2.8 for helmeted motorcyclists.24

One study showed a relationship between TBI and vehicle
impact speed in pedestrians and cyclists.25 Another showed
that cyclists most commonly sustained serious TBI with
loss of consciousness (LOC) and base of skull fractures.26

However, there has been little systematic work relating vehi-
cle dynamics and impact biomechanics to TBI in different
types of road users, despite the obvious differences in expo-
sures between restrained vehicle occupants and VRUs.

Here, we use the RAIDS database to study 5374 subjects in-
volved in GB injury-causing RTCs between 1 April 2013 and

31 March 2020. Our work provides the first description of
TBI prevalence from RAIDS data. We scale to the national
(GB) level using data of.1000000 police-recorded RTC cas-
ualties to provide the first GB-wide estimates of TBI pathology
prevalence and risk for different road users due to RTCs de-
rived from collision data. The change in velocity (delta-V ) cal-
culated for the vehicles involved in eachRAIDS collision is then
related to the risk of sustaining different types of TBI. A
free-text search algorithm we developed enabled us to ex-
tract information directly from the detailed injury descrip-
tions, ambulance notes, clinical reports and post-mortem
information that would have been inaccessible using AIS in-
jury codes alone, enabling a more complete analysis of the
data. For .5000 casualties involved in collisions, we (i) esti-
mated TBI severity (using the Mayo classification system)
and identified TBI pathologies; (ii) calculated the prevalence
of TBI severity and pathologies in RAIDS and scaled these re-
sults to the GB population; (iii) investigated vehicle dynamics
and biomechanical descriptions of the collisions for different
road users and (iv) investigated the relationship between
delta-V and TBI, producing injury risk curves for car occu-
pants and a combined pedestrian–cyclist road user group.

Methods
In-depth collision data collection
RAIDS data collection is a collaborative effort between the po-
lice, hospitals and dedicated on-site investigation units from
Loughborough University and the Transport Research
Laboratory (TRL). All cases have.3000 fields detailing the ca-
sualty’s injuries, vehicle information, collision causation and
environmental factors. Injury information comes from clinical
records (including ambulance notes, hospital records and any
radiology and post-mortem text available). There are two types
of RAIDS collision investigations: on-scene and retrospective
investigations. All investigations use collision reports
and photos are received from dedicated police Collision
InvestigationUnits.On-scene investigations are additionally at-
tendedbyTRL’s dedicated collision investigation team.Further
information can be found in Supplementary Table 1.

Study in-depth data characteristics
and inclusion criteria
Weselecteddata froma7-yearperiod from1April 2013 to31
March 2020. This includes collection Phases 1, 2 and 2
(Extension) (see SupplementaryTable1 fordetails).Our sam-
ple included 5374 subjects involved in 2065 collisions and
2940 casualties. Of the 5112 subjects with known gender in-
formation, 37%were female. Of the 4807 with known ages,
79% were 16–64 years, 13% were .64 years and 8% were
children,16 years old. The casualty group included 252 fa-
talities, of which 227 (90%) had post-mortem information
available. Clinical information sources included ambulance
notes, hospital notes, patient questionnaires and radiology

Brain trauma biomechanics on the roads BRAIN COMMUNICATIONS 2022: Page 3 of 20 | 3

http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac033#supplementary-data
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac033#supplementary-data


reports. Three hundred and eighty-eight less seriously injured
subjects additionally returned self-report questionnaires.
Where relevant to the collision event, pre-existing medical
conditions were also known. The primary purpose of the
RAIDSdatabase is to determine howandwhy serious injuries
and fatalities are occurring on the roads, to mitigate against
them. It is important to note that the collisions included in
the database tend to be more serious. A full breakdown of
the inclusion criteria is shown in Supplementary Table 1.

Traumatic brain injury classification
RAIDS uniquely captures detailed clinical and collision in-
formation, making our analysis of howRTC dynamics relate
to TBI severity and pathology possible. However, as RAIDS
is not primarily intended for TBI research, certain data ele-
ments that are commonplace in large studies designed speci-
fically for TBI research are not available. Therefore, we
extracted information using the free-text search algorithm
was used to estimate the TBI severity using the Mayo

Clinic Classification27 (Fig. 1). The Mayo system combines
several TBI indicators including the Glasgow coma scale
(GCS), LOC, post-traumatic amnesia and the presence of
specific pathology, including brain haemorrhages, contu-
sions and skull fracture for classification. The Mayo system
incorporates clinical and neuroimaging information with
GCS and LOC, allowing for the most comprehensive classi-
fication with the data we had available to us. GCS was
known for 1725 subjects (62.4% of those injured), LOC
on arrival was known for 1783 subjects (62.4% of those in-
jured) and neuroimaging information was available for at
least 398 RAIDS subjects.

Free-text search algorithm
We developed a free-text search algorithm in Python that ex-
tracted TBI information using regular expression search pat-
terns. The search terms related to TBI pathology, symptoms
and treatments selected by the authors and reviewed by an
expert histopathologist and TBI clinician can be found in

Figure 1 Free-text search algorithm visual summary. Free-text search algorithm visual summary showing the classification of TBI from the
RAIDS dataset. (A) RAIDS data are collected and compiled; (B) free-text search algorithm is used to identify relevant information from all text
recorded in RAIDS; (C) TBI severity and pathology present for each subject are found by recording terms found in the database and extracting the
relevant sentence for context; (D) the extracted sentences are used to identify and remove false positives; (E) each casualty is given a final
maximum TBI severity label from their injuries.
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Supplementary Table 2. The search terms were refined using
RAIDS Phase 1 and Phase 2 data (2013–19) and validated
manually for 507 subjects involved in 200 collisions from
Phase 2 Extension data (2019–20) obtaining ≥99.4% agree-
ment. Ourmethod also captured all AIS injury-coded pathol-
ogies it was possible to directly compare (SDH, SAH and
skull fracture). We accounted for misspelling and acronyms
and extracted the sentence the term appeared in to enable
false positives to be removed (e.g. where ‘no’ preceded a
search term) before classifying each subject by overall
Mayo severity.

Scaling TBI severity and pathology in
RAIDS to the police-reported GB
collisions
The RAIDS database contains subjects who are generally
more severely injured and is, therefore, not a representative
subset of all GB collisions. The most comprehensive GB
RTC database, STATS19, does not contain specific injury in-
formation.28 Therefore, to estimate TBI prevalence in police-
reported collisions nationally (2013–19), we use both
RAIDS and STATS19 scale our findings from RAIDS using
1 102 567 police-reported RTC casualties (12 881 fatalities,
152 788 serious injuries and 951 923 slight injuries). We
use seven fields present in both RAIDS and STATS19
(road user type, casualty age, lighting level, speed limit,
road class and vehicle age and overall injury severity) to
calculate the scaling weights. We use χ2-testing to confirm
that each variable distribution differs significantly be-
tween datasets. The ‘rpart’ recursive partitioning R pack-
age decision trees were used to select which one or two
fields which best predict overall injury severity.29 Cases
in each dataset are clustered by subcategories (e.g. an
age group and road user type) and the cluster proportion
of the dataset as a whole is calculated. A mapping is cre-
ated between the corresponding cluster proportions.
Our methodology is similar to other scaling methods be-
tween in-depth and national sources, refined by TRL sta-
tisticians to fit the nuances of GB data.30 A full description
of the scaling method is given in the Supplementary
material along with calculated weights used for the scal-
ing (Supplementary Tables 3–6).

Retrospective delta-V calculation
The detailed collision information recorded in RAIDS speci-
fically enables metrics describing vehicle dynamics and VRU
biomechanics to be calculated even when these are not re-
corded by the vehicle during the collision. Collisions are split
into three main phases: pre-crash, impact and post-crash
(Fig. 2Ai). Delta-V is calculated during the impact phase
i.e. from the moment of impact to the moment of separation,
providing a measure of the change in velocity of a vehicle or
VRU during the impact phase (Fig. 2Aii and Bii). Delta-V re-
lates to overall injury severity.14,31,32 Delta-V in this study is
of the vehicle or VRU overall, not the delta-V local body

region (e.g. head), which can vary based on the specific kine-
matics of the collision. Broad collision dynamics are different
for vehicles and VRUs, so delta-Vwas calculated differently.
Vehicle delta-V is determined by RAIDS investigators from
crush profile measurements and (where available) initial tra-
jectories (Fig. 2A). The AiDamage programme is used to re-
construct the collision from this information, applying the
computer reconstruction of automobile speeds on the high-
way (CRASH) algorithm to determine energy-related para-
meters including delta-V.33,34 Longitudinal (front-to-back),
lateral (side-to-side) and total delta-V are calculated for
each vehicle (Fig. 2Aii). Delta-V calculated using CRASH3
accurately reflects in-vehicle sensor measurements, particu-
larly for car-to-car impacts (to within 2 km/h), which make
up the majority of cases.35 Small differences (mean absolute
error −4 km/h) have been shown to exist between CRASH3
delta-V and event data recorder (EDR) in-vehicle sensor
measurements of delta-V in European vehicles. We chose
not to apply a correction to account for this small discrep-
ancy because the precise relationship to the fleet represented
in our dataset is unknown.

Occupants in all cars with valid delta-V estimates from
single-impact phases were included. Where multiple im-
pacts were present, delta-V was included only if one of
the impact phases was clearly injury-causing. Pedestrian
delta-V is approximated as the impact speed of the vehicle
because most pedestrians move slowly and were injured
while crossing (no velocity component parallel to vehicle
velocity). Cyclists travel at higher speeds, sharing the car-
riageway with vehicles. Therefore, their initial speed and
direction are influential and taken into account (Fig. 2B).
The parallel component of cyclist velocity is combined
with the vehicle impact speed (ΔVVRU=Vcar initial+
VVRU initial). This method assumes the VRU is accelerated
to the speed of the impacting vehicle, hence VRUs directly
runover (e.g. those already lying in the road prior to im-
pact) were excluded as this assumption was not upheld.
Further details on delta-V calculation can be found in
the Supplementary material.

TBI prevalence and relative risk
calculation for different road users
Relative risk (RR) was used to estimate the risk of TBI
pathologies and severities for different road user groups in
police-reported GB RTCs. RR was calculated by dividing
the rate in the exposed group a/A by the rate in the unex-
posed (or less exposed) group b/B,

RR = a/A
b/B

where a and b are the number who sustained a given pathol-
ogy or severity in the exposed and unexposed groups, respec-
tively, and A and B are the total number in the exposed
and unexposed groups, respectively.36 A 95% confidence
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Figure 2 Calculating delta-V for different road users. Calculating delta-V for different road users. RAIDS collisions (n= 2065) include:
(A) vehicle-to-vehicle and (B) vehicle-to-vulnerable road user (VRU i.e. cyclists and pedestrians) collisions. Delta-V calculation differs forA and B
due to the differences in collision dynamics. A(i) shows the three main phases of vehicle-to-vehicle collisions. A(ii) shows example vehicle
velocities for two vehicles (V1 and V2) during a collision. The distinct delta-V for each vehicle (ΔVV1 andΔVV2) correspond to the change in velocity
during the impact phase. A(iii) shows how delta-V is calculated retrospectively from crush measurements and vehicle trajectories using the
AiDamage programme and CRASH algorithm. B(i) illustrates the VRU delta-V corresponding to the impact phase as the VRU is accelerated up to
the speed of the other vehicle involved in the collision. B(ii) shows how the other vehicle’s velocity is used in conjunction with VRU velocity to
calculate the relative delta-V between the VRU and vehicle involved.
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interval (CI) on the RR was calculated using:

RR95%CI = RR+ exp(ln(RR)+ 1.96× SE(ln(RR)))

where the standard error of log RR is given by

SE(ln(RR)) =
����������������������������
1/a+ 1/b− 1/A− 1/B

√

χ2-tests were used to determine statistically significant differ-
ences between pathology for different road users.37

Analysis of delta-V severity and
pathology using normalized
cumulative distributions
Normalized cumulative frequency distributions were calcu-
lated and plotted in Python using Bokeh with 10 000 itera-
tions used to produce bootstrapped 95% CIs.38 The
relationship between delta-V distributions and TBI were
analysed in groups with different TBI severities pathology
compared to an injured group without TBI and an uninjured
group. We determined 95% CIs using 10 000 bootstrap re-
samples and calculated 95% CIs from the 2.5th and 97.5th
percentiles of the 10 000 ranked values at each point.39,40

Shapiro–Wilk normality testing showed that data in the ma-
jority of the pathology groups and TBI severity groups were
not normally distributed. Bootstrapping does not rely on
parametric statistics and is, therefore, well-suited to calculat-
ing CIs for our dataset. For cross-group analysis of the TBI
pathology, we applied a one-sided Mann–Whitney (MW)
U-test to determine whether delta-V distribution showed dif-
ferences across groups.41

Determining how dominant vehicle
delta-V component direction affects
TBI prevalence
We next examined the relationship between lateral and long-
itudinal delta-V and TBI. We first considered the groups ex-
posed to delta-V dominated by the one component and then
the groups of car occupants exposed to only lateral and only
longitudinal delta-V components using χ2 and RR analysis.
For non-normally distributed data, Kruskal–Wallis one-way
ANOVA tests were used to compare delta-V distributions for
different TBI groups. There is a potential confounding factor
where higher TBI prevalence in one group could be caused by
higher delta-V distribution in the delta-V component which
dominates it. Hence, we applied a one-sided MW U-test to
determine whether the lateral delta-V distribution is higher
than the corresponding longitudinal delta-V distribution.41

Logistic regression for the calculation
of injury risk
We used binary logistic regression to produce injury risk
curves for different road users and TBI pathologies using

total delta-V.42–44 To further understand how RTC dynam-
ics influence TBI in car occupants, we constructed a multi-
variate logistic regression model using a binary flag for
dominant lateral delta-V and total delta-V. We additionally
used multivariate logistic regression with the road user
group and total delta-V as predictors to determine the
odds ratio between road user groups. We ensured our
sample sizes were large enough using the guideline
N= 10k/p (k= no. of covariate independent variables and
p= smallest proportion of negative/positive cases in the
population).45 The Python scikit-learn package was used to
create the logistic regression model with limited-memory
Broyden–Fletcher–Goldfarb–Shanno optimization and no
regularization.46 Stratified k-fold cross-validation was used
to create separate testing and training datasets, avoid overfit-
ting to the training dataset and account for unbalanced
groups. Average performance was calculated across the
k-folds. k= 5 was chosen to ensure representative testing
and training datasets. k-fold cross-validation was repeated
200 times with prespecified data seeds used to ensure repeat-
ability when randomly shuffling the data prior to partition-
ing at the start of each iteration. The average risk and 95%
CIs were determined from 1000 iterations using the 50th,
2.5th and 97.5th percentile ranked risk values at each point.
To determine the predictive capability of our injury risk
curves, we use the receiver operator characteristic (ROC)
and associated area under the curve (AUC) averaged over
all 1000 iterations. We provide further details on this meth-
od in the Supplementary material including the resulting pre-
cision and recall values (Supplementary Table 7).

Statistical analysis
The application of key statistical techniques is summarized
in this section. Statistical analyses applied within this manu-
script are outlined in full in the previous method subsections,
giving their context to the different sub-analyses. One-sided
MW U-tests were used for determining whether there were
statistically significant differences between delta-V distribu-
tions (both between different distributions in the same group
and between the same distribution for different groups).
χ2-tests were used to determine statistically significant differ-
ences between groups (e.g. pathology rates for different road
users) and to test independence in the scaling methodology.
We use the area under the ROC curve to compare logistic re-
gression models. We calculate the standard error associated
with the RR ratio. 95% CIs, test statistics and P-values are
reported whenever possible.

Ethical approval summary
RAIDS collection and use require very stringent ethical ap-
provals and data security processes. These include approved
applications for both a Confidentiality Advisory Group and
the Research Ethics Committee and required the completion
of a Data Security Protection Toolkit for ethical approval.
To collect anonymized injury data, RAIDS has an agreement
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under Section 251. Section 251 of the NHS Act 2006 and the
Regulations enable the common law of duty of confidential-
ity to be temporarily lifted so that confidential patient infor-
mation can be transferred to an applicant without the
discloser being in breach of the common law duty of confi-
dentiality. Therefore, RAIDS does not seek permission
from those who are injured. If a person would like their in-
formation removed, they are able to request this in writing.
Approval to use the database for specific projects is granted
by the Department for Transport. The AutoTRIAGE project
approval includes all tasks that have been conducted for this
publication. Additionally, all outputs, including this sub-
mitted manuscript, are checked thoroughly for anonymity
and to ensure all protocols have been correctly followed
prior to dissemination.

Data availability
The data required for this study has restricted access and
can be obtained with permission from the Department
for Transport (contact: RAIDS@dft.gsi.gov.uk). The cor-
responding author is happy to be contacted and direct
other researchers in the data used once this access is ob-
tained. Derived data supporting the findings of this study
are available from the corresponding author on reasonable
request.

Results
TBI prevalence in the RAIDS
database
Approximately half (47.9%, 1409 of 2940) of all casualties
sustained an injury to the head and neck (AIS2005 region)
(Fig. 3). Around 595 RAIDS subjects sustained TBI of any se-
verity (20.2% of 2940 casualties, 11.1% of 5374 subjects).
Of those with TBI, 315 (52.9%) were moderate–severe,
133 (22.4%) were mild–probable and 145 (24.4%) were
symptomatic–possible. Distinct groups of road users sus-
tained different rates of TBI (χ2(6)= 334.9, P, 0.001). The
pedestrian, cyclist and motorcyclist VRU group had a higher
prevalence of TBI compared with vehicle occupants (χ2(1)=
279.1, P,0.001). They also had a higher prevalence of
moderate–severe TBI (χ2(1)= 398.1, P, 0.001). Fifty-two pe-
destrians (36.1% of 144 RAIDS pedestrians), 29 cyclists
(25.9% of 112 RAIDS cyclists) and 46 motorcyclists
(17.2% of 267 RAIDS motorcyclists) sustained moderate–
severe TBI. In contrast, 166 car occupants (4.2% of 3992
RAIDS car occupants), 15 van occupants (4.1% of 369
RAIDS van occupants), 7 heavy goods vehicle occupants
(2.7% of 262 RAIDS heavy goods vehicle occupants) sus-
tained moderate–severe TBI.

The 595 RAIDS TBI casualties presented with a range of
pathologies (Fig. 3). One hundred and seventy-one (3.2%
of 5374 subjects) sustained a SAH. The prevalence of SAH
differed across groups (χ2(6)= 293.0, P, 0.001) and was

most prevalent in the cyclist group. Around 23.2% of 112
RAIDS cyclists sustained an SAH followed by 17.4% of
144 RAIDS pedestrians and 10.1% of 267 RAIDS motorcy-
clists, compared with 2.3% of 3992 RAIDS car occupants.
One hundred and sixty-eight (3.1% of 5374 subjects) sus-
tained a focal brain injury. The prevalence of focal injury
also differed across groups (χ2(6)= 250.6, P, 0.001) and
was more prevalent in pedestrians, cyclists andmotorcyclists
than in vehicle occupants (χ2(1)= 194.5, P, 0.001). About
22.2% of 144 RAIDS pedestrians sustained a focal brain in-
jury followed by 11.6% of 112 RAIDS cyclists and 9.4% of
267 RAIDS motorcyclists, compared with 2.0% of 3992
RAIDS car occupants. The focal injury was significantly
higher for pedestrians than for two-wheeler road users
(cyclists and motorcyclists) (χ2(1)= 11.6, P, 0.001). One
hundred and seventy-nine (3.3% of 5374 subjects) sustained
a skull fracture, which was most prevalent in the pedestrian
group (23.6%of 144RAIDS pedestrians). Skull fracture pre-
valence was higher for the pedestrian, cyclist and motorcy-
clist VRU group than vehicle occupants (χ2(1)= 195.8, P,

0.001) and higher for pedestrians than two-wheeler road
users (cyclists and motorcyclists) (χ2(1)= 13.3, P, 0.001).
Ninety-six (1.8% of 5374 subjects) sustained an SDH, which
was most prevalent in the pedestrian group (11.9% of 144
RAIDS pedestrians). SDH prevalence was higher for the pe-
destrian, cyclist and motorcyclist VRU group than vehicle
occupants (χ2(1)= 77.8, P, 0.001) and higher for pedestrians
than two-wheeler road users (cyclists and motorcyclists)
(χ2(1)= 77.6, P, 0.001). Other less frequent pathologies in-
cluded DAI (26, 0.5% of 5374 subjects) and extradural
haemorrhage (16, 0.3% of 5374 subjects).

The protective effect of cycle helmets
during collisions
The vast majority of motorcyclists in our cohort wore hel-
mets, in line with legal requirements. We, therefore, exam-
ined the cyclist population, which included a significant
portion of non-helmeted cyclists. We considered the subset
of 94 (84% of 112) cyclists with known helmet status.
There was an almost exactly even split between those
who wore a helmet (46, 49% of 94 cyclists) and those
who did not (48, 51% of 94 cyclists). The prevalence of
TBI of any severity was higher in the non-helmeted group
(χ2(1)= 6.84, P= 0.009). The prevalence of mild-to-moderate–
severe TBI was also higher in the non-helmeted group
(χ2(1)= 5.15, P= 0.023), as well as the prevalence of skull
fracture (Fisher exact P= 0.008) and SDH (Fisher exact
P= 0.006). Two helmeted cyclists and 12 non-helmeted
cyclists sustained a skull fracture. No helmeted cyclists sus-
tained an SDH, compared with eight non-helmeted cyclists
who did.

We investigated whether a difference in the impact and
travel speeds between the helmeted and non-helmeted
groups was contributing to the protective effect of helmets
(e.g. non-helmeted cyclists being impacted by vehicles travel-
ling at higher speeds or because they were cycling faster). Of
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the 94 cyclists with known helmet status, we, therefore,
examined two additional subsets with known speed informa-
tion. Among the 68 cyclists where both helmet status and the
speed of the impacting vehicle were known, 37 non-helmeted

(54% of 68) cyclists still showed a significantly higher preva-
lence of overall TBI, mild-to-moderate–severe TBI, skull
fracture and SDH. Similarly, there was a higher prevalence
of TBI among the 32 non-helmeted (55% of 58) cyclists

Figure 3Traumatic brain injury prevalence in RAIDS. A summary of theTBI population in the RAIDS database.Numbers across all road user
groups for a range of TBI severities and fourmost prevalent distinct pathologies are givenwith the corresponding percentage of all study subjects. In this
figure, the percentages show the proportion of subjects in the column’s road user group that sustained the pathology in question. For example, there
were 34 of 144 pedestrians who sustained a skull fracture, giving 23.6%. Thirty-two subjects of uncommon vehicle types are not given separate columns
in this table but are included in the total count. Distinct groups of road users sustained different rates of TBI (χ2(6)= 334.9, P, 0.001). The pedestrian,
cyclist and motorcyclist vulnerable road user group had a higher prevalence of TBI compared with vehicle occupants (χ2(1)= 279.1, P, 0.001).
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with known travel speeds prior to the collision. In both sub-
sets, there were no significant differences in the speed distri-
butions between the helmeted and non-helmeted cyclist
populations (cyclist travel speed: UMW= 425.5, P= 0.443;
vehicle impact speed: UMW= 487.0, P= 0.859).

TBI prevalence on GB’s roads
From 1 April 2013 to 31 December 2019, STATS19 re-
corded 1 190717 police-reported casualties and 12881 fa-
talities on GB’s roads (�176 000 casualties annually).
Excluding 6 months where no RAIDS data were collected,
the remaining 75-month period included 1 102 567
STATS19 casualties. Extrapolating from our RAIDS findings
we estimate that�20 000 (11% of�176 000 casualties) sus-
tain a TBI each year: 4900 (24.6% of TBI casualties) moder-
ate–severe, 5074 (25.4% of TBI casualties) mild–probable
and 10 000 (50.0% of TBI casualties) symptomatic–possible
(Fig. 4). Of the estimated 10 000 who sustain a mild–
probable or moderate–severe TBI annually, we estimate
2800 (28.0%) sustain a skull fracture, 2700 (27.3%) sustain
a focal brain injury, 2000 (20.5%) sustain an SAH and 1200
(12.1%) sustain an SDH.

Relative risk of TBI for different road
users in GB (scaled from RAIDS)
All VRUs had an increased risk of moderate–severe TBI com-
pared with car occupants. Pedestrians, motorcyclists and cy-
clists (known to be underrepresented in STATS19) were 3.6,
2.7 and 1.3 times more likely to sustain a moderate–severe
TBI than car occupants [RRPED (CI95%): 3.65 (3.54–3.77);
RRMC (CI95%): 2.67 (2.58–2.77); RRCYC (CI95%): 1.27
(1.21–1.33)]. Pedestrians were 5 times more likely to have
focal brain injury [RRFOCAL (CI95%): 5.35 (5.13–5.57)]
and 3 times more likely to sustain a skull fracture and SAH
[RRSF (CI95%): 3.11 (2.99–3.24); RRSAH (CI95%): 2.83
(2.70–2.97). Motorcyclists have a higher RR of focal brain
injury and SAH than car occupants [RRFOCAL (CI95%):
3.25 (3.08–3.41); RRSAH (CI95%): 2.59 (2.45–2.73)].

The relationship between total
delta-V and moderate–severe TBI
We next examined the relationship between total delta-V
and TBI severity for car occupants (n= 738) and a com-
bined pedestrian–cyclist VRU group (n= 142) (Fig. 5).
Car occupants who sustain moderate–severe TBI (n= 39)
had higher total delta-V distributions than the uninjured
(n= 182) (UMW= 527.5, P, 0.001) and injured without
TBI (n= 472) groups (UMW= 4135.5, P,0.001). No car
occupants sustained moderate–severe TBI below 20 km/h
total delta-V threshold. In contrast, 42% of uninjured car
occupants were exposed to total delta-V below 20 km/h
(Fig. 5B). The combined pedestrian–cyclist VRU moderate–
severe TBI group (n= 42) also had higher total delta-V distri-
butions than the injured without TBI (n= 79) group (UMW=

778.0,P, 0.001).Therewere further differences in the thresh-
olds above which specific TBI pathologies occur for car occu-
pants (Fig. 5A–F) and the combined pedestrian–cyclist VRU
group (Fig. 5G–L). Key pathologies examined were not ob-
served below 19 km/h for car occupants (Fig. 5C–F) and be-
low 8 km/h for VRUs (Fig. 5I–K). The focal brain injury had
the higher threshold delta-V comparedwith the other pathol-
ogies for both car occupants (28 km/h, Fig. 5F) and VRUs
(16 km/h, Fig. 5L). The four cyclists who sustained focal in-
jury experienced total delta-V. 40 km/h. We did not have
sufficient numbers within our sample to produce cumulative
delta-V distributions for motorcyclists or vans and heavy
goods vehicles.

Lateral delta-V exposure increases
car occupant TBI risk
We next examined the effect of impact direction on TBI risk.
Lateral and longitudinal delta-V was estimated for car occu-
pants, where sufficient information was available (n= 738).
Cumulative frequency curves for groups with moderate–
severe TBI, injured subjects who did not sustain TBI and un-
injured subjects were then calculated for lateral and longitu-
dinal delta-V components (Fig. 6). Ten car occupants with
equal lateral and longitudinal delta-V components were ex-
cluded.Car occupants involved in collisionswith a higher lat-
eral delta-V (n= 116) showed a higher prevalence of
moderate–severe TBI than those with higher longitudinal
delta-V (n= 614) (χ2(1)= 5.36, P= 0.021) and 2.19 RR ratio,
(CI95%:1.12–4.30).This differencewasnot drivenby ahigher
delta-V distribution as the lateral-dominant group had lower
total delta-V (UMW= 28815.5,P,0.001) and lower domin-
ant component distributions (UMW= 2315.0, P, 0.001)
compared with the longitudinal-dominant group (Fig. 6A).

A proportion of the collisions (37%, n= 270) involved both
lateral and longitudinal delta-V components, so we performed
a sub-analysis comparing collisions where car occupants were
exposed only to lateral or longitudinal delta-V. Car occupants
exposed only to lateral delta-V only (n= 61) had a higher risk
of moderate–severe TBI than those exposed only to longi-
tudinal delta-V groups (n= 407) [χ2(1)= 7.99, P= 0.005;
RR (CI95%): 3.34 (1.40–7.93)]. SAHwas also more prevalent
for car occupants only exposed to lateral delta-V (χ2(1)= 5.41,
P= 0.020) and had a 3.81RR ratio (CI95%: 1.15–12.64). The
lateral delta-V distributions were lower than the correspond-
ing longitudinal delta-V distributions (Fig. 6B) (moderate–
severe: UMW= 10.0, P= 0.002; injured without TBI:
UMW= 3,464.5, P= 0.001, overall: UMW= 9,811.0, P=
0.004).

TBI risk increases with increasing
total delta-V and road user
vulnerability
Binary logistic regression was used to generate injury risk
curves with delta-V as the predictor and TBI severity and
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pathologies as the outcome (Figs 7 and 8). The risk of sus-
taining a moderate–severe TBI was significantly higher for
the combined pedestrian–cyclist VRU group than car

occupants at all delta-Vs (Fig. 7A) (UMW= 8894.0,
P, 0.001). Delta-V was also a significant predictor of out-
come for all four most prevalent moderate–severe TBI

Figure 4 Summary of RAIDS-STATS19 scaling results. A summary of RAIDS-STATS19 scaling results showing the number of casualties
sustaining TBI, split by severity and pathology, in RAIDS from 1 April 2013 to 31 December 2019 (excluding the 6-month period after the end of
Phase 1 but before the start of Phase 2 collection in the first two quarters of 2016 when no RAIDS data were collected). The GB average estimated
annual numbers during this period.
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Figure 5 Brain injury pathology normalized cumulative frequency distributions. Normalized cumulative frequency distributions of
total delta-V (km/h) are shown for TBI severity and a range of pathologies. The further to the right a curve is shifted, the higher the overall total
delta-V distribution is. In A and G, the curve corresponding to mild TBI is shown in orange. In the remaining figures, the red curve shows
moderate–severe TBI or key pathologies (labelled on the left-hand side of the figure). All uninjured car occupants (green curve,A–F) experienced
delta-V≤ 55 km/h and car occupant casualties without TBI (blue curve, A–F) experienced delta-V≤ 75 km/h. In the pedestrian–cyclist group,
there were insufficient numbers of uninjured subjects, so only casualties without TBI are shown (blue curves, G–L). The y-axis shows the
proportion of the group which sustained their injury at or below the threshold on the x-axis. For example, 50% of car occupants with moderate–
severe TBI were exposed to 45 km/h total delta-V or less. Corresponding shaded regions show 95% confidence intervals. Of 738 car occupants
with known delta-V, 182 were uninjured, 472 were injured without TBI and 84 sustained TBI (24 symptomatic–possible, (A) 21 mild–probable and
(B) 39 moderate–severe). Car occupants with known delta-V included (C) 14 with a skull fracture, (D) 14 with SDH, (E) 24 with SAH and (F) 19
with focal injury. Of 142 vulnerable road users with known kinematics, 3 were uninjured, 79 were injured without TBI and 60 sustained TBI (6
symptomatic–possible, (G) 12mild–probable and (H) 42moderate–severe). VRUs with known delta-V included (I) 25 with skull fracture, (J) 9 with
SDH, (K) 19 with SAH and (L) 21 with focal injury.
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pathologies (Fig. 7B andC) with the P-values associatedwith
the Z-test for each pathology and road user group shown in
Supplementary Fig. 1A–H.

Within the same road user group, there is significant over-
lap between the different TBI pathology risk curves which is
unsurprising as numerous subjects sustained multiple TBI
pathologies. For car occupants, SDH, SAH and focal injury
are within 95% CIs of one another, with a lower risk of a
skull fracture at a given delta-V (Fig. 7B). Contrastingly,
skull fracture risk is greatest for VRUs, followed by SAH
and focal injury which have similar risks (Fig. 7C). The
odds ratios calculated from the coefficients of multivariate
logistic regression with total delta-V and road user group
as predictors (Z-test, P≤0.002 in all instances) differed by
TBI pathology when accounting for delta-V (Z-test, P≤
0.002 in all instances). For VRUs compared with car occu-
pants, the odds ratio is higher for moderate–severe TBI
[OR (CI95%): 6.84 (4.03–11.63)]. The difference was great-
est for skull fracture [OR (CI95%): 12.32 (5.87–25.87)]
(green lines on Fig. 7B and C), followed by focal injury

[OR (CI95%): 8.34 (4.02–17.29)], SAH [OR (CI95%): 6.55
(3.22–13.30)] and SDH [OR (CI95%): 4.56 (1.72–12.12)].
Further pathology comparisons for different road users can
be found in the supplementary material (Supplementary
Figs 1 and 2).

Predicting moderate–severe TBI risk
with delta-V
Our injury risk curves can be used to predict moderate–
severe TBI risk for someone involved in a collision with a
known delta-V value. Three distinct models to predict mod-
erate TBI are shown with their corresponding ROCAUC

curves to evaluate performance (Fig. 8). For the combined
pedestrian–cyclist group, moderate–severe TBI was differen-
tiated from all other severities (Fig. 8A) and is a fair predictor
of TBI severity [ROCAUC (CI95%): 0.73 (0.55–0.89)]
(Fig. 8D). The predictive capability for the model car occu-
pant group to differentiate moderate–severe TBI from all
other severities (Fig. 8B) is good [ROCAUC (CI95%): 0.81

Figure 6 Comparison of the lateral only and longitudinal only delta-V distributions. Exploration of how the delta-V component
direction affects TBI severity, comparing lateral and longitudinal delta-V distributions for car occupants. (A) shows the dominant delta-V
component distributions for car occupants who experienced lateral-dominant delta-V and longitudinal-dominant delta-V. For moderate–severe
TBI, the lateral-dominant delta-V distribution is significantly lower than the longitudinal-dominant delta-V distribution (UMW= 87.5, P= 0.025),
showing that the delta-V distribution is not a confounding factor. (B) shows the total delta-V distribution for car occupants who experienced only
lateral and only longitudinal delta-V, split by TBI severity group. For moderate–severe TBI and casualties without TBI, the only lateral delta-V
distribution is significantly lower than the only longitudinal delta-V distribution (injured without TBI, shown in blue): UMW= 3464.5, P= 0.001;
moderate–severe, shown in red: UMW= 10.0, P= 0.002), showing that the delta-V distribution is not a confounding factor.
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(0.68–0.93)] (Fig. 8C). When additionally including a flag
for higher lateral delta-V component, this increases margin-
ally [ROCAUC (CI95%): 0.84 (0.75–0.91)] (Supplementary
Fig. 3A). We finally compare a model which differentiates
extremely well between car occupants with moderate–severe
TBI and uninjured car occupants (Fig. 8C). It had a high TBI
detection capability [ROCAUC (CI95%): 0.93 (0.84–1.00)]
(Fig. 8F) demonstrating excellent classification capability
of uninjured and moderate–severe TBI groups in particular.
This again increases further when considering the dominant
delta-V component [ROCAUC (CI95%): 0.95 (0.89–1.00)]
(Supplementary Fig. 3B). Further information about the
two moderate–severe TBI risk models with a baseline of all
other severities (Fig. 8A and B) including precision and recall
corresponding to different risk cut-off thresholds (5–50%)
can be found in Supplementary Table 7.

Discussion
There is a poor understanding of the relationship between col-
lision dynamics and TBI pathology, despite an estimated 34
million people sustaining TBI in RTCs each year.2 This limits
the ability to reduce the risk of significantTBI occurring.We in-
vestigated the interaction between collision dynamics, TBI
pathology and vulnerability (type of road user) using data
from the RAIDS database collected on behalf of the UK
Government’s Department for Transport. Detailed collision
and clinical data were analysed from more than 5000 subjects
involved in RTCs. We described the prevalence of different
types of TBI pathology and model the relationship of injuries
to collision dynamics, characterized by estimated change in ve-
locity of the vehicle or VRUduring the impact phase of the col-
lision (delta-V ). We show that in cyclists, wearing a helmet is
protective against TBI of all severities and moderate–severe

TBI, particularly skull fracture and SDH and that this is not
due to non-helmeted cyclists travelling faster or being impacted
by vehicles travelling at higher speeds. Moderate–severe TBI
risk increased with delta-V and was significantly higher in
VRUs for a given delta-V. The data allowed us to estimate
thresholds of delta-V for different types of TBI and highlighted
the importance lateral delta-V has on increasing TBI risk in car
occupants. The results have the potential to influence trauma
care directly by informing the development of advanced auto-
mated collision notification (ACN) systems that are increas-
ingly being fitted in new vehicles.

Clinical records and post-mortem reports provided infor-
mation about the nature of TBI pathology of 5374 subjects
involved in 2065 collisions. Five hundred and ninety-five
subjects sustained a TBI (20.2% of 2940 casualties) of which
the majority were moderate–severe (52.9% of 595 TBI sub-
jects). SAH, focal brain injury, skull fracture and SDH were
all common pathologies. As expected, the risk of moderate–
severe TBI was significantly (6 times) higher for VRUs than
for car occupants for a given delta-V. Pedestrians were
most at risk, supporting previous findings.4 In general, as
the protection level provided by personal protective equip-
ment such as helmets or the vehicle structure itself is in-
creased, the overall rate and severity of TBI decreased
illustrating the importance of head protection for VRUs.47

Our results are similar to other in-depth European data-
bases. For example, a high prevalence of focal brain injury
and skull fractures in pedestrians has previously been shown
in German and Dutch RTCs.48,49

Our analysis of cyclist collision dynamics and helmet
usage provided novel insights into the protection provided
by helmets. Previous work has shown that helmets protect
from TBI of all severities in RTCs and are particularly pro-
tective of moderate–severe TBI including a skull fracture
and SDH.50 Our results provide further evidence that this

Figure 7 Comparing vulnerable road user and car occupant brain injury risk. A comparison of TBI risk for car occupants and the
pedestrian–cyclist combined vulnerable road user group. The risk of all moderate–severe TBI at a particular delta-V value is higher for VRUs than for
car occupants (UMW= 8894.0, P, 0.001). (A). The risk of different TBI pathologies for car occupants (B) and VRUs (C) is shown for total delta-V
values 20, 30, 40, 50, 60 and 70 km/h. For both VRUs and car occupants, the risk of subdural haematoma was lower than the other pathologies. For
car occupants, subarachnoid haemorrhage was the highest risk pathology. For VRUs, focal injury, subarachnoid haemorrhage and skull fracture had
similar risks. Individual comparisons between different road users for each of the four pathologies key can be found in Supplementary Fig. 2.
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Figure 8 Moderate–severe brain injury risk for different road users. Moderate–severe TBI risk curves are shown for the combined
pedestrian–cyclist VRU group [ROCAUC (CI95%): 0.73 (0.55–0.89)] (A) and car occupants [ROCAUC (CI95%): 0.81 (0.68–0.93)] (B) compared with
all other subjects and (C) uninjured car occupants [ROCAUC (CI95%): 0.93 (0.84–1.00)]. Corresponding ROC curves are also shown (D–F). Total
delta-V (km/h) is the predictor used. Full logistic regression TBI pathology risk curves with delta-V as the predictor are shown for car occupants and
VRUs in Supplementary Fig. 1.
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is the case and additionally show that this protective effect
was not simply due to differences in the speed of the cyclist,
e.g. non-helmeted cyclists travelling faster or differences in
the speed of the vehicle impacting the helmeted and non-
helmeted cyclists. We show that non-helmeted cyclists are
at greater risk of skull fracture, which can be explained by
higher linear acceleration and contact forces, both of which
are reduced by helmets.51 We also showed an increased risk
of SDH in non-helmeted cyclists, which may be related to
rotational rather than linear acceleration, with relative
skull-brain motion thought to be the key mechanism of
injury.52–56 The observations in this study from real-world
collision data highlight that existing helmets are effective at
mitigating a significant portion of TBI sustained in RTCs.
Emerging helmet technologies have been developed based
on increased understanding of specific TBI pathology injury
mechanisms (e.g. intracranial bleeding).47,56 These new tech-
nologies have been shown to be even more effective in miti-
gating rotational effects.57 Continued development could
further improve the protection provided by helmets for a
range of road users including cyclists, motorcyclists and
micro-mobility users.

We address a key knowledge gap in the understanding of
how collision dynamics relate to specific types of TBI pathol-
ogy in varying types of road users. The information we pro-
vide is important because the risk of TBI pathologies such as
SDHor focal brain injury is related to collision dynamics and
interact with the extent of an individual’s protection from in-
jury i.e. their vulnerability as a road user. A surprisingly
small amount of work has addressed this problem pre-
viously. Two small studies (,60 subjects) have shown rela-
tionships between collision dynamics (including delta-V )
and subdural and intraventricular haemorrhage.21,22 Our re-
sults significantly increase understanding in this area by pro-
viding a detailed characterization of injury risk for specific
TBI pathologies in terms of collision dynamics and road
user vulnerability.

Detailed reconstructions for the collisions in RAIDS pro-
vided an estimation of collision dynamics including
delta-V. This quantifies the change in total impact velocity
for the vehicles or pedestrians involved in collisions. We ob-
served no moderate–severe TBI below a delta-V of 19 km/h
for car occupants and 8 km/h for VRUs. Delta-V for VRUs
is heavily dependent on the speed of the impacting vehicle.
To consider a typical example collision between a pedestrian
and a car, common characteristics of pedestrian collisions
must first be explored. Pedestrians and cyclists are common-
ly injured in urban areas, which in the UK tend to have a 20
or 30 mph speed limit.58 In addition, STATS19 GB data dur-
ing the period of our study showed that the majority (70%)
of pedestrians involved in collisions were crossing a road at
the time. Therefore we consider a typical example collision
between a pedestrian crossing a road and a car travelling at
32 km/h (20 mph) at the point of impact. In this case, the pe-
destrian’s movement is perpendicular to the direction of tra-
vel of the impacting car. The pedestrian is accelerated to the
speed of the car during impact, so the VRU delta-V may be

considered to be equivalent to the car impact speed
(32 km/h). In this scenario, the risk of moderate–severe TBI
is 26% (CI95%: 24.7–27.7%). Alternatively, for the same
collision configuration with the car instead of travelling at
48 km/h (30 mph) at the point of impact, the VRU delta-V
is 48 km/h. In this higher delta-V scenario, the risk of mod-
erate–severe TBI increased to 39% (CI95%: 36.5–43.5%).
The risk of TBI pathologies approximately doubled from a
32 to 48 km/h delta-V (skull fracture: 18.3 versus 37.0%,
subarachnoid: 17.9 versus 30.2% and focal: 18.2 versus
31.6%) with SDH risk remaining lower (9.2 versus 14.7%)
at both delta-V points. These results cannot be directly extra-
polated to the speed limits on roads because cars travel at a
range of speeds and brake variably prior to and during im-
pact. Further research could usefully explore the risks of
TBI in specific speed zones.

We demonstrate for the first time that increasing delta-V
had a distinct effect on the risk of different TBI pathologies
for car occupants and VRUs. In VRUs, we showed that skull
fracture risk increased particularly rapidly with increasing
delta-V when compared with car occupants. For example,
the risk of skull fracture for VRUs increased dramatically
from 18% at 32 km/h delta-V to 37% at 48 km/h delta-V
to 60% at 64 km/h delta-V. For car occupants, skull fracture
risk was 2% at 32 km/h, 4% at 48 km/h and 9% at 64 km/h.
Skull fractures have previously been shown to increase with
increasing vehicle impact speed for pedestrians.59 High line-
ar accelerations and direct head impacts are known to cause
skull fractures.60,61 Hence, the difference in skull fracture
risk is most likely to be because pedestrians and cyclists
are at greater risk of direct head impacts that often result
in skull fractures. In contrast, vehicle occupants are rela-
tively protected from direct head impacts by the routine
use of restraint systems within a vehicle.

We were also able to directly compare the TBI prevalence
and risk associated with lateral and longitudinal delta-V for
car occupants. Side impacts and rollover collisions tend to
have high lateral delta-V components and have previously
been linked to serious head injury.14,62,63 Our investigation
of a large number of collisions allowed us to study collisions
with only lateral or longitudinal delta-V, allowing the contri-
bution of different delta-V directions to be studied more pre-
cisely. Lateral delta-V increased the risk of TBI and SAH
compared with longitudinal delta-V, even when total
delta-V was lower. The results suggest that future vehicle
safety modifications designed to reduce car occupant TBI
risk should focus on protecting from the effects of lateral ve-
hicle delta-V. Potentially modifiable mechanisms include
head contact with the internal side structures of the vehicle
and high angular or rotational accelerations of the head,
which can cause SAH.64 Overall risk prediction capability
was also improved when including dominant lateral
delta-V as a binary flag.

We selected logistic regression as an established and most
widely used tool for constructing injury risk relationships,
particularly in RTCs.42–44 Despite being a powerful tool cap-
able of discerning the importance of parameters contributing
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to risk, some limitations arise. For example, the lack of repre-
sentability within the RAIDS sample must be considered
before assuming wider applicability of the risk functions
derived for the RAIDS data. Owing to RAIDS being a serious
subset of GB collisions, uninjured subjects and slightly in-
jured casualties are underrepresented within the data relative
to true national incidence rates. Under-sampling relative to
the true incidence rate has been shown to overestimate the in-
jury risk for a given exposure level.65 We expect this effect to
be particularly pronounced in the risk functions for the pe-
destrian/cyclist group as they are most significantly underre-
presented (as shown in Fig. 3), contributing to the non-zero
risk observed at zero delta-V (Fig. 8). A similar risk overesti-
mation effect is likely to present to a lesser degree in car oc-
cupants. Previous work has explored the effect of specific
modelling choices on underreporting in specific RTC
datasets.66 A range of alternate parametric modelling
approaches to address different nuances of RTC data are dis-
cussed in detail by Savolainen et al.43 Without applying more
complex modelling choices, there are alternate parametric
models available which would tie the non-zero risk observed
at zero delta-V in the RAIDS pedestrian/cyclist group to
zero. For example, although not typical for larger datasets,
applying a Weibull regression model could necessitate the ex-
pected zero risk at zero delta-V relationships, as demonstrated
in this single-dependent variable example in a related field.67

Future work could usefully investigate the effect of different
parametric modelling choices on risk functions derived from
RAIDS data.

We reported the estimated prevalence of different types of
TBI. Our estimate of moderate–severe TBI prevalence (53%
of RAIDS TBI) was higher than the proportion of severe TBI
previously observed in Trauma Audit Research Network
data in England and Wales during our study period (46%
of RTC TBI).68 RAIDS was designed to capture serious
RTCs and are likely to underestimate the prevalence of
mild TBI produced by less serious RTCs. We partially ac-
counted for this by scaling the RAIDS estimates using infor-
mation from the STATS19 database. This GB database
includes all police-reported casualties and is the most com-
prehensive GB data available. However, police data also re-
port only a subset of all road casualties, and up to 45% of
RTC hospital admissions are omitted from STATS19.
Collisions involving motorcyclists and particularly cyclists,
as well as more minor injuries, are known to be under-
reported.69–71 Therefore, we expect the RR estimates we
report for the cyclist andmotorcyclist groups to underestimate
the trueRR.Nevertheless, our estimated rate ofmild–probable
andmoderate–severe TBI in national police-reported collisions
of 6% is similar to a previous studyFrench study that estimated
a rate of 6.7% for TBI following RTCs.72

DAI is an important TBI pathology commonly caused by
RTCs.73 High shear forces produced at the time of RTCs
cause damage to white matter tracts in the brain leading to
DAI.9,74 Catastrophic outcomes after TBI such as persistent
vegetative state are often caused by the presence of extensive
DAI. Previous reports RTC databases have estimated

relatively low rates of DAI, between 0.1 and 6.3%.17,24,75

We find a similarly low rate in the RAIDS data (4.4% of
all TBI). However, it is likely that these rates are significantly
underestimated which is a limitation in this study. The clas-
sifications of TBI pathology from clinical data in RAIDS and
other databases of this type are basedmainly on CT imaging,
which often misses significant DAI.76 Advanced magnetic re-
sonance imaging provides a more sensitive way of diagnos-
ing DAI.77 Diffusion tensor imaging allows DAI to be
identified in individuals and suggests around 50% of moder-
ate–severe TBI have some degree of DAI.78 Radiology re-
ports from magnetic resonance and diffusion tensor
imaging within RAIDS are far less common that CT imaging
or post-mortem reports, which limits our ability to fully
diagnose DAI, particularly in surviving patients. In keeping
with its adverse clinical effects, two-thirds of the patients
with evidence of DAI in RAIDS died. This emphasizes the im-
portance of considering the collision dynamics which might
lead to DAI, as strategies to reduce the incidence of poor clin-
ical outcomes after RTCs should focus on reducing the pre-
valence of DAI.

Our detailed investigation of the relationship between
RTC dynamics and TBI is particularly timely because of
the development of smart sensor technologies that are in-
creasingly deployed in vehicles. These provide the informa-
tion for ACN systems that detect collision events using
event data recorders and can automatically notify emergency
services of the exact collision location. The European ACN
system, known as eCall, is now compulsory for all new
cars, and has been shown to potentially reduce fatality rates
by 5–10%.79 In US RTC data, if at least one vehicle involved
has an ACN system, emergency service notification time is
reduced (from median 4, interquartile range [IQR]: 2–
9 min to median 2, IQR 1–5 min) and patients arrive at
medical facilities faster, with particular benefits seen in
less urban areas (median 36 versus 45 min).80 Advanced
ACN systems can also provide emergency services with
automated information about injury risk, which can en-
hance trauma care response further.81–83 In Europe in
2024, all new cars sold must record collision events in in-
creased detail, including delta-V (lateral and longitudinal
components).84

Trauma care is now generally concentrated within major
trauma centres. Patients with serious TBI should be taken
directly to a centre with neurosurgical capability.
However, this does not always happen. Advanced ACN
would be enhanced by the ability to predict the likelihood
of life-threatening TBI. One British report found .50% of
trauma patients requiring neurosurgical intervention were
taken to hospitals without neurosurgical provisions and
only 14% of TBI patients requiring hospital transfer were
operated on within 4 h of injury.85 This is very problematic
as delays in neurosurgery of this degree significantly impact
clinical outcomes.86,87 In patients with severe TBI, mortality
was reduced from 36 to 19% when transferring directly to a
trauma centre with neurosurgical provision.88 Hence, im-
proved clinical outcomes after RTC could be delivered by
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the automated identification of collisions with a high risk of
producing serious TBI, as this alert could be used to divert
patients directly to an appropriate major trauma centre.
Our results (based on delta-V ) could inform future
TBI-specific advanced ACN systems.

The exceptionally detailed clinical and collision data en-
abled us to investigate the interaction between injury pattern
(pathology), vulnerability (type of road user) and RTC dy-
namics (using delta-V ) for the first time. The risk with in-
creasing delta-V of sustaining moderate–severe TBI
pathologies is higher for VRUs than car occupants, likely
due to their decreased protection levels. Skull fracture risk
in particular increases substantially with increasing delta-V
for VRUs, which aligns with the known injury mechanism
of high linear acceleration and contact force relating to
speed. For car occupants, there is a higher risk of moder-
ate–severe TBI in lateral delta-V only collisions than equiva-
lent longitudinal delta-V collisions, particularly SAH. By
basing our TBI risk analysis on delta-V, our work has the po-
tential to impactfully inform real-world ACN systems that
guide post-accident response providing that they can detect
delta-V reliably.
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