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Objectives: The pathogenesis of heterogeneity in gastric cancer (GC) is not clear and
presents as a significant obstacle in providing effective drug treatment. We aimed to
identify subtypes of GC and explore the underlying pathogenesis.

Methods:We collected two microarray datasets from GEO (GSE84433 and GSE84426),
performed an unsupervised cluster analysis based on gene expression patterns, and
identified related immune and stromal cells. Then, we explored the possible molecular
mechanisms of each subtype by functional enrichment analysis and identified related
hub genes.

Results: First, we identified three clusters of GC by unsupervised hierarchical clustering,
with average silhouette width of 0.96, and also identified their related representative genes
and immune cells. We validated our findings using dataset GSE84426. Subtypes
associated with the highest mortality (subtype 2 in the training group and subtype C in
the validation group) showed high expression of SPARC, COL3A1, and CCN. Both
subtypes also showed high infiltration of fibroblasts, endothelial cells, hematopoietic
stem cells, and a high stromal score. Furthermore, subtypes with the best prognosis
(subtype 3 in the training group and subtype A in the validation group) showed high
expression of FGL2, DLGAP1-AS5, and so on. Both subtypes also showed high infiltration
of CD4+ T cells, CD8+ T cells, NK cells, pDC, macrophages, and CD4+ T effector
memory cells.

Conclusion: We found that GC can be classified into three subtypes based on gene
expression patterns and cell composition. Findings of this study help us better understand
the tumor microenvironment and immune milieu associated with heterogeneity in GC and
provide practical information to guide personalized treatment.
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INTRODUCTION

Gastric cancer (GC) is the fifth most common tumor and the
third leading cause of cancer-associated death worldwide (Bray
et al., 2018). Albeit unprecedented improvements achieved in
endoscopic, surgical, and comprehensive treatments, the current
global survival rates are poor (Arnold et al., 2020). Surgical
resection with adjuvant chemoradiotherapy is the conventional
treatment for resectable GC at advanced stages (Macdonald et al.,
2001). The intricate immunosuppressive microenvironment,
clinical heterogeneity, and molecular characteristics have been
reported to contribute to resistance to current chemotherapy and/
or radiotherapy plans (Bijlsma et al., 2017).

Molecular subtypes of GC have previously been developed
based on gene expression profiling, mutation patterns,
histopathological images, or gene sets such as DNA repair
gene sets (Lei et al., 2013; Bass et al. 2014; Li X. et al., 2016;
Liu et al., 2018; Jinjia et al., 2019). However, few studies have
successfully integrated gene expression profiling with immune
and stromal cell density to classify GC. Mounting evidence
indicates that our immune system plays a crucial role during
tumorigenesis and progression (Upadhyay et al., 2018), with
much emphasis now being laid on immunotherapy. Most
patients benefit little from immunotherapy, highlighting the
need to investigate the pathogenesis behind GC heterogeneity
and identify novel immunotherapeutic targets and prognostic
markers in GC. Interestingly, recent studies have shown that
stromal cells not only constitute an essential part of the tumor
microenvironment but can also influence the phenotype of
immune cells and tumor progression (Oya et al., 2020; Ren
et al., 2020). A better understanding of the role of the stromal
cell can help predict the prognosis and response to
immunotherapy in GC patients.

In the current study, we provide substantial evidence that
GC can be stratified into three clinically relevant subtypes
with distinct survival patterns. We further identified each
subtype’s representative genes as well as the immune and
stromal cell composition. We successfully validated our
findings using an independent dataset. In both the training
and validation groups, subtypes with worst prognosis shared
similar gene expression and cell composition pattern.
Interestingly, our results emphasized the role of stromal
cells and immune cells in explaining GC interpatient
heterogeneity.

METHOD

Patients and Gene Expression Microarray
Data Acquisition
The National Center for Biotechnology Information (NCBI)
Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.
gov/geo) database is a public functional genomics database
with high throughput gene expression sequencing data and
microarray data. Gene expression profile of GSE84433 based
on GPL6947 platform was downloaded and consisted of 357
tissue samples of GC. GSE84426, another dataset, which

consisted of 76 tissue samples based on the same platform
(GPL6947), was used for validation.

Unsupervised Cluster Analysis
The R package CancerSubtypes Xu et al. (2017) was used for
identifying, validating, and visualizing molecular cancer subtypes
frommulti-omics data. The algorithm for feature selection, based
on a multivariate Cox regression model (features included gene
expression, overall survival time, status, and cutoff <0.05), was
applied on GSE84433 dataset. Then, the clustering method,
consensus nonnegative matrix factorization (NMF), was used
to identify different subtypes. NMF is an unsupervised learning
method for pattern recognition on gene expression profiling and
cell composition used to classify genes into clusters. The default
number of runs was set to 30 to allow computation of a consensus
matrix for selection of the best possible results. The silhouette
width index was calculated to assess accuracy and fitness of the
clustering assignment. Silhouette width values vary between −1
and 1. The more it tends to approach 1, the better the degree of
cohesion and separation. The xCell function of “Immunedeconv”
Sturm et al. (2020), another R package, was used for analysis of
tumor-infiltrating immune cells. xCell can show the relative
enrichment of predetermined combinations of gene profiles
and performs cell-type enrichment analysis from gene
expression data for 64 immune and stromal cell types. The
same algorithm for subtype identification as mentioned above
was used for immune cell-type identification. The
“ComplexHeatmap” package was then used to draw heatmaps.
We compared patient survival rates among these clusters using
survival analysis in cancer subtypes. p < 0.05 represented
statistically significant difference.

Analysis of Correlation Between Different
Clusters and Clinical Features
The “Tableone” package in R was used for analysis of
clinical characteristics of the three GC clusters (subtypes).
p < 0.05 represented statistically significant difference.
“ComplexHeatmap” package was used to generate heatmaps.

Analysis of Differences Among Different
Subtypes
We utilized the “limma” package to identify differentially
expressed genes in each subtype (the threshold value for
differentially expressed genes (DEGs) was set at p < 0.05 and
the absolute value of log two fold change (FC) > 1.8). The
representative DEGs were identified by a Venn diagram
method. For example, to identify the DEGs of subtype 1, a
Venn diagram of (subtype 1 + subtype 2) v/s (subtype 1 +
subtype 3) was drawn to obtain the overlap of DEGs. With a
threshold value of p < 0.05 or 1.5-fold, screening of immune cells
for each subtype was performed, followed by cross analysis, to
obtain infiltrated immune cells of each subtype.
“ComplexHeatmap package” was used to generate heatmaps.

Last, cell types were also predicted using xCell analysis. The
score for each cell type on a heatmap explicitly shows the
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enrichment of the certain cell type compared to other regions
within the same section.

Function and Pathway Enrichment Analyses
To understand the biological characteristics of each subtype, we
applied a functional enrichment test to differentially expressed
genes of each subtype. “clusterprofiler”were applied to investigate
the molecular function (MF), while “ReactomePA” was applied
for analysis of the reactome pathway.

Construction of Protein–Protein Interaction
Network and Analysis of Hub Genes
Protein–protein interaction (PPI) network analysis is a powerful
tool that can be harnessed to better understand the biological
responses occurring in each gastric cancer subtypes. In the PPI
network, a protein is defined as a node, and the interaction
between two nodes is defined as an edge. The size of a node
represents a degree: the larger the node, the larger the degree. The
thickness of an edge indicates a correlation: the thicker the edge,
the higher the correlation (Kohl et al., 2011). The online database
STRING (https://string-db.org/) was applied to construct a PPI
network of the genes and analyze the functional interactions
between proteins. A confidence score ≥0.400 was set as
significant. Cytoscape was then used to analyze hub genes,
which are important nodes with many interactions, and
visualize the PPI networks. Cytoscape plug-in molecular
complex detection (MCODE) was used to screen the modules
of the PPI network identified. The default settings of MCODE
were set with a degree cutoff at 2, node score cutoff at 0.2, K core
at 2, and a maximum depth of 100. The topological algorithm

“degree” was applied in Cytoscape plug-in CytoHubba to
calculate the importance of these hub genes in the PPI
network (Chin et al., 2014).

Validation Set
To verify reproducibility of our findings and investigate the
relationship between differentially expressed genes and
immune cells with the prognosis of GC patients, the
GSE84426 dataset was downloaded from the GEO database.
The CancerSubtypes package was used with feature selection
based on the Cox regression model. Then, the NMF package was
applied to identify clusters. Parameters were set for the training
group (see methodUnsupervised Cluster Analysis). The silhouette
width was calculated to determine the accuracy of clustering
assignment. The xCell function of “Immunedeconv,” another R
package, was used for analysis of tumor-infiltrating cells.
Differentially expressed genes and immune cells of all clusters
were then compared.

RESULTS

Identification of Three Subtypes by
Unsupervised Hierarchical Cluster Analysis
A flowchart detailing the overall study is shown in Figure 1. In
order to assess tissue heterogeneity and to predict cell patterns, we
first utilized the xCell algorithm and then unsupervised
hierarchical analysis on the GSE84433 dataset.

Feature selection based on a multivariate Cox regression
model resulted into 2,358 significant genes and 32 significant
immune cells. Three distinct GC subtypes were then identified by

FIGURE 1 | Flowchart of this study.

Frontiers in Pharmacology | www.frontiersin.org June 2021 | Volume 12 | Article 6924543

Cao et al. Immune Subtypes of Gastric Cancer

https://string-db.org/
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


the NMF method. The silhouette width (used to determine the
accuracy of clustering assignment) of subtype 1, subtype 2, and
subtype 3 was 0.95, 0.95, and 0.98, respectively, while the average
silhouette width was 0.96 (Figure 2A). The differential genes
expression and density of cells in the three subtypes are shown in
Figure 2C. Survival analysis subsequently showed that subtype 3 had
the best prognosis, while subtype 2 had the worst prognosis (p �
0.000654) (see Figure 2B).

Correlation Between Clinical
Characteristics and GC Subtypes
Statistical analysis of the difference in clinical characteristics
(survival status, overall survival time, age, gender, pathological
tumor (pT) stage, and pathological node (pN) stage) among the
three subtypes was performed. DEGs in each subtype were then
obtained. As seen in Figure 3, there was a significant difference of
DEGs among all three subtypes, especially between subtypes 2
and 3. The intercluster comparison results are displayed in
Table 1. Subtype 3 had the lowest mortality rate (30.1%), with
a mean overall survival time (87.33 months), followed by subtype
1 which had a mortality rate of 51.5% and a mean survival of
71.16 months. Subtype 2 had the highest mortality rate (59.2%)
and shortest mean survival (66.89 months).

To identify representative genes of each subtype, a Venn
diagram method was used (Figure 4A) and expressed as a

heatmap (Figure 4B). Subtype 2 displayed elevated expression
of AKAP12, CPE, SSPN, TMEM47, GASK1B, ZNF521, CDO1,
MIR99AHG, THBS4, LPAR1, CCN3, and so on. Subtype 3
showed high expression of FGL2, DLGAP1-AS5, and so on
(see Supplementary Table S1 for complete list). There was a
statistically significant difference, especially between subtypes 2
and 3 (Figure 4B). Moreover, to identify representative cells of
each cluster, a Venn diagram method was used (Figure 4C) and
expressed as a heatmap (Figure 4D). As seen in the heatmap,
subtype 2, which had the worst prognosis, showed high
expression in hematopoietic stem cells (HSCs), fibroblasts, and
endothelial cells, and a high stroma score, while subtype 3 with
the best prognosis consisted of CD4+ T cells, CD8+ T cells, NK
cells, pDC, macrophages, CD4+ T effector memory cells, and
Th1 cells (see Supplementary Table S2 for complete list).

Pathway Analysis of Differentially
Expressed Genes of Each Subtype
After obtaining DEGs of each subtype, we sought to understand
the biological characteristics related to each subtype; we thus
applied Gene Ontology (GO) enrichment analysis and reactome
pathway analysis. As seen in Figures 5A–C, the MF of subtype 1
was characterized by “MHC class II receptor activity and immune
receptor activity,” and the reactome pathway by “c-interferon
signaling, generation of second messenger molecules, and TCR

FIGURE 2 | Three subtypes were obtained by unsupervised learning. (A). Silhouette plots for the identified cancer subtypes. (B) Survival curves. (C). Heatmap of
the sample similarity matrix.
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signaling.” Subtype 2 was characterized by “Extracellular matrix
structural constituent, growth factor binding, glycosaminoglycan
binding, and integrin binding,” while reactome pathway
processes included “degradation of the extracellular matrix,

regulation of insulin-like growth factor transport and uptake
by insulin-like growth factor binding proteins, and signaling
by platelet-derived growth factor (PDGF).” Subtype 3 was
characterized by “immune receptor activity, antigen binding,

FIGURE 3 | Heatmap of the correlation between differential genes expression and clinical characteristics in each subtype (pT: pathological primary tumor, pN:
pathological lymph node status).

TABLE 1 | Analysis of the clinical characteristics of the three subtypes from the training dataset.

Variables 1 (n = 171) 2 (n = 103) 3 (n = 83) P value

Status
Death (%) 88 (51.5) 61 (59.2) 25 (30.1) <0.001
Overall survival time (mean; SD) (month) 71.16 (49.60) 66.89 (50.05) 87.33 (47.65) 0.013
Age (mean; SD) (years) 61.37 (10.23) 56.88 (12.44) 58.95 (11.39) 0.005
Sex � male (%) 119 (69.6) 66 (64.1) 57 (68.7) 0.627
pT stage (%) 0.063
T1 10 (5.8) 0 (0.0) 1 (1.2)
T2 18 (10.5) 8 (7.8) 9 (10.8)
T3 36 (21.1) 16 (15.5) 15 (18.1)
T4 107 (62.6) 79 (76.7) 58 (69.9)
pN stage (%) 0.062
N0 37 (21.6) 15 (14.6) 19 (22.9)
N1 66 (38.6) 45 (43.7) 44 (53.0)
N2 49 (28.7) 36 (35.0) 14 (16.9)
N3 19 (11.1) 7 (6.8) 6 (7.2)

pT, pathological primary tumor; pN: pathological lymph node status.
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cytokine receptor activity, and binding,” while reactome pathway
processes included “γ-interferon signaling, immunoregulatory
interactions between a lymphoid and a nonlymphoid cell, and
TCR signaling.” The PPI network of each subtype is displayed in
Figures 6A–C. Hub gene proteins for subtype 1 included “HLA-
DQA1, HLA-DPA1, and TRIM22”; subtype 2 included “SPARC
(secreted protein, acidic, and rich in cysteine), COL3A1, and
CTGF”; and subtype 3 included “CD86, interferon-gamma
(IFNG), and granzyme B (GZMB).”

Differential Genes and Immune Cell
Analysis of Validation Set
Another microarray dataset (GSE84426) consisting of 76 cases of
GC was downloaded from the GEO database. The dataset was
clustered into three subtypes (validation group subtypes A, B, and
C) by NMF. As shown in Figure 7A, the silhouette widths of

subtype A, subtype B, and subtype C were 0.88, 0.99, and 0.98,
respectively, and the average silhouette width � 0.93. Survival
analysis showed that the prognosis of subtype A in the
validation set was significantly better than that in the other two
subtypes (p � 0.00722; in Figure 7B). Results of the analysis of
differential gene expression and immune cells in each subtype are
shown in Figure 7C.

We compared the difference in clinical characteristics among
the different subtypes of GC (Table 2). Subtype A had the lowest
mortality (0.45%), followed by subtype B (0.48%), and subtype C
had the highest mortality (0.50%). Subtype A had the longest
overall survival time (64.06 months) compared to subtype C
which was 46.53 months, while subtype B had the shortest
overall survival time (39.10 months).

We then analyzed the specific differential genes and
differential immune cells among the three subtypes, as shown
in Supplementary Figures S1, S2, respectively. Interestingly,

FIGURE 4 | Representative differential genes and immune cells among different subtypes (A and C) Venn diagram; (B and D) heatmap.
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FIGURE 5 | Molecular function analysis and reactome pathway analysis of representative differentially expressed genes in different subtypes (A). Subtype 1, (B).
Subtype 2, and (C). Subtype 3.
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FIGURE 6 | _Protein–protein interaction network of representative differential genes in each subtype (A). Subtype 1, (B). Subtype 2, and (C). Subtype 3.
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subtype C with the highest mortality (50%) showed high
expression of FOXF2, CAP2, MYLK, FLNC, AKAP12, CPE,
SSPN, TMEM47, GASK1B, ZNF521, CDO1, MIR99AHG,
THBS4, LPAR1, CCN3, and so on, with x-Cell results showing
high infiltration of fibroblasts, endothelial cells, and HSCs, and a
high stromal score. These results were similar to those obtained
for subtype 2 in the training group.

DISCUSSION

The composition of immune and stromal cells in the tumor
microenvironment contributes to tumor heterogeneity, and plays

an essential role in determining treatment efficacy and patient
prognosis (Mcgranahan and Swanton, 2017; Stein et al., 2019).
Gene expression profiling using microarrays or RNA sequencing
(RNA-seq) has been widely used to generate a wealth of
transcriptomic profiles in many cancer types. In our study, we
utilized xCell for cell-type enrichment analysis and performed
unsupervised hierarchical analysis for pattern recognition on
gene expression and cell composition. The correlation between
GC subtypes and clinical characteristics was comprehensively
assessed.

We found that GC could be classified into three clinically
relevant subtypes with distinct survival patterns. The gene
expression pattern and cell composition of two independent

FIGURE 7 | Three distinct subtypes obtained from the validation set (GSE84426) based on differential immune cell and genes. (A). Silhouette plots for the identified
cancer subtypes. (B). Survival curves. (C). Heatmap of the sample similarity matrix.
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GC datasets, each divided into three subtypes by unsupervised
cluster analysis, were similar. Subtypes associated with the highest
mortality (subtype 2 in the training group and subtype C in the
validation group) showed high expression of AKAP12, CPE,
SSPN, TMEM47, GASK1B, ZNF521, CDO1, MIR99AHG,
THBS4, and so on. Both subtypes also showed high infiltration
of fibroblasts, endothelial cells, and HSCs, and a high stromal
score. Subtypes with the best prognosis (subtype 3 in the training
group and subtype A in the validation group) showed high
infiltration of CD4+ T cells, CD8+ T cells, NK cells, pDC,
macrophages, and CD4+ T effector memory cells. It has been
reported that in GC, stromal cell types such as fibroblasts,
endothelial cells, and HSCs lead to poor prognosis (Mao et al.,
2020). Our findings were consistent with those of the
previous study.

PPI network analysis showed the subtype 3 with the best
prognosis was associated with hub genes “CD86, IFNG, and
GZMB,” while functional enrichment tests showed MF
involvement with biological processes such as “immune
receptor activity, antigen binding, cytokine receptor activity,
and binding,” terms related to cytotoxic antitumor immunity
such as “c-interferon signaling, immunoregulatory interactions
between a lymphoid and a non-lymphoid cell, and TCR
signaling” were found to be significantly enriched.
Interestingly, the list of differentially expressed genes obtained
for subtype 3 also included genes coding for interferon-c,
tryptophanyl-tRNA synthetase (WARS), CD8A, and
guanylate-binding protein 4 (GBP4). In a retrospective study,
patients with granzyme B and WARS had an improved 5-year
overall survival with adjuvant chemotherapy on resectable GC
(Cheong et al., 2018). Interferon-gamma (IFNc) can enhance
cytotoxic activities of natural killer cells and cytotoxic T
lymphocytes (CTL), making tumor cells more prone to
recognition and destruction. Many immunotherapeutic drugs
including CTLA-4 and PD-1 inhibitors eliminate cancer cells
by increasing IFNc expression. Hurkmanns et al. found that
lower granzyme B levels in patients with metastatic cancer
favored tumor growth by halting the antitumor immunity

response by cytotoxic immune cells (Hurkmans et al., 2020).
Co-stimulatory molecules such as CD86 which are expressed on
mature DCs are critical in the activation of naïve T cells (Hubo
et al., 2013). These may explain why interferon-c, granzyme B,
and CD86 were associated with the best prognosis subtype.

Moreover, subtype 2 with the worst prognosis was associated
with “SPARC, COL3A1, and CTGF,” and functional
enrichment tests showed MF involvement with “extracellular
matrix structural constituent, growth factor binding,
glycosaminoglycan binding, and integrin binding,” while
reactome pathway processes included “degradation of the
extracellular matrix, regulation of insulin-like growth factor
transport and uptake by insulin-like growth factor binding
proteins, and signaling by PDGF.” Interestingly, Li Z. et al.
(2016) reported that high immunostaining of SPARC, a
matricellular glycoprotein, correlated with tumor
differentiation and independently predicted shorter overall
survival in 137 GC cases. Cheng et al. (2014) reported
Cyr61/CTGF/Nov (CCN) proteins are part of a family of
matricellular proteins that participate in GC carcinogenesis.
Prior studies also revealed high CCN2 expression in GC
correlated with a greater number of lymph node metastases,
peritoneal dissemination, and shorter survival (Liu et al., 2007;
Liu et al., 2008; Jiang et al., 2011).

In our study, differences in the cellular infiltrates among all
subtypes were also established using xCell. Subtype 3 which
showed the best prognosis featured the greatest number of
cytotoxic antitumor immunity–related cell types. Both
subtypes associated with the highest mortality (subtype C in
the validation group and cluster two in the training group)
showed high infiltration of fibroblasts, endothelial cells, and
HSCs, and a high stromal score. This finding is in line with
that of the previous study by Min et al. (Mao et al., 2020), which
concluded that a high stromal score was a poor prognostic factor
in GC. These clearly emphasize the role of cellular immunity and
stroma in explaining the different prognosis of GC patients. Poor
prognosis was associated with the presence of fibroblasts,
endothelial cells, and HSCs.

TABLE 2 | Analysis of the clinical characteristics of the three subtypes from the validation dataset.

Variables A (n = 36) B (n = 10) C (n = 30) P value

Status
Death (%) 0.28 (0.45) 0.70 (0.48) 0.60 (0.50) 0.008
Overall survival time (mean; SD) (month) 64.06 (24.57) 39.10 (32.13) 46.53 (27.88) 0.008
Age (mean; SD) (years) 65.64 (9.09) 64.70 (15.17) 58.33 (14.19) 0.050
Sex � male (%) 26 (72.2) 9 (90.0) 19 (63.3) 0.267
pT stage (%) 0.017
T1 0 0 0
T2 3 (8.3) 0 (0.0) 0 (0.0)
T3 17 (47.2) 3 (30.0) 5 (16.7)
T4 16 (44.4) 7 (70.0) 25 (83.3)
pN stage (%) 0.566
N0 4 (11.1) 0 (0.0) 5 (16.7)
N1 18 (50.0) 5 (50.0) 10 (33.3)
N2 14 (38.9) 5 (50.0) 14 (46.7)
N3 0 (0.0) 0 (0.0) 1 (3.3)

pT, pathological primary tumor; pN: pathological lymph node status.
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One limitation of this study is our inability to correlate our
findings with subtypes of the Lauren histological classification
(Lauren, 1965). No histological data were available from the
downloaded GSE84433 dataset. According to the Lauren
classification, gastric adenocarcinoma can be classified into
diffuse, intestinal type, and mixed type. The diffuse subtype is
associated with aggressive progression, peritoneal metastasis,
and poorer prognosis than intestinal-type GC. A recent study
by Jinawath et al. discovered that SPARC which is involved in
the production of extracellular matrix was enhanced in
diffuse-type, and not in intestinal-type GC (Jinawath et al.,
2004). Similarly, enhanced expression of genes usually
involved in the production of ECM components in diffuse-
type GC, including SPARC and COL3A1, was found in the
worst prognosis subtype in our study. Moreover, results of our
analysis are preliminary and need to be further validated at the
clinical level. At present, biomarkers are needed to assist
clinicians in drug selection and avoid toxicity in
nonresponsive patients. Proper integration of gene
expression profiling can help tailor disease management
and improve the accuracy of current palliative
chemotherapeutic measures.

CONCLUSION

In a nutshell, based on unsupervised learning and xCell, we
successfully stratified GC into three clinically relevant subtypes
with distinct survival patterns. Importantly, we identified each
subtype’s representative genes and immune and stromal cell
composition. Interestingly, our results emphasized the role of
stromal cells and immune cells in determining patient
prognosis.
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