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Epigenetic modification of chromatin is involved in non-malignant pituitary neoplasia by
causing abnormal expression of tumor suppressors and oncogenes. These changes are
potentially reversible, suggesting the possibility of targeting tumor cells by restoring the
expression of epigenetically silenced tumor suppressors. The role of the histone
deacetylase (HDAC) family in pituitary tumorigenesis is not known. We report that
HDAC2 and 3, Class I HDAC members, are highly expressed in clinically non-
functioning pituitary adenomas (NFPAs) compared to normal pituitary (NP) samples as
determined by RT-PCR and immunohistochemical staining (IHC). Treatment of a human
NFPA derived folliculostellate cell line, PDFS, with the HDAC3 inhibitor RGFP966 for 96
hours resulted in inhibition of cell proliferation by 70%. Furthermore, the combination of
RGFP966 with a methyltransferase/DNMT inhibitor, 5’-aza-2’-deoxycytidine, led to the
restoration of the expression of several tumor suppressor genes, including STAT1, P16,
PTEN, and the large non-coding RNA tumor suppressor MEG3, in PDFS cells. Our data
support the hypothesis that both histone modification and DNAmethylation are involved in
the pathogenesis of human NFPAs and suggest that targeting HDACs and DNA
methylation can be incorporated into future therapies.

Keywords: human clinically non-functioning pituitary adenomas, class I histone deacetylases, growth suppression,
epigenetic modifications, regulation of tumor suppressor expressions
INTRODUCTION

Pituitary adenomas are one of the most common intracranial neoplasms, comprising approximately
10% of all surgically resected intracranial tumors, with a prevalence of 22.5% in the general population
(1). Cross-sectional studies have shown that the prevalence of symptomatic pituitary adenomas ranges
from 7.76 in 10,000 to 9.4 per 10,000 individuals (2, 3). Non-functioning pituitary adenomas (NFPAs)
that do not secrete hormones are common and are mainly derived from gonadotroph cells. The
majority of these tumors are benign. However, patients can experience increased morbidity due to
mass effect, causing neurologic complications, and a subset are aggressive (4–6). These tumors are
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routinely treated with surgery and radiation. However, a subset of
these requires additional therapies, such as temozolomide. The
vast majority of these tumors escape from these temozolomide,
and additional options are needed (7). There are no effective or
FDA-approved pharmacologic therapies to treat these tumors.
Therefore, it is critical to identify novel targets in NFPAs for the
future development of medical therapy.

In sporadic pituitary adenomas, genetic mutations of
oncogenes or tumor suppressors are extremely rare, and
epigenetic dysregulation is the major factor dictating the
expression of multiple tumor suppressor genes (8, 9). Studies
have focused on how aberrant hypermethylation of CpG islands
within promoters contributes to the inactivation of several
important genes, including RB1, CDKN1A(P21), CDKN2A,
CDKN2B, GADD45g, and MEG3 (9). The role of histone
modification, though firmly linked to the genesis of other
tumors such as breast and colorectal cancer, has not been
explored in pituitary tumorigenesis, especially in NFPAs.

Histone deacetylases (HDACs) are responsible for removal of
acetyl groups from specific lysine residues located within the
protein tails of histones (10, 11) as well as many non-histone
proteins, including transcription factors (10, 11). The family of
Class I HDAC includes HDAC1, HDAC2, HDAC3, and
HDAC8. HDAC2 and HDAC3 are important for control of
cell cycle regulation, cardiac function, and neural cell regulation
(12, 13). Abnormal expression of HDAC1 has been reported in
breast, gastric, colon, liver, renal and prostate carcinomas (14–
16). High levels of HDAC2 expression have been shown in
cervical, gastric (17, 18), breast, and other cancer types (16,
19). In addition, high levels of HDAC3 expression have been
reported in colon cancer (20). Furthermore, the expression of
HDAC1 has been reported to correlate with the progression and
prognosis of gastrointestinal malignancies (21, 22); and HDAC3
also has been suggested as a prognostic marker in gastric (21),
colorectal (23), and pancreatic cancer (24). In vitro experiments
have shown that high levels of HDAC1 expression promotes
migration and invasion of gallbladder (25) and breast tumor cell
lines (26). Similarly, overexpression of HDAC2 has been shown
to promote the migration and invasion of non-small cell lung
cancer cell lines (27), and overexpression of HDAC3 has been
reported to promote the proliferation of cholangiocarcinoma and
pancreatic cancer cell lines (28, 29). Therefore, there is
compelling evidence that high levels of HDAC1, 2 and 3
expression is implicated in the pathogenesis of several
malignant tumors. However, there is no reported link between
Class I HDAC and benign tumors such as NFPAs.

Because there is no reliably effective medical therapy for
human clinically non-functioning pituitary adenomas, we
focused our study on this type of pituitary tumor. We
hypothesized that Class I HDAC RNA levels would be higher
in NFPAs compared with normal human pituitary samples. We
found that HDAC3 and HDAC2 RNA, but not HDAC1 RNA,
were significantly higher in NFPAs compared to normal human
pituitaries; increased HDAC3 protein expression was also
confirmed by immunohistochemical (IHC) staining. The
HDAC3-specific inhibitor RGFP966 suppressed PFDS [a
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folliculostellate cell line derived from a human NFPA (30),]
cell proliferation by 70% at 96 hours after treatment. Treatment
of PDFS cells with RGFP966 restored expression of MEG3,
a long non-coding RNA tumor suppressor, whose expression
is lost in NFPAs but not in hormone secreting pituitary
adenomas (9). Furthermore, the combination of the DNA
methyltransferase (DNMT) inhibitor 5’-aza-2’-deoxycytidine
(5’-AZA) with RGFP966 further enhanced MEG3 expression
and also activated expression of several well-known tumor
suppressors including P16, PTEN, and STAT1. Therefore, we
demonstrate that suppression of histone deacetylation and DNA
methylation restores epigenetically silenced tumor suppressors
such as MEG3, P16, PTEN and STAT1, resulting in inhibition of
tumor cell growth. This study suggests HDAC3 inhibition may
be a potential therapeutic approach for NFPAs.
MATERIAL AND METHODS

Tissue and Tumor Samples
Twenty-two human NFPA, as well as six GH-secreting, six
ACTH-secreting, and six PRL-secreting human pituitary
adenoma surgical samples were obtained at Massachusetts
General Hospital and used for RT-PCR analysis. The diagnosis
of NFPA was established by clinical, biochemical, and radiological
findings and was confirmed by immunohistochemistry after
surgery. Human pituitary tumors were collected in 0.9% saline
after transsphenoidal surgery and immediately frozen in liquid
nitrogen before analysis. Eleven normal human pituitary glands
were obtained 2-16 hours postmortem from the Harvard Tissue
Resource Center (Belmont, MA). This study was approved by the
Partners Human Research Committee. Immunohistochemical
staining on pituitary tumor slides was performed by Pathology
Department of Massachusetts General Hospital on formalin-fixed,
paraffin embedded sections for FSHb, LHb, TSHb, prolactin, GH,
ACTH, and glycoprotein hormone a-subunit, to confirm the
tumor identities.

RNA Extraction, cDNA Synthesis and
Quantitative Real-Time PCR
Total RNA was isolated using the RNeasy Mini Kit (QIAGEN,
USA) according to the manufacturer’s instructions. Extracted
RNA samples were treated with DNase I to remove potential
DNA contamination. One microgram of total RNA was subjected
to reverse transcription using a ProtoScript®M-MuLV first-strand
cDNA synthesis kit (New England Bio-Labs, Ipswich, MA, USA).
All PCR reactions were performed in triplicate with an Applied
Biosystems® 7500 Fast Thermocycler (Foster City, CA, USA) with
the following protocol: 50°C for 2 minutes, 95°C for 5 minutes,
followed by 40 cycles of 95°C for 30 seconds and 60°C for 1
minute. Melting curve analysis was performed and a no-template
control was included in every qPCR using Invitrogen SYBR®PCR
Master Mix (Thermo Fisher, Waltham, MA, USA). GADPH was
used as internal controls. Expression levels for tested genes were
calculated using the formula 2-△Ct. The fold changes were
determined by 2-△△Ct. The relative tumor expression levels for
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Zhao et al. High HDAC2/3 expression in NFPAs
genes were calculated by normalizing the value from the tumor
against the mean average of values from the 11 normal pituitaries.
Primers used in this study are listed in Table S1.

Immunohistochemistry Staining
A tissue microarray (TMA) containing 12 human NFPAs and 4
normal human pituitaries, which were distinct from the samples
used in qRT-PCR, was constructed by the Department of
Pathology Service Core Facility of Massachusetts General
Hospital, and 4 mm sections were prepared from the TMA.
Immunohistochemical staining was performed as previously
described (25), with mouse monoclonal anti-HDAC3 (Abcam,
ab219376, Cambridge, MA, USA) at 1:1000 dilution, or anti-
HDAC2 (Abcam, ab16032) at 1:500 dilution. HDAC3/HDAC2
staining was considered positive only when showing definitive
staining of tumor nuclei. Replacement of a primary antibody
with PBS served as the negative control. Positive HDAC3/
HDAC2 staining was assessed microscopically in 10 high-
powered fields (×200) and quantified on the basis of the color
intensity of photos (40x) converted to CYMK and split into
green/red/yellow/blue channels. To collect data,100 nuclei were
selected and averaged using CellProfiler3.0.0 software (Broad
institute, Cambridge, MA, USA, http://cellprofiler.org/).

PDFS Cell Culture and Treatment
With Inhibitors
The pituitary tumor-derived folliculostellate cell (PDFS) line (30)
was maintained in DMEM (Life Technologies) supplemented
with 10% FBS, 1% NEAA and PSG at 37°C with 10% CO2. DNA
methyltransferase inhibitor 5’-aza-2’-deoxycytidine (5’-AZA)
was purchased from Sigma-Aldrich (Allentown, PA, USA).
The HDAC3-specific inhibitor RGFP966 was purchased from
Selleckchem (Houston, TX, USA) (31). To examine the effect of
HDAC inhibition on the growth of PDFS, 1x106 PDFS cells were
plated on 100 mm cell culture dishes. After 24 hours, cells were
treated with 10mM RGFP966 and/or 1mM 5’-AZA; with DMSO
as a control. Culture medium was changed daily with fresh drug
added. RNA was extracted from cells at Day 5. Cell proliferation
was monitored at 24, 48, 72, and 96 hours by CCK8 Assay
(see below).

Cell Growth (CCK8 Assay)
Cell proliferation was evaluated by a CCK8 Assay (Dojindo
Molecular Technologies, Rockville, MD, USA). PDFS cells were
plated into a 96-well plate in triplicate, with 100 l mL cell
suspension (2000 cells/well) in each well. Cells were incubated
for 24 hours at 37C, with 10% CO2, before the treatment drug was
added. At each time point, 10 mL of CCK-8 Solution was added to
each well of the plate. The plates were further incubated for 4
hours. The absorbance at 450 nmwas measured using a Versamax
Tunable Microplate Reader (Molecular Devices, San Jose, CA,
USA). The experiment was repeated three times.

Statistical Analysis
Differences between quantitative parameters were expressed as
mean ± SD (normal distribution) or medians with inter-quartile
range (IQR). The statistical significance of gene expression was
Frontiers in Oncology | www.frontiersin.org 3
assessed by a two-tailed Student t tests. Associations between
clinical, biological, imaging and HDAC3 expression were
evaluated by Spearman’s correlations, c2 tests, or Fisher’s exact
tests. A p < 0.05 was considered statistically significant. All
statistical analyses were performed with Prism 6 (GraphPad
Software, La Jolla, CA, USA).
RESULTS

Expression of HDAC2 and HDAC3
in NFPAs
We detected the expression of HDAC2 and HDAC3 in 22 human
NFPA specimens and 11 normal pituitary specimens by qRT-
PCR. As shown in Figure 1A, higher HDAC2 and HDAC3
mRNA expression was observed in 82% of NFPAs. When
compared to the average HDAC3 mRNA level in the normal
pituitary, there was a 64-fold higher HDAC3mRNA expression in
NFPAs (Figures 1A, B, 64.0 ± 20.5, p < 0.0001). The average
HDAC2 mRNA level in NFPAs was by 45-fold higher than in the
normal pituitary samples (Figure 1B, 44.7 ± 15.5, p < 0.001).
HDAC1 mRNA expression was also observed by qRT-PCR; but
there was no significant difference in its expression levels between
NFPAs and the normal pituitary samples (Figures 1A, B). No
HDAC8 expression was detected in either NFPAs or normal
pituitaries (data not shown). Immunohistochemical staining
revealed higher nuclear staining of HDAC3 protein in NFPAs
compared with the HDAC3 staining in normal pituitary
(Figure 2A), The HDAC3 staining results were quantified on
the basis of color intensity (Figure 2B). Similar results were
observed for HDAC2 immunostaining (Figures 2C, D). These
findings demonstrate the upregulation of HDAC3 and HDAC2
in NFPAs.

HDAC2 and HDAC3 Expression in
Hormone-Secreting Pituitary Adenomas
We also examined HDAC1, HDAC2, and HDAC3 expression by
qRT-PCR in six GH-secreting, six ACTH-secreting, and six PRL-
secreting human pituitary adenomas. Increased mRNA expression
of Class I HDAC members was also found in a limited number of
hormone-secreting human pituitary adenomas (Figure 3),
although no statistically significant difference was found in RNA
expression levels between normal human pituitaries and
hormone-secreting pituitary tumors. Because the increase of
HDAC2 and HDAC3 levels in pituitary tumors were similar,
and there is no HDAC2-specific inhibitor available, we decided to
focus our subsequent studies on HDAC3.

HDAC3 Inhibitor RGFP966 Suppressed
PDFS Cell Growth
Because the high expression of HDAC3 RNA and protein in
NFPAs suggested that HDACs could play a role in tumorigenesis
of NFPAs, we examined whether RGFP966 (31), a specific
HDAC3 inhibitor, could inhibit proliferation of PDFS; which
also showed very high levels of HDAC3 expression (Figure 4A)
compared with normal pituitary. Treatment of PDFS cells with
May 2022 | Volume 12 | Article 875122
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10 mMRGFP966 suppressed cell proliferation by 64 ± 2.8%, 55.2 ±
2.3%, and 72.1 ± 1.2% (p<0.01) at 48, 72, and 96 hours,
respectively, comparing with PDFS treated with DMSO
(Figure 4C). We also found that 5’-aza-2’-deoxycytidine (5’-
AZA), a demethylation reagent, was also able to suppress
proliferation of PDFS, although its effect was not as strong as
RGFP966. As shown in Figures 4B, C, treatment of PDFS cells
with 1 mM of 5’-AZA suppressed cell proliferation by and 41.3 ±
2.8%, 21.9 ± 4.8%, and 42 ± 3.5% at 48, 72, and 96 hours,
respectively. A synergistic effect was observed when RGFP966
was combined with 5’-AZA, suppressing PDFS proliferation by
61.4 ± 2.4%, 82 ± 4.3% (p<0.001), and 92 ± 6.1% (p<0.001) at 48,
72, and 96 hours, respectively (Figures 4B, C).

Restoration of MEG3 Expression by
HDAC3 Inhibition and DNA Demethylation
MEG3 is a large non-coding RNA (lncRNA) tumor suppressor
whose expression is lost in NFPAs (32). PDFS cells lack expression
Frontiers in Oncology | www.frontiersin.org 4
of MEG3 due to gene silencing by DNA methylation (33, 34). To
understand the molecular events related to growth suppression by
RGFP966 and 5’-AZA, we examined the expression of MEG3 in
PDFS cells treated with RGFP966 and 5’-AZA. As shown in
Table 1, treatment of PDFS cells with 10 mM RGFP966 resulted
in a 9-fold increase in MEG3 RNA expression compared to
untreated cells. The demethylation reagent 5’-AZA (1mM)
increased MEG3 RNA expression by approximately 28,000-fold.
When RGFP966 and 5’-AZA were used together, MEG3 RNA
expression increased by almost 140,000-fold compared to controls,
confirming the synergistic effect of RGFP966 and 5’-
AZA (Table 1).

Activation of the Retinoblastoma Pathway
and Other Tumor Suppressors
RGFP966 functioned as a strong growth suppressor, but a weak
inducer for MEG3 RNA. However, the demethylation reagent 5’-
AZA was a strong inducer of MEG3 expression but a weak
growth suppressor (Figure 4 and Table 1). These data suggest
that RGFP966 may also affect expression of additional tumor
suppressors. It has been reported that the signaling pathways of
retinoblastoma (Rb) have been compromised in human NFPAs
(9). As shown in Figure 5A, treatment of PDFS cells with
RGFP966 significantly increased the mRNA expression of two
important components of Rb pathway, p16ink4a and E2F1, by 3.4-
and 3.2-fold, respectively. Consistent with its strong growth
suppressive function, RGFP966 was more potent than 5’-AZA
in inducing p16ink4a and E2F1 mRNA expression, thus activating
Rb signaling pathway. Treatment of PDFS cells with RGFP966
and 5’-AZA also significantly increased the mRNA expression of
other tumor suppressors, including EGR1, PTEN, STAT1, and
immune stimulatory receptor CD40 (Figures 5B, C). We also
detected an increase in mRNA expressions of cell cycle related
genes, such as CCNB1, CDK1, and TSC1, and transcriptional
factors, such as C-Jun and C-Myc, upon RGFP966 and 5’-AZA
treatment (Table 2). Therefore, change of chromosomal
modifications in PDFS cells by HDAC3 inhibition and DNA
demethylation led to activation of multiple tumor suppressors,
resulting in growth suppression.
DISCUSSION

In this study, we investigated the expression of Class I HDAC
family members in human NFPAs. We found a 40-60 fold
elevation of the expression of HDAC2 and HDAC3 mRNA in
NFPAs compared to normal pituitaries, suggesting their
involvement in the pathogenesis of NFPAs. Increased mRNA
expression of Class I HDACmembers was also found in a limited
number of hormone-secreting human pituitary adenomas,
although no statistically significant difference was observed
between hormone-secreting pituitary tumors and normal
pituitaries. Further studies with a large number of such tumors
are needed to verify this observation. Histone modification and
abnormal expression of HDAC family members have been
shown to be involved in the pathogenesis of many different
human cancers. HDAC3 expression is not only elevated in these
A

B

FIGURE 1 | HDAC1, 2, and HDAC3 mRNA expression in human NFPAs.
(A) HDAC1 (Upper Panel), HDAC 2 (Middle Panel), and HDAC 3 (Bottom
Panel) RNA expression were determined by qRT-PCR in 22 non-functioning
pituitary adenomas. (B) The average expression levels of HDAC1, 2, and 3
mRNA in NFPAs compared to the average level in the normal pituitaries. Fold
changes were determined by comparing the HDAC levels in tumors with that
in normal pituitaries (NP, n = 11), which was set as 1. NFPA, non-functioning
pituitary adenoma; **P < 0.001; ***P < 0.0001.
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cancers, but is also often associated with cancer cell
dedifferentiation (12, 17) and overall survival rate of patients
(35, 36). However, the role of HDAC family members in the
pathogenesis of human pituitary adenomas, a non-malignant
neoplasm, has not been previously studied to our knowledge.
Our study revealed the involvement of histone deacetylation in
the pathogenesis of human NFPAs for the first time and provides
a rationale for pursuing HDAC suppression as a possible
therapeutic target.
Frontiers in Oncology | www.frontiersin.org 5
In our study, treatment of PDFS cells with the HDAC3
inhibitor RGFP966 resulted in a 70% suppression of cell
proliferation at 96 hours. Consistently, HDACs have been
shown to control cell growth, differentiation, and apoptosis by
regulating histone modification and acetylation of transcription
factors including as p53 and E2F (37, 38). Multiple mechanisms
have been revealed for HDAC3-mediated growth regulation. In
colon cancer cells, silencing of HDAC3 expression by RNA
interference (RNAi) resulted in growth suppression,
accompanied by increased expression of p21 and apoptosis
(39). In acute myeloid leukemia (AML), oncogenic protein c-
myc recruits HDAC3 to form a suppressive complex binding to
the promoter of miR-451 gene, inhibiting the expression of this
tumor suppressive microRNA (40). Wells et al. showed that in
cutaneous T cell lymphoma cells, HDAC3 was associated with
chromatin around DNA replication forks; and inhibition of
HDAC3 significantly reduced DNA replication, disrupting
cycling of tumor cells (41). Moreover, all Class 1 HDACs,
including HDAC2 and HDAC3, are known to down-regulate
p53 by deacetylation at KK373/K382, reducing the binding of
p53 to the promoters of its downstream targets such as p21 (42,
43). Consistent with these results, we have shown here that
HDAC3 inhibition led to activation of several tumor
suppressors, including EGR1, PTEN, STAT1, all downstream
targets of p53. In addition, suppression of HDAC3 also resulted
in the upregulation of MEG3, a lncRNA tumor suppressor
specifically silenced in NFPAs, as well as components in the
Rb signaling pathway such as P16 and E2F1, both of which have
been suggested to be involved in the pathogenesis of NFPAs.
A B

DC

FIGURE 2 | HDAC3 protein staining in normal human pituitaries and NFPAs. (A) Representative immunohistochemical staining images of HDAC3 protein in 2 NPs and 4
NFPAs. (B) HDAC3 immunostaining was quantified on the basis of color intensity of converted photos (40x) to a subtractive color model CMYK and split into green/red/yellow/
blue channels. The intensities were averaged from 100 selected nuclei. (C) Representative immunohistochemical staining images of HDAC2 protein in 2 NPs and 2 NFPAs.
(D) HDAC2 immunostaining was quantified on the basis of color intensity of converted photos (40x) to a subtractive color model CMYK and split into green/red/yellow/blue
channels. The intensities were averaged from 100 selected nuclei. NP, normal pituitary; NFPA, non-functioning pituitary adenoma; *P < 0.05; **P < 0.001.
FIGURE 3 | The expression of HDAC family HDAC1, HDAC2 and HDAC3 in
different types of pituitary tumors. HDAC family number HDAC1, HDAC2 and
HDAC3 expressed in normal pituitary (NP, n = 11) and clinically non-functioning
pituitary adenomas (NFPA, n = 22), growth hormone secreting tumors (GH, n =
6), adrenocorticotropic hormone secreting tumors (ACTH, n = 6) and prolactin
secreting tumors (PRL, n = 6), ***P < 0.0001.
May 2022 | Volume 12 | Article 875122
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In addition, epigenetic regulation of protein expression of P16,
PTEN, and STAT1 has been well documented (44–46). As
deacetylation and demethylation are global events, several
studies have explored the epigenomics of pituitary adenomas,
as summarized in a few excellent recent reviews (47, 48). Our
results are consistent with these global transcriptomic analyses.
Taken together, our data strongly suggest a role of HDAC3 in the
development of NFPAs.
Frontiers in Oncology | www.frontiersin.org 6
Histone modifications and DNA methylations are two
important layers of epigenetic regulation and are often
connected. There are many studies exploring the involvement
of DNA methylations in pituitary adenomas, but substantial
investigations of histone modification are yet to be done in
pituitary tumors. After we found the increase expression of
HADC2/3 in these tumors and observed changes in gene
expression by the inhibitor RGF966, it is logical to explore the
combined effect of RGP966 and 5’-AZA so we would see the
corporative or synergistical functions of histone modifications
and DNA methylations in pituitary tumors. Indeed, the
combination of HDAC3 inhibitor RGFP966 with a DNA
demethylation reagent, 5-aza-2-deoxycytidine, synergistically
enhanced the expression of several tumor suppressors such as
p16, PTEN, STAT1, CD40, and large non-coding RNA MEG3,
accompanied by growth suppression. These data further
emphasize the importance of epigenetic abnormalities in
A

B

C

FIGURE 4 | HDAC3 inhibition and DNA demethylation decreases PDFS cell proliferation. (A) HDAC3 expression in PDFS cells and normal pituitary. ****p < 0.00001.
(B) PDFS treated with HDAC3 inhibitor RGFP966 (10 mM) and DNMT inhibitor 5’-AZA (1 mM), alone and in combination, at 24, 48, 72, and 96 hours. DMSO was
added as a control. (C) Growth curves of PDFS cells as determined by CCK8 Assays. *P < 0.01; **P < 0.001; ****P < 0.00001. Scale Bar = 100mm.
TABLE 1 | Induction of MEG3 expression by 5’-AZA and RGFP966.

Treatment MEG3(Mean Fold Change) SD P Value

DMSO 1 0.110
5’-AZA 28842 585.362 <0.0001
RGFP966 9 2.890 0.0084
5’-AZA+RGFP966 135512 1709.604 <0.0001
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


A

B

C

FIGURE 5 | The expression of tumor suppressors induced by HDAC3 and 5’-AZA. (A) Induction of E2F1, P16Ink4a by 5’-AZA and RGFP966. (B, C): The expression
of EGR1 and PTEN (B), and CD40 and STAT1 (C) induced by 5’-AZA and RGFP966. **p < 0.001, ****p < 0.00001.
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human NFPAs. A future study should investigate the combined
effects of histone modification and DNA demethylation on
global transcriptomic changes to understand the mechanisms
by which histone modification and DNA demethylation regulate
Frontiers in Oncology | www.frontiersin.org 7
tumor growth. Because of the pivotal roles of HDACs in cancers,
they have become targets for the development of novel cancer
therapies. Indeed, Class 1 HDACs are targets for several cancer
treatment drugs currently in use (49, 50). Some recently
TABLE 2 | Changes in gene expression changes by 5’-AZA and RGFP966 treatment.

Genes Category DMSO (Mean ± SD) 5’-AZA (Mean ± SD) RGFP966 (Mean ± SD) 5’-AZA + RGFP966 (Mean ± SD)

CCNB1 Cell cycle 1.001 ± 0.071 1.732 ± 0.0484 1.194 ± 0.081 0.930 ± 0.0169
CDK1 Cell cycle 1.001 ± 0.030 0.396 ± 0.257 1.356 ± 0.113 1.051 ± 0.116
TSC1 Cell cycle 1.001 ± 0.037 1.327 ± 0.068 3.118 ± 0.532 1.791 ± 0.129
EGR1 TranscriptionFactor 1.340 ± 0.088 3.977 ± 0.097 0.884 ± 0.062 5.612 ± 0.077
C-JUN TranscriptionFactor 1.038 ± 0.394 1.383 ± 0.049 2.322 ± 0.094 2.223 ± 0.072
STAT1 TranscriptionFactor 0.915 ± 0.001 1.920 ± 0.646 162.579 ± 14.801 698.954 ± 52.707
C-MYC TranscriptionFactor 1.000 ± 0.014 2.604 ± 0.106 0.718 ± 0.069 2.074 ± 0.089
P16Ink4a CDK inhibitor 1.019 ± 0.247 3.417 ± 1.221 9.314 ± 3.570 18.485 ± 1.278
CD40 Membrane Receptor 1.264 ± 0.175 559.435 ± 31.045 9.534 ± 2.226 1762.570 ± 72.253
PTEN Tumor suppressor 1.001 ± 0.053 3.473 ± 0.054 2.469 ± 0.101 8.676 ± 0.051
IL-6 Cytokine 1.008 ± 0.177 2.353 ± 0.055 3.730 ± 0.265 4.820 ± 0.0189
E2F1 P16 downstream 1.000 ± 0.0271 3.273 ± 0.280 4.484 ± 0.478 7.880 ± 1.051
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developed HDAC inhibitors have shown promising results in
preclinical studies, either working alone (51–55) or in
combination with other compounds (56, 57). In addition, it
has been reported that suppression of HDAC3 sensitized cancer
cells that had developed resistance to chemotherapies (58, 59).
These data, together with our data reported here, suggest that
HDAC3 is a potential target for use in therapy of NFPAs. Further
studies will be needed to confirm our findings, explore the
mechanisms in detail, and validate our findings in animal
models and other pre-clinical models.
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