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Description

Approximately one third of eukaryotic proteins enter the endoplasmic reticulum (ER) en 

route to their subcellular or extracellular destinations (Chen et al. 2005; Choi et al. 2010). 

Many of these proteins use the Sec61p translocon complex to cross the ER membrane 

(Aviram and Schuldiner 2017). Proteins that persistently engage the translocon prevent other 

proteins from reaching the ER (Izawa et al. 2012; Ast et al. 2016). Thus, cells have evolved 

multiple quality control mechanisms to degrade proteins that aberrantly occupy this channel 

(Rubenstein et al. 2012; Crowder et al. 2015; Ast et al. 2016). In ER-associated degradation 

of translocon-associated proteins (ERAD-T), such polypeptides are targeted for destruction 

by homologs of the ER-resident RING (really interesting new gene) domain ubiquitin ligase 

Hrd1p. Deg1*-Sec62 is an engineered model translocon-associated substrate for Hrd1p in 

yeast (Figure 1A). Analogously, in mammalian cells, the Hrd1p homolog gp78 promotes 

turnover of the low-density lipoprotein (LDL) component apolipoprotein B, which stalls in 

the translocon if it is unable to associate with LDL lipid molecules (Fisher et al. 2011).

We recently discovered that degradation of Deg1*-Sec62 is impaired by ER stress (the 

accumulation of misfolded or unfolded proteins in the ER). Deg1*-Sec62 is strongly 

stabilized by treatment with dithiothreitol (DTT; which reduces disulfide bonds) or 

tunicamycin (which prevents N-linked glycosylation). By contrast, however, Deg1*-Sec62 

degradation is unaffected by perturbation of ER membrane lipid composition (i.e. inositol 

limitation) or treatments expected to broadly perturb proteostasis (elevated temperature or 

oxidative stress) (Buchanan et al. 2019).

The AMP-activated protein kinase Snf1p is stimulated during ER stress (Mizuno et al. 
2015). Further, loss of the Snf1p inhibitor Reg1p renders cells hypersensitive to ER stress 

(Ferrer-Dalmau et al. 2015). Snf1p is also regulated by nutrient abundance; it is activated 

by phosphorylation when glucose is limiting and inactivated by dephosphorylation when 

glucose is abundant (Rubenstein et al. 2008). Given ERAD-T sensitivity to ER stress and 
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crosstalk between ER stress and nutrient stress signaling, we sought to determine if turnover 

of the ERAD-T substrate Deg1*-Sec62 is regulated by changes in glucose abundance.

We performed cycloheximide chase experiments to compare Deg1*-Sec62 degradation 

kinetics in low (0.05%), standard (2%), or high (8%) glucose concentrations (Figure 1B). 

Deg1*-Sec62 was rapidly degraded in all three conditions. By contrast, DTT strongly 

stabilized and impaired post-translational modification of Deg1*-Sec62, as previously 

reported (Buchanan et al. 2019). ADH2 expression is repressed by glucose (Dombek et al. 
1993). To confirm differences in glucose abundance, ADH2-GFP expression was compared 

using flow cytometry of a parallel culture (Figure 1C). Our results indicate that changes 

in glucose abundance (in the range of 0.05% to 8%) do not substantially alter the rate of 

degradation of Deg1*-Sec62, a model translocon-associated substrate of Hrd1p.

Taken with our recently published work (Buchanan et al. 2019), our results indicate that 

ERAD-T is inhibited by stress caused by ER protein misfolding but not membrane stress, 

oxidative stress, heat shock, or glucose limitation or abundance. It remains possible that 

altered glucose levels exert an effect on ERAD-T in the context of ER stress or mutations 

in genes mediating crosstalk between ER stress and nutrient signaling. Future experiments 

may be performed to test these hypotheses. During ER stress, protein translocation into 

the ER is slowed (Kang et al. 2006). We speculate that inhibited degradation of proteins 

that persistently engage the translocon contributes to reduced overall rates of translocation, 

preventing an already stressed ER from becoming overwhelmed.

Methods

Yeast and Plasmid Methods

Yeast were cultured at 30°C in synthetic-defined growth media (Guthrie and Fink 2004). 

An empty vector (pVJ27/pRS316; URA3/CEN (Sikorski and Hieter 1989)) and a plasmid 

encoding Deg1*-Sec62 driven by the MET25 promoter (pVJ317; URA3/CEN (Rubenstein 

et al. 2012)) were introduced to yeast (VJY476/BY4741 MATa his3Δ1 leu2Δ0 met15Δ0 
ura3Δ0 (Tong et al. 2001)) via lithium acetate transformation (Guthrie and Fink 2004). Yeast 

expressing ADH2 with a C-terminal GFP tag (VJY731; MATa his3Δ1 leu2Δ0 met15Δ0 
ura3Δ0 ADH2-GFP:HIS3MX6) were obtained from the Yeast GFP Clone Collection 

(Invitrogen (Huh et al. 2003)).

Flow Cytometry

Yeast expressing ADH2-GFP were cultured, in triplicate, to mid-exponential growth at 30°C 

in media containing 2% glucose, washed five times in media containing 0.05%, 2%, or 

8% glucose, and incubated in fresh media containing the same glucose concentrations for 

two hours, as indicated. Mean GFP fluorescence of 10,000 cells was measured using the 

MACSquant Analyzer X.

Cycloheximide Chase Analysis, Cell Lysis, and Western Blotting

Cycloheximide chase analysis was performed as described previously (Buchanan et al. 
2016). For glucose treatments, yeast cultured to mid-exponential phase growth in media 
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containing 2% glucose were washed five times in media containing 0.05%, 2%, or 8% 

glucose and incubated in fresh media containing the same glucose concentrations for 

two hours at 30°C. For cultures treated with dithiothreitol (DTT), DTT was added to 

mid-exponential phase cultures (6 mM DTT final concentration) for one hour of incubation 

at 30°C. Glucose and DTT concentrations were maintained throughout the course of the 

cycloheximide chase. Proteins were extracted and analyzed by western blotting as described 

previously (Kushnirov 2000; Watts et al. 2015). Deg1*-Sec62 is C-terminally tagged with 

two copies of the Staphylococcus aureus protein A epitope (Figure 1A). S. aureus Protein 

A binds to mammalian immunoglobulins (Hjelm et al. 1972); therefore, AlexaFluor-680-

conjugated rabbit anti-mouse antibody (Life Technologies, Inc; 1:40,000) was used to 

directly detect Deg1*-Sec62. Pgk1p was detected with mouse anti-phosphoglycerate kinase 

1 (Pgk1; clone 22C5D8; Life Technologies, Inc; 1:20,000) followed by AlexaFluor-680-

conjugated rabbit anti-mouse secondary antibody (1:40,000). Membranes were imaged and 

analyzed using an Odyssey CLx Infrared Imaging System and Image Studio Software 

(Li-Cor).
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Figure 1: Deg1*-Sec62 degradation is unaffected by changes in glucose concentration.
(A) Depiction of Deg1*-Sec62 following aberrant translocon engagement. Deg1*-Sec62 

consists of Deg1* (a modified version of the amino-terminal 67 amino acids from the yeast 

transcriptional repressor MATα2p), a Flag (F) epitope, the 2-transmembrane protein Sec62p, 

and two copies of Protein A (PrA) from S. aureus. Following translocon engagement, 

Deg1*-Sec62 is modified by N-linked glycosylation and is targeted for degradation by the 

Hrd1p ubiquitin ligase (Rubenstein et al. 2012). Deg1*-Sec62 degradation is specifically 

impaired by stress caused by ER protein misfolding (Buchanan et al. 2019). The primary 

glycosylated asparagine amino acid is portrayed as a blue circle. Ub, ubiquitin. (B) 
Cycloheximide chase of yeast expressing Deg1*-Sec62 cultured in media containing 2% 

glucose and shifted to media containing glucose at the indicated concentrations for two 

hours or media containing 6 mM DTT and 2% glucose for one hour. Deg1*-Sec62 signal 

intensity was normalized to Pgk1p, and the percentage of Deg1*-Sec62 remaining at each 

time point is presented below the image. Vec, empty vector. Glu, glucose. (C) Parallel 

cultures of yeast expressing ADH2-GFP were cultured to mid-exponential phase growth 

in media containing 2% glucose and shifted to media containing glucose at the indicated 

concentrations for two hours before analysis by flow cytometry. The mean fluorescence 

intensity for each culture was normalized to the average mean fluorescence intensity of three 
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repeats of cells incubated in the presence of 2% glucose. Mean fluorescence intensity is 

presented for three repeats of 10,000 cells for each condition. Error bars represent standard 

error of the mean. Data were analyzed by one-way ANOVA, followed by Tukey post-hoc 

analysis (*, P < 0.05; **, P < 0.01). Experiments depicted in this figure were performed 

three times.
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