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Hypoxia contributes to the progression and metastasis of lung adenocarcinoma (LUAD).
However, the specific underlying molecular mechanisms have not been fully elucidated.
Here we report that Notch4 is upregulated in lung tissue from lung cancer patients.
Functionally, Hypoxia activates the expressions of Delta-like 4 and Notch4, resulting in the
excessive proliferation and migration of LUAD cells as well as apoptotic resistance. Notch4
silencing reduced ERK, JNK, and P38 activation. Meanwhile, Notch4 overexpression
enhanced ERK, JNK, and P38 activation in LUAD cells. Furthermore, Notch4 exerted pro-
proliferation, anti-apoptosis and pro-migration effects on LUAD cells that were partly
reversed by the inhibitors of ERK, JNK, and p38. The binding interaction between Notch4
and ERK/JNK/P38 were confirmed by the co-immunoprecipitation assay. In vivo study
revealed that Notch4 played a key role in the growth and metastasis of LUAD using two
xenograft models. This study demonstrates that hypoxia activates Notch4-ERK/JNK/P38
MAPK signaling pathways to promote LUAD cell progression and metastasis.
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INTRODUCTION

Lung cancer is the most common cancer and the leading cause of cancer death in both men and
women worldwide (Siegel et al., 2018). Lung adenocarcinoma (LUAD) accounts for 40% of all types
of lung cancer (Imielinski et al., 2012). Lung cancer is characterized by sustained cell proliferation,
resistance to cell death, invasion and metastasis (Hanahan and Weinberg, 2011). Intratumoral
hypoxia is a critical microenvironmental factor driving cancer progression and is associated with
poor clinical prognosis (Taiakina et al., 2014; Schito and Semenza, 2016; Li et al., 2021). Hypoxia
upregulates a large number of oncogenes that contribute to the excessive proliferation, invasion,
metastasis, and so on (Wigerup et al., 2016; Mennerich et al., 2019). However, the underlying
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molecular mechanisms of hypoxia involved in LUAD cell
progression and metastasis remain largely unknown.

The Notch signaling pathway is an evolutionarily conserved
pathway that is important for cell fate and behavior during
embryogenesis (Artavanis-Tsakonas et al., 1999). In mammals,
the Notch receptor family consists of four single transmembrane
receptors (Notch1-4) that share a similar structure and five
membrane-bound ligands (Delta-like1/3/4 and Jagged1/2)
(Niessen and Karsan, 2008). Upon local receptor-ligand
interaction, Notch receptor intracellular domain (ICD) is
released into the cytoplasm by sequential proteolytic cleavage,
which transduces Notch signaling and regulates cell
differentiation, proliferation, and apoptosis (Siebel and
Lendahl, 2017). Previous studies suggest hypoxia may activate
Notch signaling pathway (Jögi et al., 2002), implying that the
Notch signaling pathway is an attractive candidate mediator
between hypoxia and cancer. Recent studies show that Notch4
acts as an oncogene in some types of cancers, such as colorectal
cancer (Wu et al., 2018), triple-negative breast cancer (Zhou et al.,
2020), and prostate cancer (Zhang et al., 2017). However, the role
of Notch4 in hypoxic LUAD and the underlying mechanism is
unclear.

HEY and HES are targets of canonical Notch signaling, which
relies on the translocation of ICD into the nucleus where it binds
to co-activator proteins and forms a nuclear transcriptional
activator complex formation (De Strooper et al., 1999; Struhl
and Greenwald, 2001; Francis et al., 2002; Hu et al., 2002). On the
other hand, Notch non-canonically exerts its biological functions
via the crosstalk with mitogen-activated protein kinase (MAPK)
signaling in cell cytoplasm (Kiec-Wilk et al., 2010). MAPK
families, including ERK, JNK, and P38 kinases (Wei et al.,
2010; Kim and Choi, 2015), play a critical role in a broad
spectrum of tumorigenesis and development (Braicu et al.,
2019). This study aims to investigate the role of Notch4 in
hypoxic LUAD and underlying molecular mechanism both
in vitro and in vivo, respectively.

MATERIALS AND METHODS

Tissue Samples
LUAD tissues and adjacent non-malignant lung tissues were
collected from Tongji Hospital of Huazhong University of
Science and Technology (Wuhan, China). Ethical approval was
obtained from the Ethics Committee of Tongji Hospital and
written informed consent was obtained from each patient. All
animal experiments were performed in compliance with the
guidelines for animal testing and research, with ethical
approval from Tongji Hospital. (Wuhan, China; Approval
number: TJH-202011004).

Cell Lines and Cultures
Human cell lines A549 and human bronchial epithelial (HBE)
were from ATCC, and H1299 was obtained from the Institute of
Biochemistry and Cell Biology of the Chinese Academy of
Sciences. The normal HBE cells are used as negative control
representing non-cancerous cells (Byun et al., 2013). All cells were

cultured in Roswell Park Memorial Institute-1640 medium
supplemented with 10% fetal bovine serum and maintained in
a 5% CO2 incubator at 37°C. The hypoxic cells were cultured in a
2% O2 incubator (Galaxy R; RS Bitotech, Alloa, UK) continually
gassed with 5% CO2 and 93% N2 as previously described (Cao
et al., 2020).

Antibodies and Chemicals
Primary antibody against B cell leukemia/lymphoma 2 (Bcl-2)
was obtained from Boster (Wuhan, Hubei, China). Primary
antibodies against polyclonal antibodies against proliferating
cell nuclear antigen (PCNA), Bcl-2 associated X (Bax),
survivin, matrix metallopeptidase 9 (MMP9), matrix
metallopeptidase 2 (MMP2), β-Actin and normal rabbit or
mouse immunoglobulin G (IgG) were obtained from
Proteintech (Wuhan, Hubei, China). Primary antibody against
Notch4 was obtained from Santa Cruz Biotechnology (Dallas, TX,
United States). Primary antibodies against P38/p-P38 MAPK,
JNK/p-JNK, ERK/p-ERK were obtained from Cell Signaling
Technology (Danvers, MA, United States). HRP-conjugated
anti-Rabbit IgG and HRP-conjugated anti-mouse IgG were
obtained from Servicebio (Wuhan, Hubei, China). HRP-
conjugated anti-Rabbit IgG light chain and HRP-conjugated
anti-mouse IgG light chain were obtained from Abbkine
Scientific (Redlands, CA, United States). Protein G magnetic
beads were obtained from Cell Signaling Technology (Danvers,
MA, United States). U0126, SP600125 and SB203580 were
obtained from MedChemExpress (Monmouth Junction, NJ,
United States).

Cell Transfection
Small interfering RNAs against Notch4 and negative control
siRNA were synthesized by RiboBio (Guangzhou, China) and
transfected into cells using Lipofectamine 3000 (Invitrogen,
Carlsbad, CA, United States) according to the manufacture’s
instruction. The siRNA sequence was as follows: CAACGG
GCACTGTGAGAAA. When reaching 40–60% of confluence,
the cells were transfected with 50 nmol siRNA using
Lipofectamine 3000 (Invitrogen, Carlsbad, CA, United States).
Notch4 overexpression plasmid and negative control plasmid
were purchased from GeneChem (Shanghai, China). The
mammalian expression plasmid for Flag-tagged Notch4 was
constructed by molecular cloning and confirmed by DNA
sequence. When reaching 80–90% of confluence, the cells were
transfected with 1.5 μg purified plasmid. Finally, the mRNA and
protein levels of cells were analyzed by quantitative real-time PCR
and western blotting at 48 and 72 h after transfection,
respectively.

Lentivirus was produced by Hanbio Biotechnology
Corporation. To established stable cell lines, the lentivirus
stocks were used to transduce A549 cells. After 48 h post-
transduction, the cells were maintained in RPMI-1640
medium containing 1 μg/ml puromycin for at least 7 days.
Finally, the mRNA and protein levels of cells were analyzed by
quantitative real-time PCR and western blotting. The target
sequences for Notch4 were as follows: shNotch4-1: 5′-GCT
CTGGAAAGAGGGTTTAAG-3′; shNotch4-2: 5′-ACAACG
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GGCACTGTGAGAAAG-3′; shNotch4-3: 5′-CGATAAAGA
TGCCCAGGACAA-3′.

Real-Time Quantitative PCR
Total RNA was extracted using Trizol (Takara, Dalian, China)
according to the manufacture’s instruction. RNA concentration
was determined by Nanodrop analysis. Then 500 ng of RNA was
used to synthesize cDNA using PrimeScript RT reagent kit
(Takara, Dalian, China). Quantitative RT-PCR was performed
using SYBR Green Mix (Takara, Dalian, China). The primer
sequences were as follows: Notch4 forward, 5′-CGTACCCCA
CTTCACACTGC-3′, reverse, 5′-AGGTGTAGTCCCGTCGTC
TG-3′; Delta-like 4 forward, 5′-CACCTGCTACACCGACCT
CTCC-3′, reverse, 5′-TCCGACAAGTTGTTCATGGCTTCC-3′.

The cycling conditions were as follows: initial denaturation for
10 min at 95°C followed by 40 cycles of denaturation (15 s at
95°C), annealing and elongation (30 s at 60°C). The relative
expression of gene was calculated using 2−ΔΔCt method using
β-Actin as the reference gene.

Western Blotting Analysis
Total cellular protein was extracted by RIPA lysis (50 mM Tris,
150 mM NaCl, 1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS,
PH7.4) buffer supplemented with phenylmethylsulfonyl fluoride,
cocktail, and phosphorylation protease inhibitor. Cell lysis was
centrifuged at 12,000 rpm for 15 min, then the supernatants were
collected for determination of the protein concentration by BCA
assay. All steps were performed at 4°C. 20 μg of protein were
subjected to 10% sodium dodecyl sulfate–polyacrylamide gel
electrophoresis followed by western blotting. The signals were
detected with a chemiluminescent substrate system (Bio-Rad,
Hercules, CA, United States). Relative expressions of target
proteins were quantified by Image J software.

Cell Viability Assay
Cell viability was measured using the Cell Counting Kit-8 assay
according to the manufacture’s instruction. The cells were seeded
into 96-well plates at the cell density of 3,000 cells per well for
24 h. Then the medium was replaced with different transfection
mixture. After 6 h incubation, the transfection mixture was
replaced with medium supplemented with 10% fetal bovine
serum, and the cells were further incubated for another 24 h.
After that, cells were incubated under normoxia or hypoxia for
24 h. Finally, 10 μL CCK8 (Cell Counting Kit-8, Dojindo, Japan)
reagent was added into per well and determined by ELx800
Universal Microplate Reader (Bio-Tek Instruments, Inc.,
Winooski, VT, United States).

Edu Proliferation Assay
The cells were seeded into 96-well plates (3,000 cells per well) and
performed according to protocols mentioned above. Edu Cell
Proliferation Assay Kit (RiboBio, Cell-Light™EdU Apollo®643 In
Vitro imaging kit) was used to assessed cell proliferation
according to the manufacture’s instruction. The cells were
added with 100 μL Edu (diluent reagent A with a complete
medium by 1:1,000) and incubated for 2 h at 37°C. The
cells were fixed in 4% paraformaldehyde for 15–30 min and

incubated with 1× Apollo® solution for 30 min at room
temperature. The cell nuclei were stained with 100 μL 1×
Hoechst33342 for 30 min. Finally, the cells were examined
under a fluorescent microscope (Olympus, Japan). Data were
presented as a fold-change of Edu-incorporating cells compared
with negative controls.

Colony Formation Assay
The transfected cells were seeded into a 6-well plate (200–400
cells per well) and cultured for 7–14 days. After incubation, cell
colonies were fixed with 4% paraformaldehyde for 15 min, then
stained with 1% crystal violet. The numbers of colonies were
counted under a microscope.

Cell Apoptosis Assay
The cells were seeded into a 6-well plate (100,000 cells per well).
Firstly, cells were starved in serum-free for 24 h. After
transfection for 48 h, cells were exposed to normoxia or
hypoxia for 24 h. Then cells were collected and resuspended in
200 μL binding buffer per well. The cells were labeled with 5 μL
Annexin-V and propidium iodide (PI) to assess cell apoptosis
using an Annexin-V/PI detection kit (Keygen Biotech, Nanjing,
China). Finally, apoptotic cells were analyzed using flow
cytometry (BD Biosciences, San Jose, CA, United States).
Apoptotic cells including early apoptotic cells (Annexin-V
positive and PI-negative) and late apoptotic cells (Annexin-V
positive and PI-positive) were shown.

Cell Migration Assay
Cell migration assay was performed in a 24-well plate (Corning,
MA, United States) according to the manufacture’s instruction.
Firstly, 200 μL cell suspensions (10,000 cells totally) containing
1% fetal bovine serum were seeded into the upper chamber, while
600 μL medium containing 15% fetal bovine serum was added
into lower chambers. The cells were cultured under normoxia or
hypoxia for 24 h. After incubation, cells on the lower surface of
the membrane were fixed with 4% paraformaldehyde and stained
with 0.1% crystal violet. Non-migrated cells were removed by
scraping the membranes with a cotton swab from the upper
surface. Finally, cells were counted under an optical microscope
(Zeiss, Oberkochen, Germany).

Wound Healing Assay
Wound healing assay were performed through creating a gap in
confluent monolayer of cells using a pipette tip. The cell culture dish
should be placed under an optical microscope (Zeiss, Oberkochen,
Germany) to acquire image at 0, 24 h after the scratch, respectively.
Photographs of 5 random fields were recorded for quantification
analysis. Wound width was calculated as the average distance
between the edges of the scratches.

Immunoprecipitation
Co-immunoprecipitation experiments were performed according to
the manufacturer’s protocol. Briefly, cells were collected and lysed in
IP-lysis buffer (50 mMTris, 150 mMNaCl, 1%NP-40) and protease
inhibitor. Supernatants were collected by centrifugation
(14,000 rpm, 10 min, 4°C), and pre-cleared with 20 µL Protein G
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Magnetic beads (Cell Signaling Technology) for 2 h. Then the pre-
cleared supernatants were incubated with the indicated antibodies
(2 μg/ml) overnight at 4°C, followed by immunoprecipitation with

20 µL pre-washed Protein G Magnetic beads for 3 h at 4°C. Finally,
the precipitates were washed 5–7 times with IP-lysis buffer and
detected using Western blotting.

FIGURE 1 | Notch4 is upregulated in LUAD tissues and cells. (A) The protein level of Notch4 in five paired LUAD tissues and adjacent non-malignant tissues. (B)
The protein levels of Notch4 in A549 and H1299 cells and normal HBE cell. (n � 8). (C) The protein levels of Notch4 in H1299 cells exposed to hypoxia for different times.
(n � 3). (D) The protein levels of Notch4 in A549 cells exposed to hypoxia for different times. (n � 5). Data were presented as means ± SD. *p < 0.05, **p < 0.01. LUAD,
lung adenocarcinoma; HBE, human bronchial epithelial.
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Animal Experiments
Male BALB/c nudemice (3–4 weeks) were purchased fromCharles
River Company. All animal experiments were performed in
compliance with the guidelines for animal testing and research,
with ethical approval from Tongji Hospital. A subcutaneous tumor
xenograft model and a tail vein model were used to evaluate
xenograft tumor growth and metastasis in vivo, respectively. For
the subcutaneous tumor growth model, stable A549 cells (1# 106)
treated with shNotch4 or scramble control were subcutaneously
injected into the right dorsal flank of 5-week-old male BALB/c
nude mice. Tumor volume (TV) was measured by vernier caliper
and calculated as following: TV (mm3) � (L # W2)/2 (L, long
diameter; W, wide diameter). Tumors were separated from
sacrificed mice, and then snap-frozen in liquid nitrogen or fixed
for hematoxylin-eosin staining. For the tail vein model, stable cells
(1# 106) were injected into the tail vein of 5-week-oldmale BALB/
c nude mice. All the mice were sacrificed 6–8 weeks after injection.
The lungs were separated from sacrificed mice and fixed for
hematoxylin-eosin staining.

Statistical Analysis
Statistical analyses were performed using GraphPad Prism
software (Version 8.0). The student’s t-test was used to
compare two groups. One-way analysis of variance was used
to compare more than two groups, followed by Tukey’s multiple
comparison test. Data were presented as means ± SD. p < 0.05 was
considered statistically significant.

RESULTS

Notch4 Expression Is Upregulated in LUAD
Five paired LUAD tissues and adjacent normal tissues were
collected from patients who underwent lung resection. The
protein level of Notch4 was increased in LUAD tissues
compared with the adjacent normal tissues (Figure 1A). The
expressions of Notch4 were significantly increased in A549 and
H1299 cells compared with that observed in HBE cells
(Figure 1B). We further assessed Notch4 expression in A549
and H1299 cells exposed to hypoxia for different times given the
central role of hypoxia in the regulation of tumor progression.
The protein levels of HIF-1a were significantly increased in A549
and H1299 cells under hypoxia over time, indicating a successful
induction of hypoxic condition (Supplementary Figures S1A,B).
Our results revealed that hypoxia significantly enhanced Notch4
protein level over time reaching a peak after 24 h (Figures 1C,D).
Meanwhile, increased mRNA level of Notch4 and Delta-like 4
were also observed in H1299 cells exposed to hypoxia
(Supplementary Figures S1C,D), which may indicate that
hypoxia activates Notch4 signaling by increasing the levels of
Delta-like 4.

Notch4 Promotes Xenograft Tumor Growth
and Metastasis In Vivo
A subcutaneous tumor xenograft model and a tail vein model
were used to evaluate xenograft tumor growth and metastasis in

vivo, respectively. Our results showed that a significant reduction
in tumor weight and in tumor volume was observed in tumor
originating from shNotch4-treated A549 cells compared with
scramble control (Figures 2A–D). Quantitative RT-PCR revealed
a decreased Notch4 mRNA level in shNotch4-treated xenograft
tumors relative to matched controls (Figure 2E). Western
blotting analysis suggested that shNotch4-treated tumors had
lower levels of phosphorylated ERK, JNK, and P38 than controls
(Figure 2F). Additionally, Notch4 knockdown in A549 cells
significantly reduced metastatic growth in lungs compared to
controls (Figures 2G–I). Above all, these results demonstrate that
silencing of Notch4 inhibits tumor progression and metastasis of
LUAD cells in vivo. Meanwhile, the tumors originating from
A549 cells treated with Notch4 overexpression plasmid grew
more rapidly than controls (Supplementary Figures S2A–C).
Increased levels of phosphorylated ERK, JNK, and P38 were
observed in tumor with Notch4 overexpression compared with
negative controls (Supplementary Figure S2F). Metastatic
spread of Notch4-overexpressing A549 cells were faster than
controls (Supplementary Figures S2G–I). Based on these
above results, we conclude that Notch4 facilitates the growth
and metastasis of LUAD and ERK/JNK/P38 pathways may be
involved in the process in vivo.

Notch4 Regulates LUAD Cells Proliferation,
Apoptosis, and Migration Under Hypoxia
The protein levels of Notch4 were significantly reduced in A549
and H1299 cells treated with siRNA against Notch4 relative to
negative controls (Supplementary Figure S3). Hypoxia
promoted the proliferation and migration of A549 and H1299
cells, and inhibited cell apoptosis. The knockdown of Notch4
partly abolished the excessive cell proliferation, migration and
apoptosis resistance due to hypoxia compared with control using
Cell Counting Kit-8, Edu staining, colony forming assay, wound
healing assay, and Annexin-V/PI staining (Figures 3, 4). In
addition, the knockdown of Notch4 significantly
downregulated the protein expressions of survivin and MMP9,
and upregulated the ratio of Bax/Bcl-2 (Supplementary Figure
S4). Taken together, these findings indicate that Notch4 promotes
A549 and H1299 cells proliferation and migration, and inhibits
cell apoptosis under hypoxia.

ERK, JNK, and P38 MAPK Signaling
Pathways Mediate the Regulation of Notch4
Overexpression on A549 and H1299 Cells
Proliferation, Apoptosis, and Migration
The activity of MAPK family members including ERK, JNK, and
P38 in hypoxic A549 and H1299 cells transfected with si-Notch4
or si-NC were further measured. Our results demonstrated that
Notch4 knockdown in hypoxic A549 and H1299 cells decreased
phosphorylation levels of ERK, JNK, and P38 proteins compared
with controls (Figure 5A). A rescue experiment in LUAD cells
co-treated with Notch4 overexpression plasmid and the specific
inhibitors of ERK (U0126), JNK (SP600125), and p38 (SB203580)
was performed to evaluate cell proliferation, migration and
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FIGURE 2 | Notch4 gene silencing alleviated xenograft tumor growth and metastasis. (A–F) Xenograft tumor growth experiments were performed in nude mice
with A549-control and A549-shNotch4 stable cells. (A) Representative images of subcutaneous tumor dissected from the nude mice were presented. (B)
Representative H&E staining images in sections of tumor were presented. Magnification, ×200; Bar, 50 μm. (C) Subcutaneous tumor growth curves of the nude mice
were presented. (n � 10). (D) Subcutaneous tumor weights were presented. (n � 10). (E) The mRNA level of Notch4 in xenograft tumor. (n � 8–10). (F) The protein
levels of Notch4, p38, p-P38, JNK, p-JNK, ERK, p-ERK in xenograft tumor. (n � 3). (G, I) Lung metastasis experiments were performed in nude mice with A549-control
and A549-shNotch4 stable cells. (G) Representative images of lung metastases were presented. (H) The numbers of visible metastatic nodules in the lungs of mice were
counted. (n � 3–4). (I)Representative H&E staining images in sections of lung tissues were presented. Magnification, ×200; Bar, 50 μm. Data were presented asmeans ±
SD. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. H&E, hematoxylin-eosin staining. JNK, c-Jun N-terminal kinase; ERK, extracellular signal-regulated kinase.
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FIGURE 3 | Notch4 is involved in the regulation of cell proliferation in A549 and H1299 cells exposed to hypoxia. (A, B) Cell viability was assessed using CCK-8
assay in A549 and H1299 cells (n � 4–5). (C, D) A549 cell proliferation was assessed using Edu assay. (n � 4). Magnification, ×400; Bar, 20 μm. (E, F) H1299 cell
proliferation was assessed using Edu assay. (n � 5). Magnification, ×400; Bar, 20 μm. (G) Colony formation assay was performed in A549 and H1299 cells. (n � 3). Data
were presented as means ± SD. *p < 0.05, comparison with normoxic cells treated with si-NC; #p < 0.05, comparison with hypoxic cells treated with si-NC. CCK-8,
Cell Counting Kit-8; si-NC, negative control short interfering RNAs (siRNA); si-Notch4, the siRNA against Notch4.
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FIGURE 4 | Notch4 is involved in the regulation of cell migration and apoptosis in A549 and H1299 cells exposed to hypoxia. (A) Wound healing assay was
performed in A549 and H1299 cells. (n � 4). Magnification, ×40; Bar, 200 μm. (B) Cell apoptosis was assessed by Annexin-V/PI staining. (n � 3). Analyses of apoptosis
including early apoptosis (Annexin-V positive and PI negative) and late apoptosis (Annexin-V positive and PI positive) were shown. Data were presented as means ± SD.
*p < 0.05, **p < 0.01, ****p < 0.0001, comparison with normoxic cells treated with si-NC; #p < 0.05, comparison with hypoxic cells treated with si-NC. si-NC,
negative control short interfering RNAs (siRNA); si-Notch4, the siRNA against Notch4; PI, propidium iodide.
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FIGURE 5 | ERK, JNK, andP38MAPKsignalingmediate the regulation of Notch4 overexpression onA549 andH1299 cells proliferation and apoptosis. (A) TheMAPKsignaling
pathwaywere detected in A549 andH1299 cells transfectedwith siRNA against Notch4 or negative control siRNA. (B)Cell viability were examined in A549 andH1299 cells transfected
with Notch4 plasmid or negative control plasmid co-treatment with ERK (U0126), JNK (SP600125), or P38 (SB203580) MAPK pathway inhibitors by using CCK-8 assay. (n � 3–4). (C)
Colony formation assaywasperformed inA549andH1299 cells transfectedwithNotch4plasmid or negative control plasmid co-treatmentwithU0126, SP600125, or SB203580
for 24 h (n� 4). (D)TheAnnexin-V/PI assaywas performed in A549 andH1299 cells transfectedwithNotch4plasmid or negative control plasmid co-treatmentwith U0126, SP600125,
or SB203580 for 24 h (n� 3–6). Analyses of apoptosis including early apoptosis (Annexin-V positive and PI negative) and late apoptosis (Annexin-V positive andPI positive) were shown.
Datawere presented asmeans±SD. *p<0.05, **p< 0.01, ***p<0.001, ****p <0.0001. CCK-8, Cell Counting Kit-8; PI, propidium iodide; si-NC, negative control short interfering RNAs
(siRNA); si-Notch4, the siRNA against Notch4. Vector, negative control plasmid; Notch4, Notch4 plasmid. ERK, extracellular signal-regulated kinase; JNK, c-Jun N-terminal kinase;
MAPK, mitogen-activated protein kinase.
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FIGURE 6 | ERK, JNK, and P38MAPK signalingmediate the regulation of Notch4 overexpression on A549 and H1299 cells migration. (A–D)Wound healing assay
was performed in A549 and H1299 cells transfected with Notch4 plasmid or negative control plasmid co-treatment with U0126, SP600125, or SB203580. (n � 3).
Magnification, ×40; Bar, 200 μm. (E–H) Transwell migration assay was performed in A549 and H1299 cells transfected with Notch4 plasmid or negative control plasmid
co-treatment with U0126, SP600125, or SB203580 for 24 h (n � 3). Magnification, ×100; Bar, 50 μm. Data were presented as means ± SD. *p < 0.05, **p < 0.01,
***p < 0.001, ****p < 0.0001. Vector, negative control plasmid; Notch4, Notch4 plasmid. ERK, extracellular signal-regulated kinase; JNK, c-Jun N-terminal kinase; MAPK,
mitogen-activated protein kinase.
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FIGURE 7 | Notch4 interacts with ERK, JNK, and P38 in A549 cells. Endogenous co-immunoprecipitation was performed in A549 cells exposed to normoxia or
hypoxia for 24 h. (A) Western blot analysis for endogenous ERK, JNK, and P38 after IP of endogenous Notch4 from A549 cells exposed to normoxia or hypoxia. (B)
Western blot analysis for endogenous Notch4 after IP of endogenous ERK from A549 cells exposed to normoxia or hypoxia. (C)Western blot analysis for endogenous
Notch4 after IP of endogenous JNK from A549 cells exposed to normoxia or hypoxia. (D)Western blot analysis for endogenous Notch4 after IP of endogenous P38
from A549 cells exposed to normoxia or hypoxia. (E)Whole-cell lysates were used for IB with the indicated antibodies to show expression. IP, immunoprecipitation; IB,
immunoblot. ERK, extracellular signal-regulated kinase; JNK, c-Jun N-terminal kinase.
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apoptosis. Our results demonstrated that Notch4 overexpression
promoted cell proliferation, migration and inhibited apoptosis,
which were partly abolished by co-treatment with the inhibitors
(Figures 5B–D, Figure 6). Co-immunoprecipitation assay
further revealed a binding interaction between Notch4 and
ERK/JNK/P38 in A549 cells (Figure 7). The above results
indicate that Notch4 regulates the proliferation, apoptosis, and
migration of A549 and H1299 cells via activating ERK, JNK, and
P38 phosphorylation.

DISCUSSION

In this study, we reveal a novel molecular mechanism underlying
the pathogenesis of LUAD and provide a new target for the
treatment of LUAD (Figure 8). Notch4 is upregulated in A549
and H1299 cells and human LUAD tissues compared with
controls. Hypoxia increases the expression of Notch4 in A549
and H1299 cells, which promotes cell proliferation and migration
and inhibits cell apoptosis via the ERK/JNK/P38MAPK pathway.
In vivo study shows that Notch4 promotes the progression and
metastasis of LUAD.

Notch receptors (Notch1-4) are important for cell fate and
function (Zanotti and Canalis, 2016). Previous studies suggest
that Notch receptors play a key role in carcinogenesis including
inhibition of cell differentiation and apoptosis, and promotion of
cell proliferation (Dang et al., 2000; Yeh et al., 2009; Domingo-
Domenech et al., 2012). These findings imply that blocking the
Notch pathway may improve the prognosis of cancer patients. A
monoclonal antibody OMP-59R5 that selectively targeting
Notch2 and Notch3 can inhibit xenograft tumor growth (Yen
et al., 2015). Hypoxia is a pivotal initiator of tumor growth and
metastasis. A nano-scaled polydiaminopyridine nanoparticles
doped with iron ions and conjugated with hyaluronic acid has

been developed for targeted and oxygen-evolving phototherapy
of tumor (Shu et al., 2021). Hypoxia-inducible factor-1α (HIF-1α)
activates the transcription of genes involved in cell proliferation
and metastasis in cancers (Krishnamachary et al., 2003;
Pennacchietti et al., 2003). HIF-1α upregulated the expression
of Notch1, Notch3 and Notch4 via binding to the hypoxia
response elements in their promoter regions in hepatocellular
carcinoma cell lines (Yang et al., 2017). Notch signaling has been
shown to mediate the effect of hypoxia on cancer progression and
metastasis, such as cervical, colon, glioma, and ovarian cancer
(Sahlgren et al., 2008; Irshad et al., 2015; Landor and Lendahl,
2017). However, the role of Notch4 as an oncogene in lung cancer
under hypoxia has not been clarified.We thus explored the role of
Notch4 in LUAD cell lines by siRNA against Notch4 under
hypoxia. Our findings demonstrate that knockdown of Notch4
partly abrogate hypoxia-induced excessive cells proliferation and
migration, and apoptosis resistance of A549 and H1299 cells.
Targeting Notch4 may provide potential benefits for alternative
therapeutic strategies for LUAD.

A defining hallmark of cancer is sustained cell proliferation
involving various extracellular and intracellular signaling
(Feitelson et al., 2015). Survivin, as a member of the inhibitor
of the apoptosis protein family (Ambrosini et al., 1997), promotes
tumorigenesis by inhibiting cell apoptosis and promoting cell
mitosis (Li et al., 1998). Survivin is overexpressed in a wide range
of cancers (Kanwar et al., 2013) and associated with the poor
clinical outcomes of patients (Rödel et al., 2012). In this study, we
found that hypoxia increased the protein expression of survivin in
A549 and H1299 cells, which were downregulated by siRNA
against Notch4.

Apoptosis is the most widely studied form of programmed cell
death. Apoptosis resistance has been linked to oncogenesis and
cancer progression in various types of human cancers
(Thompson, 1995). The Bcl-2 family is the best characterized

FIGURE 8 | Schematic illustration of the role of Notch4 in the proliferation, apoptosis and migration of LUAD cells. Hypoxia induces the expression of Notch4.
Increased level of Notch4 promotes cell proliferation, migration, and apoptosis resistance in A549 and H1299 cells. Hypoxia activates Notch4 via ERK/JNK/P38 MAPK
signaling pathways to promote lung adenocarcinoma progression and metastasis. LUAD, lung adenocarcinoma; ERK, extracellular signal-regulated kinase; JNK, c-Jun
N-terminal kinase; MAPK, mitogen-activated protein kinase.
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protein family consisting of anti-apoptotic and pro-apoptotic
members, such as Bcl-2 and Bax (Martinou and Youle, 2011). The
ratio of Bax/Bcl-2 determines the occurrence and degree of cell
apoptosis (Ye et al., 2019). Our findings showed that hypoxia
inhibited A549 and H1299 cells apoptosis and downregulated the
ratio of Bax/Bcl-2, which were partly reversed by siRNA against
Notch4.

Tumor metastasis is a complex process that accounts for the
majority of cancer-attributed deaths (Lambert et al., 2017).
Matrix metalloproteinase (MMP) family is responsible for the
extracellular matrix degradation involved in cancer progression
(Rao et al., 2005). MMP2 andMMP9 are recognized as two major
enzymes in the degradation of type Ⅳ collagen (Stamenkovic,
2003) and correlate with an invasive phenotype of cancer cells
(Vihinen and Kähäri, 2002). Previous studies have demonstrated
a critical role of MMP9 in the progression of lung cancer and an
association betweenMMP9 and poor survival in patients (Kodate
et al., 1997; Suzuki et al., 1998). In this study, hypoxia promoted
A549 and H1299 cells migration and increased the protein levels
of MMP9, which were both partly reversed by siRNA against
Notch4.

The canonical Notch signaling is initiated by ligand-induced
cleavage of Notch receptor, followed by intracellular domain
translocating into the nucleus and forming a transcriptional
activator to activate target genes transcription (Aggarwal et al.,
2021; Sprinzak and Blacklow, 2021). Recent evidences indicate
that non-canonical signaling is important in oncogenesis via the
interaction with PI3K, mTORC2, AKT, MAPK pathway, and
HIF-1α in the cytoplasm and nuclear (Ayaz and Osborne, 2014;
Li et al., 2016; Zou et al., 2019; Qin et al., 2020). The MAPK
pathway is activated in lung cancer and plays a critical role in the
development and progression of cancer (Fu et al., 2021; Hu et al.,
2021; Jain et al., 2021; Shin et al., 2021). Our results showed that
Notch4 silencing downregulated phosphorylation of ERK, JNK,
and P38. Meanwhile, Notch4 overexpression increased ERK,
JNK, and P38 phosphorylation in A549 and H1299 cells,
which was partly abrogated by the specific inhibitors U0126
(Zhong et al., 2021), SP600125 (Zhang et al., 2021), and
SB203580 (Kwak et al., 2021). Notably, the increased cell
proliferation and migration and inhibited cell apoptosis
induced by Notch4 overexpression in A549 and H1299 cells
were prevented by the co-administration of U0126, SP600125,
or SB203580. Co-immunoprecipitation assay further confirmed
the interaction between Notch4 and ERK/JNK/P38. Above all,
these results suggest that Notch4 activates the phosphorylation of
ERK, JNK, and P38, resulting in increased cells proliferation and
migration and inhibited cells apoptosis in LUAD cells.

Cell-to-cell contact is indispensable in ligand-mediated Notch
activation, and it is not restricted to the same cell type. Cross-talk
between inflammatory cells in the tumor microenvironment and
cancer cells plays an essential role in the growth and progression
of cancer. Emerging data showed a potential involvement of the
Notch pathway in the biology of myeloid-derived suppressor
cells, a subset mostly related to the suppression of immune
responses in cancer (Grazioli et al., 2017). In addition, a
previous study also revealed that activation of Notch1 was

enhanced in non-small cell lung cancer cells cultured with
Delta-like 4-expressing endothelial cells, thus inhibiting the
proliferation of non-small cell lung cancer cells and tumor
formation (Ding et al., 2012). Here, we have performed
immunohistochemistry staining of Notch4 in the lung
adenocarcinoma tissues and adjacent non-malignant lung
tissues from lung adenocarcinoma patients. Our results
showed that the expression of Notch4 increased both in the
parenchymal and stroma of tumors compared with normal
tissues (Supplementary Figure S5), which indicated that the
regulatory effect of Notch4 signal on the proliferation, migration,
and apoptosis of lung cancer cells may depend on the interaction
between cancer cells to cancer cells or cancer cells to the
surrounding cells.

In conclusion, this study demonstrates a critical role of the
Notch4-ERK/JNK/P38 MAPK axis in the effect of hypoxia on the
progression and metastasis of LUAD and provides a novel
potential therapeutic target for LUAD.
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