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Abstract: The assessment of shoulder kinematics and kinetics are commonly undertaken biomechani-
cally and clinically by using rigid-body models and experimental skin-marker trajectories. However,
the accuracy of these trajectories is plagued by inherent skin-based marker errors due to marker
misplacements (offset) and soft-tissue artifacts (STA). This paper aimed to assess the individual
contribution of each of these errors to kinematic and kinetic shoulder outcomes computed using a
shoulder rigid-body model. Baseline experimental data of three shoulder planar motions in a young
healthy adult were collected. The baseline marker trajectories were then perturbed by simulating
typically observed population-based offset and/or STA using a probabilistic Monte-Carlo approach.
The perturbed trajectories were then used together with a shoulder rigid-body model to compute
shoulder angles and moments and study their accuracy and variability against baseline. Each type of
error was studied individually, as well as in combination. On average, shoulder kinematics varied
by 3%, 6% and 7% due to offset, STA or combined errors, respectively. Shoulder kinetics varied
by 11%, 27% and 28% due to offset, STA or combined errors, respectively. In conclusion, to reduce
shoulder kinematic and kinetic errors, one should prioritise reducing STA as they have the largest
error contribution compared to marker misplacements.

Keywords: skin markers; shoulder; kinematics; kinetics; error propagation; soft-tissue artifact;
marker misplacement

1. Introduction

Assessments of an individual’s shoulder kinematics and kinetics are critical to evaluate
shoulder function [1], coordination [2], and to assess muscular forces [3]. As opposed to
direct measurements, inverse kinematics and inverse dynamics [4] present advantages
in computing accurate joint angles and moments as they utilise a global optimisation
method [5]. However, the accuracy and reliability of the computed shoulder angles and
moments entirely depend on the fidelity of the experimental motion capture data and on
the underlying rigid-body upper-limb model.

Regarding the latter, personalisation of rigid-body models is commonly undertaken to
match the studied individual’s anthropometric measurements and inertial properties [6–8].
This ensures that the inverse kinematic and inverse dynamic computations are based on
a close representation of the person’s anatomy, and is essential to obtain physiologically
consistent joint angles [9,10].

In order to experimentally record shoulder kinematics, skin-based marker systems
are considered the gold-standard, thanks to their accessibility, non-invasive placement [11]
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and reliability [12]. However, the nature of skin-based markers presents two main issues,
especially at the shoulder joint.

Firstly, palpating bony landmarks through soft tissues, such as skin, fat and muscles,
can be challenging, particularly at the scapular and spinal levels. Even though shoulder
landmarks have been well defined by the International Society of Biomechanics (ISB) [13],
the reliability of their locations are dependent on the operator’s level of expertise [14].
Moreover, inter-operator variability from a few millimetres up to a centimetre has also
been demonstrated [15]. Marker misplacement (offset) is undoubtedly responsible for
errors in the computed kinematics and kinetics, but the extent to how much marker offset
contributes to overall errors is still unknown.

Secondly, the most redundant issue with skin-based markers is their propensity to
follow skin motion instead of the underlying bony landmark [16]. This issue is known
as soft-tissue artifact (STA). STAs are common over the entire human body, although
they are predominant at the spinal and scapular levels, which, in some cases, makes it
impossible to accurately track a bony landmark. To limit this issue at the scapula, a scapula
marker cluster is often used as described by Warner et al. [17,18]. This tool averages
the STA to only one point of the scapula, i.e., the acromion, where soft tissues are the
thinnest [19]. Moreover, studies have demonstrated the influence of STA on shoulder
kinematic computations [20–23]. However, none of these studies has separately quantified
the effects of STA from those of marker placement at the shoulder.

Myers et al. [9] used rigid-body modelling and probabilistic (i.e., Monte-Carlo) sim-
ulations to study the individual influence of offset and STA on lower-limb kinematics
and kinetics during walking. They based their work on previously published directional
measurements describing typical marker misplacements [24] and STA [25] observed in
the lower-limbs when using marker-based systems. This modelling work is unique and
essential to better understand how errors propagate through rigid-body computations.
Ackland et al. [26] and Wu et al. [27] used similar methods to quantify the error propagation
from kinematics, muscle moment arms and tendon properties to muscle and joint forces in
the upper-limb using musculoskeletal modelling. However, no study has addressed the
variability produced by experimental marker errors, i.e., marker misplacements and STAs,
on shoulder kinematics and kinetics.

Studied individually, we hypothesise that STAs will have a greater impact on shoulder
kinematics and kinetics than the effects of marker misplacements. Moreover, the greatest
variability in shoulder kinematics and kinetics would occur when both error types are
combined (Combined).

In order to verify these hypotheses, the present study will use a personalised upper-
limb rigid-body model along with baseline experimental data of three shoulder planar
motions, within which modelling and experimental biases will be carefully removed.
Subsequently, a Monte-Carlo approach will be adopted simulating typically observed
upper-limb marker offset and STA, taken from the literature. Each of these experimental
marker errors will be studied individually, as well as in combination. This methodology
aims to identify the individual effects, via the related accuracy and variability, produced by
each type of experimental marker error (i.e., offset and STA) on shoulder kinematics and
kinetics. Moreover, the accuracy and variability of the computed shoulder kinematics and
kinetics will be studied in the case of combined simulated offset and STA to represent the
effects of realistic experimental marker errors.

2. Methods
2.1. Participant

A healthy volunteer (female, age: 29 y.o., weight: 57.2 kg, height: 157.5 cm) with no
history of shoulder pain or pathology was recruited for this study. Ethics approval was
obtained from the QUT Human Research ethics committee, and the participant provided
written informed consent before participation (QUT ethics approval number #2000000470).
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The participant underwent an MRI scan of the upper arm and shoulder and partici-
pated in a motion capture recording of upper limb movements on separate days. Hemitho-
rax and dominant upper extremity (including whole spine and sternum) were imaged using
a 3 Tesla MR scanner (Ingenia, Koninklijke Philips N.V., Amsterdam, The Netherlands)
at voxel sizes of 0.4 × 0.4 × 0.8 mm (using a T1 Dixon sequence). The sternum, clavicle,
scapula and humerus in the images were then segmented using Mimics 23.0 (Materialise,
Leuven, Belgium) to create a 3D anatomical model.

2.2. Experimental Motion Trajectories

During the motion capture session, seven retro-reflective markers were attached to
relevant anatomical landmarks of the thorax (C7, T8, IJ, PX), right shoulder (AC) and
arm (EL, EM) according to the ISB standards [13] (cf. Figure 1). A marker cluster was
placed on the flat bony part of the scapular spine, close to the acromion, and used to track
scapula motions as well as average and limit skin motion artifacts [17,19]. Other scapular
landmarks (AAc, TS, AI, PC) were then located in the scapular coordinate system using a
registration wand [18]. Lastly, a marker cluster was attached to the participant’s dominant
upper arm, and the participant was asked to perform shoulder circumduction for 30 s. This
task allowed estimation of the location of the functional glenohumeral joint (GHJ) centre
using the ScoRE method [28].
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Figure 1. MRI-based model of the right shoulder and its bony landmarks. IJ: Incisura Jugularis, PX:
Processus Xiphoideus, C7: 7th cervical vertebrae, T8: 8th thoracic vertebrae, AC: Acromioclavicular
joint, AAc: Angulus Acromialis, TS: Trigonum Spinae Scapulae, AI: Angulus Inferior, PC: Processus
Coracoideus, EM: Medial Epicondyle, EL: Lateral Epicondyle.

The participant was instructed to stand and perform a trial for three different shoulder
planar motions, i.e., shoulder abduction/adduction (AA), flexion/extension (FE) and
internal/external rotation (IER). AA and FE tasks were executed up to shoulder level
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(approximately 90◦ of elevation) to limit skin-motion artifacts at the scapula cluster [17].
IER was executed up to contact of the forearm with the thorax. Each task was performed
with the arm along the thorax and following three consecutive phases, i.e., the initial
movement, a holding phase and the opposite movement to come back to initial posture. A
metronome directed each phase to last a period of 2 s. Marker trajectories were recorded at
200 Hz using a 12-camera motion capture system (Vicon Motion Systems, Oxford, UK) and
filtered using a second-order, zero-lag, 4 Hz low-pass Butterworth filter [29].

2.3. Multi-Body Model

The model developed for the study was structured as a five segment, eight degrees-of-
freedom (DOF) multi-body model of the upper limb. The sternoclavicular joint (SCJ) was
modelled as a 2 DOF universal joint, and both the acromioclavicular joint (ACJ) and GHJ
as 3 DOF spherical joints. The elbow and wrist joints were assumed to be fixed with no
degree of freedom.

An anatomical model was designed from segmented MR images of the sternum,
clavicle, scapula and humerus bones to create an image-based subject-specific model of
the participant. Segmental parameters including centre of mass and moments of inertia
were determined from the images [30]. The forearm and hand bones could not be retrieved
from the MRI, thus generic shapes were used and linearly scaled to estimate the inertial
properties of the forearm. In the following, the model is denoted as an MRI-based model
(cf. Figure 1).

Twelve bony landmarks, described by the ISB [13] and belonging to the thorax, clavicle,
scapula and humerus segments, were digitally selected on the virtual bony surfaces by
an experienced operator using the open-source software NMSbuilder (cf. Figure 1) [30,31].
The model-based GHJ centre was determined as the centre of the best-fit sphere onto the
humeral head [32]. Bony landmarks and joint coordinate systems were defined based on
the ISB recommendations [13]. Based on Šenk et al., the Cardan sequence YXZ was used
for each joint kinematic assessment to limit gimbal lock issues [13,33].

2.4. Baseline Trajectories

In order to individually study the influence of marker misplacements and STA, the
following method was used to firstly remove any modelling bias out of the marker trajec-
tories. From the experimental trajectories, the corresponding joint angles were computed
using inverse kinematics, via OpenSim 3.3 API in MATLAB and the MRI-based model.
Then, via the Point Kinematics tool available in OpenSim, the exact trajectories of all the
model’s surface landmarks were computed. Hence, these corrected trajectories do not
contain any STA and perfectly represent the shoulder landmarks and their movements.
From these baseline trajectories, errors can be artificially produced and their individual
effects on shoulder kinematics and kinetics can be examined.

2.5. Marker Perturbation

As outlined by Myers et al. [9], the two different experimental perturbation types
simulated were (1) realistic marker placement offset and (2) STA. Ultimately, a third per-
turbation type was simulated when both offset and STA, were combined, representing
what realistically happens in a motion capture laboratory (see [9] for further explanations
and illustrations).

2.5.1. Marker Offset

The first simulated perturbation type was an offset in the marker placement with re-
spect to its underlying bony landmark. Inter-operator palpation variability was taken from
the literature [15]. The simulated marker offset, ro f f set, was assumed constant throughout
the motion in the local coordinate system of the segment and was randomly chosen from
the normal distribution (ND): 0 ± SD. The standard deviation (SD) was dependent on the
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marker location and described in Table 1 [15]. The mean equal to 0 means that, on average,
the marker would be correctly located at the accurate bony landmark position.

Table 1. Standard deviation describing the inter-operator variability in palpating the accurate bony
landmarks of the upper limb and thorax. Values described in their segment local coordinate system.
Taken from de Groot et al. [15].

Skeletal Landmarks Abbreviations SD–X (mm) SD–Y (mm) SD–Z (mm)

Incisura Jugularis IJ 1.4 1.6 1.9

Processus Xiphoideus PX 2.1 1.6 2.2

7th cervical vertebrae C7 2.3 3.3 1.9

8th thoracic vertebrae T8 1.3 1.2 3.1

Acromioclavicular joint AC 2.3 1.0 2.7

Angulus Acromialis AAc 2.9 1.6 3.2

Trigonum Spinae Scapulae TS 3.8 2.0 2.5

Angulus Inferior AI 3.8 1.8 3.0

Processus Coracoideus PC 2.3 1.0 2.7

Medial epicondyle EM 1.8 2.3 1.8

Lateral epicondyle EL 1.8 2.3 1.8

2.5.2. STA

The STA simulation was undertaken by assuming that artifacts depended on the phase
of the motion and the motion type. For five different motion phases, respectively, from 0 to
10, 10 to 33, 33 to 66, 66 to 90 and 90 to 100%, the STA of the thoracic, scapular and humeral
markers, i.e., rSTA, were randomly selected from their different NDs, as reported in Table 2.
Note that we selected five phases based on the available data from Konda et al. [34].

Table 2. Normal distributions (ND) used to perturb each bony landmark during each phase and
function of the motion task. Values are described in their segment local coordinate system. Scapular
values are taken from Konda et al. [34]. Note that soft-tissue artifacts for the six thoracic and humeral
landmarks were arbitrarily assumed to follow the ND: 0 ± 4 mm.

Skeletal Landmarks Motion Simulated
Phases

ND in Local X
(mm)

ND in Local Y
(mm)

ND in Local Z
(mm)

AAc
(TS, AI, PC followed the same NDs) AA, IER

Phases 1 & 5 0 ± 0 0 ± 0 0 ± 0

Phases 2 & 4 6.4 ± 4.1 3.6 ± 2.9 0.7 ± 7.5

Phase 3 8.4 ± 4.5 6.0 ± 2.9 −0.8 ± 6.3

AAc
(TS, AI, PC followed the same NDs) FE

Phases 1 & 5 0 ± 0 0 ± 0 0 ± 0

Phases 2 & 4 10.8 ± 4.8 3.7 ± 1.7 13.9 ± 7.5

Phase 3 16.0 ± 5.0 7.9 ± 3.6 11.9 ± 7.8

IJ, PX, C7, T8, AC, EL, EM AA, FE, IER Phases 1, 2, 3, 4, 5 0 ± 4 0 ± 4 0 ± 4

In detail, the AAc landmark was perturbed in each x-, y- and z-direction of the local
scapular coordinate system, based on data from the literature [34] and as reported in Table 2.
Unfortunately, no data were found regarding directional STA at the AAc landmark during
an IER task. Therefore, similar values to those obtained during the AA task were assumed,
based on van Andel et al. [35]. The other scapular landmarks such as TS, AI and PC
followed the same errors as AAc to replicate the fact that these landmarks were registered
using the scapular marker cluster placed on the acromion. Regarding the thoracic, clavicular
and humeral landmarks, no directional information was found in the literature. Thus, STA
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for the 6 thoracic and humeral landmarks was assumed to follow the ND: 0 ± 4 mm, based
on Konda et al. [34]. Continuity of every marker trajectory was assured between the five
motion phases by locally weighted smoothing [36].

2.6. Monte-Carlo Approach

A Monte-Carlo approach was chosen to quantify the kinematic and kinetic variabilities
due to both of the simulated experimental marker errors. This method allows statistical
quantification of the plausible and realistic ranges of outcomes that would occur from a
motion capture session, accounting for the known probabilistic distribution of each source
of errors.

For every iteration of the Monte-Carlo simulations, each of the 12 baseline 3D trajecto-
ries, i.e., Xi,j(t), Yi,j(t) and Zi,j(t), was randomly perturbed as described in Equations (1)–(3).
i corresponds to marker 1 to 12, j corresponds to motion phase 1 to 5.

Xi,j(t) = Xi(t) + rSTA
X,i,j + ro f f set

X,i (1)

Yi,j(t) = Yi(t) + rSTA
Y,i,j + ro f f set

Y,i (2)

Zi,j(t) = Zi(t) + rSTA
Z,i,j + ro f f set

Z,i (3)

The present study comprised three different Monte-Carlo simulations per motion type,
each focusing on one of the three types of perturbations (i.e., offset, STA and Combined).
When offset is simulated alone, all rSTA

Y,i,j = 0. In contrast, if STA is simulated alone, all

ro f f set
i = 0. Each simulation included 1000 iterations assuming convergence would be

reached priorly.

2.7. Analysis

All perturbed trajectories were used, together with the MRI-based model, to perform
inverse kinematics and inverse dynamics using OpenSim 3.3 API in MATLAB. These resulted
in GHJ angles and moments during the three different shoulder tasks. Only the main GHJ
angle responsible for each task will be used and reported in the current study, i.e., X for
AA, Z for FE and Y for IER.

The effects on kinematic and kinetic results due to marker misplacement and STA
were analysed through data convergence, accuracy and variability by reporting the 50%
median and the 5–95% bounds of the 1000 iterations per simulation, and compared to the
baseline GHJ angles and moments.

First, convergence of each statistical simulation was checked and assumed satisfied
if and when the convergence criterion ε(i) at the ith iteration, given by Equation (4),
reached 5 × 10−4 or less. ε(i) represents the averaged changes in the last 10 iterations of
the maximum difference, ∆max, i

5−95%, between the 5 and 95% bounds over the duration of a
trial. The number of iterations and the level of convergence were arbitrarily selected and
were found to be adequate for this particular study.

ε(i) =
∑i+9

j=i

∣∣∣∣∆max, j+1
5−95% −∆max, j

5−95%

∆max, j
5−95%

∣∣∣∣
10

(4)

The accuracy of each perturbed simulation, to target the baseline, non-perturbed,
kinematics and kinetics, was studied by calculating the Root Mean Square Error (RMSE)
between the baseline angle/moment and the 50% median over time.

Finally, variability obtained from each perturbed simulation was studied by calculating
the difference between the 5 (Min) or 95% (Max) bound and the 50% median result, averaged
over the duration of the normalised time.
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3. Results

All kinematic simulations converged using between 120 (offset–AA task) and 323
(STA–FE task) iterations depending on the perturbation type and the motion task, with an
average of 234 iterations. All kinetic results reached convergence between 109 (offset–AA
task) and 397 (STA–FE task) iterations, with an average of 244 iterations.

Figure 2 presents the ranges of GHJ angles and moments computed out of the thousand
iterations of each Monte-Carlo simulation (i.e., kinematics and kinetics of the three different
shoulder tasks) with the medians, and the bounds containing 5–95% of all results over the
normalised task time. On average, the kinematic and kinetic 5–95% bounds were larger
during the hold phase for each task than while moving (cf. Figure 2). Moreover, one can
generally observe that offset was responsible for less variability than STA alone. Combined
offset and STA resulted in the largest variation.
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Figure 2. Kinematic (top row) and kinetic (bottom row) variabilities due to marker offset, Soft-
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(AA) (left), Flexion/Extension (FE) (middle) and Internal/External Rotation (IER) (right) tasks.
Baseline kinematics and kinetics are represented using a black line. Coloured lines represent the
median (i.e., 50% bound), shaded areas represent the 5–95% bounds.

The accuracy of the perturbed kinematics and kinetics is presented in Table 3 for
the different tasks and perturbation types. The median of the perturbed kinematics was
accurate on average with an RMSE of 0.79, 0.78 and 1.14◦ for the AA, FE and IER tasks,
respectively. The median for the perturbed kinetic results was accurate on average with an
RMSE of 0.09, 0.08 and 0.08 N·m for the AA, FE and IER tasks, respectively.

Variabilities of the kinematic and kinetic results are presented in Table 4 for the
different tasks and perturbation types. On average, kinematic variability (5–95% bounds)
incrementally increased with each perturbation type, starting from offset, i.e., [−0.54, 1.14]◦,
STA, i.e., [−2.37, 1.91]◦, to Combined, i.e., [−2.49, 2.13]◦. Marker misplacements were
responsible for 3% of the range of motion’s variability, STA for 6% and Combined for
7%. Similarly, kinetic variability incrementally increased with each perturbation type,
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starting from offset, i.e., [−0.25, 0.21] N·m, STA, i.e., [−0.45, 0.55] N·m, to Combined, i.e.,
[−0.52, 0.56] N·m, confirming what could be observed in Figure 2. Marker misplacements
were responsible for 11% of the range of moment’s variability, STA for 27% and Combined
for 28%. Note that, task-wise, kinematics varied by up to 4%, 12% and 4% of the whole range
of motion for the AA, FE and IER tasks, respectively. Kinetics varied by up to 18%, 25%
and 43% of the whole range of joint moments for the AA, FE and IER tasks, respectively.

Table 3. Accuracy of the median to estimate baseline kinematics and kinetics—RMSE calculated
between the baseline angle/moment and the median result, over time, and for each task type and
each perturbation type.

RMSE
Between Baseline and Median Offset STA Combined

Abduction/Adduction
Angles (◦) 0.18 1.17 1.03

Moments (N·m) 0.08 0.10 0.11

Flexion/Extension
Angles (◦) 0.40 0.98 0.92

Moments (N·m) 0.06 0.10 0.09

Internal/External Rotation
Angles (◦) 0.93 1.24 1.26

Moments (N·m) 0.07 0.09 0.09

Table 4. Variabilities of the perturbed kinematics/kinetics compared to median—Difference between
the 5 (Min) or 95 (Max) bound and the median, averaged over time, for each task type and each
perturbation type.

Averaged Difference
Between Min/Max Bound and Median Offset STA Combined

Abduction/Adduction
Angles (◦) Min −0.23 −1.06 −0.99

Max +0.60 +1.12 +1.40

Moments (N·m)
Min −0.16 −0.41 −0.47
Max +0.21 +0.72 +0.74

Flexion/Extension
Angles (◦) Min −1.13 −3.27 −3.92

Max +1.98 +3.12 +3.77

Moments (N·m)
Min −0.34 −0.77 −0.92
Max +0.22 +0.26 +0.31

Internal/External
Rotation

Angles (◦) Min −0.26 −2.78 −2.55
Max +0.83 +1.48 +1.23

Moments (N·m)
Min −0.07 −0.18 −0.17
Max +0.21 +0.67 0.63

4. Discussion

This study aimed to statistically quantify the individual and Combined effects of each
experimental error due to skin-based markers, i.e., offset and STA, on shoulder kinematics
and kinetics computed using a rigid-body model.

A few assumptions were considered. In the current study, directional uncertainties
for the humeral and thoracic landmarks had to be assumed. To the best of our knowledge,
these values are currently lacking in the literature. Although skin marker errors have
been extensively studied [37], they are usually investigated from the point of view of their
effects (e.g., kinematic errors produced from STA), but not their natures. Very rarely are
mentioned values about directional biases (i.e., values in the spatial directions), which
cause the kinematic and kinetic variabilities. We believe that the present study for the first
time linked the experimental marker error’s natures and effects.

Another limitation arose from the fact that STA are not only dependent on the body
location, the motion task and the phase of the motion, but they are also subject-specific [20]
and are closely linked to BMI [38,39].

Moreover, in the present study, the GH joint virtual marker was not perturbed, as it is
not a skin marker per se. Experimentally locating the GH joint is usually undertaken by
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estimation techniques, which can either be geometric, regressive [32] or functional [28,40]
and therefore can present high uncertainty as well. If properly accounted for, we could
foresee that uncertainty on the GH joint location would increase the kinematic and kinetic
variabilities to be expected during a standard marker-based motion capture session.

The study of a single subject, whose image-based model and experimental marker
trajectories were used, was believed to be sufficient and to provide results that can be
generalised, as the perturbed errors were selected from population-based data, i.e., N = 5
for marker misplacements [15] and N = 19 for STA [34].

Nonetheless, the same protocol cited herein was also applied to a taller, bigger, younger
male subject (23 y.o., 178 cm, 77.5 kg, provided written consent and following the previously
cited ethics approval number) in order to verify this assumption and have anthropometric
variation. The acquired results showed similar trends, convergence, accuracies and variabil-
ities of the shoulder kinematics and kinetics with respect to perturbed marker trajectories.
Thus, we are confident that the reported variabilities were exclusively produced by the
simulated marker errors and that modelling bias and anatomical variation only played a
minor, negligible role in the present study.

Furthermore, studies that report shoulder kinematic errors caused by skin markers
commonly studied the combination of errors, i.e., marker misplacement and STA as one
parameter. Hamming et al. [39] and Lempereur et al. [41] both reported a RMSE between
2 and 6◦ for a shoulder elevation task. Van Andel et al. [35] reported a RMSE between
1 and 9◦ degrees. Our results from the combined marker errors are in agreement with these
previous data (see Table 4).

The reported kinematic and kinetic variabilities should be considered as confidence
intervals for future IK and ID outcomes using a shoulder model. Moreover, the vari-
abilities due to STA were on average two times larger than the one due to misplace-
ments. Thus, to limit kinematic or kinetic errors, one should prioritise reducing STA before
marker misplacements.

Wu et al. [27] undertook a Monte-Carlo approach applied to musculoskeletal mod-
elling to study how computed muscle forces and joint forces varied with respect to per-
turbed kinematics. Our study is complementary to the study by Wu et al. as it addresses a
step prior to the kinematic analysis, i.e., how errors in the experimental marker trajectories
perturb the kinematics and kinetics.

Finally, the accuracy shown in Table 3 suggested that, theoretically, if enough experi-
mental protocols were repeated, the median of all values will be representative of the real
kinematics and kinetics of the shoulder joint despite marker misplacement and STA. Note
also that variabilities reported in Table 4 for the simulated offset and STA didn’t add up to
equal these of the Combined case, suggesting that marker offset distributions might have
overlapped the distribution of STA, or vice versa.

5. Conclusions

This study used a probabilistic approach to investigate the individual effects of skin
marker misplacements and STA on shoulder kinematics and kinetics and inform on the
sensitivity of inverse kinematic and kinetic computations using shoulder rigid-body mod-
els. It was demonstrated that, during shoulder motion, STA contributed to greater kine-
matic and kinetic errors than marker misplacements, on average by two-fold. It was
proposed that, to limit kinematic or kinetic errors, one should prioritise reducing STA
before marker misplacements.
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