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via decreasing the infiltration of Tc17 cells
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A b s t r a c t 

Introduction: Tc17 cells are interleukin (IL)-17-producing CD8+ T cells and 
have been found to participate in the development of allergic asthma. In-
terleukin-23 is a cytokine that may be involved in modulating the IL-17 re-
sponse via Th17 cells. This study aimed to investigate whether IL-23 also 
has immunomodulatory effects on Tc17 cells. 
Material and methods: An allergic asthmatic mouse model was induced by 
sensitizing and challenging with ovalbumin (OVA). Anti-IL-23 antibody was 
administered intratracheally before challenge to the OVA-induced asthmat-
ic mouse model. Airway hyperresponsiveness, lung inflammation, Tc17 cell 
percentages and IL-17 level in the lung tissue homogenate were measured.
Results: Anti-IL-23 treatment reduced airway hyperresponsiveness (Rn 2.471 
±0.5077 vs. 4.051 ±0.2334, p < 0.05), inflammatory cell infiltration in bronchoal-
veolar lavage fluid (eosinophils 140.0 ±9.869 vs. 222.4 ±31.55, p < 0.05, neutro-
phils 75.93 ±6.745 vs. 127.4 ±19.73, p < 0.05), airway inflammation and mucus 
secretion. Treatment with anti-IL-23 antibody also markedly reduced IL-17 level 
(398.1 ±28.74 vs. 590.6 ±36.13, p < 0.01) and percentage of Th17 and Tc17 cells 
in lung tissue homogenate (4.200 ±0.1581 vs. 9.314 ±1.027, p < 0.01 and 2.852 
±0.2566 vs. 5.588 ±0.3631, p < 0.01, Th17 and Tc17 cells respectively).
Conclusions: Our data suggest that the IL-23/Tc17 cell axis may be involved 
in the pathogenesis of asthma as the complement of IL-23/Th17 cells.
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Introduction

Asthma is clinically characterized by reversible airflow obstruction, mu-
cus hypersecretion and airway remodeling associated with inflammation 
[1]. Despite the effective therapies such as corticosteroids and other new 
therapeutics, about half of patients with asthma are poorly controlled [2]. 
The strongest risk factors for developing asthma are a combination of ge-
netic predisposition with environmental exposure to inhaled substances 
and particles that may provoke allergic reactions. After allergen exposure, 
airway inflammation is orchestrated mainly by allergen-specific T helper 
(Th) 2 and other T cells, which are recruited and accumulate in the lungs 
and produce a range of different effector cytokines, including interleukin 
(IL)-4, IL-5, IL-13 and tumor necrosis factor (TNF)-α [3]. In addition to Th2 
cells, the role of IL-17-producing CD4+ T cells, named Th17 cells, in allergic 
diseases has lately become a subject of great interest. An increased level 
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of IL-17 has been reported in lungs of patients with 
severe asthma [4]. Studies also show that Th17 
cells may participate in the pathogenesis of cor-
onary heart disease and myocardial infarction by 
affecting atherosclerosis [5]. Interleukin-23, a het-
erodimeric cytokine consisting of a  p19 subunit 
specific for IL-23 and a  p40 subunit shared with 
IL-12, has been shown to play an important role 
in the maintenance [6] and acquisition of patho-
genic function of Th17 cells [7]. Indeed, the IL-23/
Th17 cell axis has been found to be associated with 
the development of various inflammatory diseas-
es, such as arthritis [8], psoriasis [9], inflammatory 
bowel disease (IBD) [10] and asthma [11].

Besides Th17 cells, other CD8+ subtype T cells, 
named Tc17 cells, also produce IL-17. Tc17 cells 
are involved in human pathologies including pri-
mary biliary cirrhosis, immune thrombocytosis, 
psoriasis and cancer [12–15]. Our previous study 
and other studies demonstrated that Tc17 cells 
might be involved in the pathogenesis of  aller-
gic asthma [16–18]. 

In this context, the main goal of the study was to 
further investigate the immunomodulatory effects 
of IL-23 on Tc17 cells in a mouse model of asthma, 
through the administration of anti-IL-23 antibody.

Material and methods

Mice

Female BALB/c mice (6–8 weeks old) were 
purchased from the Hubei Laboratory Animal 
Center (Wuhan, China) and housed under spe-
cific pathogen-free conditions in the Laboratory 
Animal Center of Huazhong University of Science 
and Technology. The experimental procedure 
was approved by the committee of Huazhong 
University of Science and Technology for animal 
research.

Induction of airway allergic inflammation 
and administration of anti-mouse IL-23 
neutralization antibody or isotype control

The asthmatic model was constructed as previ-
ously described [19]. Mice were divided into four 
groups as indicated, and each group was named 
according to sensitization/challenge/treatment: 
1) sham group, sham/PBS/vehicle (normal control 
animals); 2) ovalbumin (OVA) group, OVA/OVA/ve-
hicle (allergic control animals); 3) anti-IL-23 group, 
OVA/OVA/anti-IL-23 (allergic mice treated with 
anti-mouse IL-23 p19 neutralization antibody); 
and 4) isotype group, OVA/OVA/isotype Ab (aller-
gic mice treated with isotype antibody, rat IgG1). 
In the indicated groups mice were administered 
anti-mouse IL-23 p19 neutralization antibody or 
isotype control (eBioscience, San Diego, CA) by in-
tratracheal injection 1 h before the challenge, as 
previously reported [20]. The protocol is shown in 
Figure 1.

Determination of airway 
hyperresponsiveness (AHR) 

Peak pulmonary resistance (cm H2O·ml–1·s–1) 
was determined for AHR using the FlexiVent sys-
tem (10 ml/kg tidal volume at 150 breaths/min, 
SCIREQ, Montreal, Quebec, Canada) after delivery 
of aerosolized methacholine (MCh) (Sigma, MO, 
USA). Methacholine aerosol (3.0–50 mg/ml) was 
administered for 10 s, then airway resistance was 
continuously monitored and recorded.

Bronchoalveolar lavage fluid analysis 

Bronchoalveolar lavage fluid (BALF) samples 
were obtained as described previously [21]. The 
lung of the mouse was flushed via a trachea can-
nula with 0.8 ml of phosphate buffer saline (PBS) 
three times after the last OVA challenge. The la-

Figure 1. The experimental protocol. The ovalbumin (OVA) mice were sensitized on day 0 by i.p. injection of 20 μg  
of OVA conjugated with 100 μl of aluminum hydroxide. On day 14, mice were sensitized a  second time with  
100 μg of OVA. On days 24, 26, and 28, mice were anesthetized and challenged with 200 μg of OVA in 40 μl of ster-
ile PBS by intratracheal instillation. The anti-IL-23 and isotype group mice were treated by intratracheal instillation 
of anti-IL-23 p19 Ab or rat IgG1 (isotype antibody for anti-IL-23 p19) 1 h before OVA challenge on days 24, 26, and 
28, respectively. The normal control mice received sterile PBS with aluminum hydroxide i.p. on days 0 and 14 and 
40 μl of sterile PBS on days 24, 26, and 28 by intratracheal instillation
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vage fluid was centrifuged at 200 g for 5 min. The 
cell pellets were resuspended in 0.5 ml of PBS and 
used for total and differential cell counts. The total 
number of cells in the BALF was counted by a he-
macytometer. Differential cell counts were carried 
out after Diff-Quick staining.

 
Lung histopathologic examination 

The left lung lobes were filled with 4% para-
formaldehyde and embedded in paraffin. Five-
μm thick longitudinal sections from the left lobes 
were examined for airway inflammation and mu-
cus secretion with hematoxylin and eosin (H & E) 
and periodic acid-Schiff (PAS) stain, respectively, 
as described previously [22, 23].

 
Lung homogenate preparation and IL-17 
measurement

The lung tissue suspensions were prepared as 
reported previously [24]. In brief, the right lung 
was dissected, then quickly frozen in liquid nitro-
gen before being stored at –80°C. After thawing, 
the lung tissue was homogenized in PBS and cen-
trifuged at 3000 rpm for 15 min (4°C) to remove 
sediments, then the supernatant was kept for cy-
tokine measurements. The levels of IL-17 in lung 
tissue homogenate were determined by ELISA kits 
(Neobioscience, Beijing, China) in accordance with 
the manufacturer’s instructions. 

 
Flow cytometric analysis of IL-17 
expression of T cells in lung tissue

A lung tissue single cell suspension was pre-
pared as previously [11]. The cells from lung tis-
sues were then stimulated by phorbol myristate 
acetate (50 ng/ml) (Sigma, MO, USA) and iono-
mycin (1000 ng/ml) (Sigma, MO, USA) for 5 h.  

Brefeldin A  (50 ng/ml) (Sigma, MO, USA) was 
used to block the flow of cytokines from cyto-
plasm. Then, the cells were incubated with the 
appropriate concentration of PE-CY5 conjugated 
anti-CD3 mAb (Biolegend, San Diego, CA) and 
FITC-conjugated anti-CD8 mAb (Biolegend, San 
Diego, CA) for 30 min at 4°C in darkness. Then 
the cells were fixed and permeabilized with Cy-
tofix/Cytoperm solution (BD Biosciences, San 
Jose, CA) for intracellular cytokine staining. After 
incubation with PE conjugated anti-IL-17A mAb 
(Biolegend, San Diego, CA) for 30 min at 4°C in 
darkness, flow cytometry was performed on a BD 
LSR II cytometer to determine the percentages of 
Tc17 (CD3+CD8+IL-17+) or Th17 (CD3+CD8-IL-17+) 
lymphocytes.

Statistical analysis

All data are presented as means ± SEM. One-way 
analysis of variance (ANOVA) was applied to evalu-
ate statistical significance. P < 0.05 was considered 
to be significant. Graph generation and statistical 
analysis were performed with GraphPad Prism5.

Results

Alleviation of AHR by anti-IL-23 Ab 
administration

We evaluated whether the blockade of IL-23 
contributed to a change in airway mechanics after 
exposure to the bronchoconstricting agent MCh. 
We used a computer-controlled small animal ven-
tilator (flexiVent) to compare changes in Rn. Expo-
sure to MCh resulted in a significant increase of 

 SHAM          OVA          Anti-IL-23          Isotype

Figure 2. Alleviation of AHR by anti-IL-23 Ab. Air-
way resistance significantly increased after expo-
sure to different concentrations of methacholine in 
OVA-challenged mice. Anti-IL-23 Ab alleviated the 
AHR significantly

Re
si

st
an

ce
 [c

m
 H

2O
 ×

 s
/m

l]

8

6

4

2

0
	 0	 3	 6	 12	 25	 50

Concentration of methacholine [mg/ml]

 SHAM          OVA          Anti-IL-23          Isotype

Figure 3. Anti-IL-23 Ab inhibited inflammatory cell 
infiltration in BALF. Total cells and macrophages, 
neutrophils, eosinophils and lymphocytes were 
significantly increased in BALF of OVA and isotype 
group mice compared with control mice. Anti- 
IL-23 Ab administration significantly decreased 
eosinophils and neutrophils in BALF and slightly 
decreased lymphocytes compared with OVA-sensi-
tized and OVA-challenged mice

Data were plotted as means ± SEM of two independent 
experiments. *P < 0.05.
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Rn in the OVA-challenged mice. This up-regulation 
of Rn in OVA-challenged mice was effectively re-
duced by blockade of IL-23 (Figure 2).

Inhibition of inflammatory cell infiltration 
in BALF by anti-IL-23 Ab

The numbers of total cells and macrophages, 
neutrophils, eosinophils, and lymphocytes were 
significantly increased in BALF of OVA group mice 
compared with control mice. Anti-IL-23 Ab admin-
istration significantly decreased numbers of eo-

sinophils and neutrophils in BALF compared with 
OVA-challenged mice (Figure 3). 

Intratracheal delivery of anti-IL-23 Ab 
alleviated allergic inflammation and mucus 
hypersecretion

In the OVA group, inflammatory cells accumu-
lated around the bronchus and vessels after OVA 
challenge. Administration of anti-IL-23 Ab reduced 
the accumulation of inflammatory cells in the 
peribronchial and perivascular regions. Asthmat-

Figure 4. Anti-IL-23 Ab attenuates airway inflammation and mucus hypersecretion in asthmatic mice. Lung sections 
stained with hematoxylin and eosin (H & E, 100×) and periodic acid-Schiff (PAS, 200×). Anti-IL-23 Ab reduced the 
accumulation of inflammatory cells in the peribronchial and perivascular regions, as well as the mucus secretion
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ic mice also showed increased mucus secretion in 
PAS staining compared with that seen in normal 
control mice, and anti-IL-23 Ab inhibited this mu-
cus secretion. These effects were not observed in 
the isotype antibody treated group (Figure 4).

Intratracheal delivery of anti-IL-23 Ab 
reduced IL-17 level in mice with allergic 
airway inflammation

The IL-17 level in lung tissue homogenate was 
up-regulated in OVA-challenged mice compared 
with control mice (OVA vs. SHAM: 590.6 ±36.13 
pg/g vs. 192.2 ±18.60 pg/g). This up-regulation 
was significantly reduced by anti-IL-23 Ab intra-
tracheal delivery (anti-IL-23 vs. OVA: 398.1 ±28.74 
pg/g vs. 590.6 ±36.13 pg/g), whereas no reduction 
was observed with isotype antibody (Figure 5).

Decreased Tc17 and Th17 cell infiltration 
in lung by blockade of IL-23

To determine whether the effect of anti-IL-23 
Ab was achieved through restraining the infiltra-
tion of IL-17 producing T cells, especially Tc17 
cells into the lungs in asthma, we investigated 
Tc17 cells and Th17 cell infiltration by flow cy-
tometry. As shown in Figure 6, not only Th17 cells 
but also Tc17 cell infiltration could be inhibited 
by blockade of IL-23, though the flow cytometry 
dot plots seem not too much different when seen 
with the naked eye due to the smaller absolute 
numbers of Tc17 cells. The number of inflamma-
tory cells from a single sham-treated mouse (nor-
mal control mouse) was too small to perform flow 
cytometry analysis, so we had to combine three 
sham-treated mice to do it; then sham-treated an-

imals showed a higher inflammatory cell number 
in the lungs. 

Discussion

The role of IL-17 in asthma was proven. Bul-
lens  et al. demonstrated that the level of IL-17A 
mRNA was elevated in the sputum sample of asth-
matic patients [25]. An increased serum IL-17 level 
was reported in asthma, which might be one of 
the risk factors of severe asthma [26]. In a mouse 
model, allergic sensitization through the airways 
or the skin promoted bronchial IL-17 responses 
and induced AHR, while deficiency in IL-17 led to 
an impaired response to allergens and lack of AHR 
[27, 28]. In our study we also found elevated IL-17 
level in lung tissue and AHR in the OVA-induced 
asthmatic group, which was consistent with pre-
vious studies. 

Airway mucus hypersecretion narrows the air-
way lumen and limits airflow, and thus contributes 
to airway remodeling. Regulating the development 
of Th1/Th2 subsets could inhibit airway remodeling 
in asthmatic mice in other research [29]. Evidence 
has also shown the relationship of IL-17 and airway 
mucus secretion. Chen et al. reported that recom-
binant IL-17A upregulated the mucin gene expres-
sion of MUC5AC and MUC5B in primary human 
tracheobronchial epithelial cells [30]. In mice, respi-
ratory syncytial virus (RSV) infection during ongo-
ing allergic airway inflammation increased mucous 
cell metaplasia and mucin protein expression, and 
IL-17A was significantly increased in whole-lung 
homogenates [31]. In our study, increased mucus 
secretion was also found in OVA-induced allergic 
mice accompanied by increasing IL-17 level in lung 
tissue, supporting those previous studies. 

Previous studies have also shown the involve-
ment of IL-23 in asthma. Ciprandi et al. found 
that serum IL-23 levels were increased in aller-
gic asthmatic children not treated with corti-
costeroids, and IL-23 levels were strongly and 
inversely correlated with lung function [32]. In 
antigen-sensitized mice, a  study demonstrated 
that IL-23 p19 mRNA was up-regulated in the 
lung [33]. Furthermore, the proinflammatory fea-
tures of IL-23 have been linked with Th17 cell re-
sponses, through expansion and maintenance of 
the Th17 cells [34]. The polarization of Th17 cells 
was mainly regulated by the key polarized cyto-
kines IL-23 and IL-6 [35]. Recently, studies have 
shown that IL-23-IL-23R signaling and the IL-23/
Th17 cell axis promote allergic airway inflamma-
tion [11, 36].

However, Tc17 cells, a subgroup of CD8+ T lym-
phocytes, also produce IL-17. Previous studies had 
reported that Tc17 cell differentiation was closer 
to that described for Th17 cells, including the ex-
pression of cytokines such as IL-17 and IL-21, the 

Figure 5. Anti-IL-23 Ab reduced IL-17 level in mice 
with allergic airway inflammation. The IL-17 levels 
in lung tissue homogenate were determined by  
ELISA. The IL-17 level was up-regulated in OVA-chal-
lenged mice and anti-IL-23 Ab reduced the up-reg-
ulation significantly

Data are expressed as the mean ± SEM (n = 6 in each 
group). Results are representative of two independent 
experiments with similar results; **p < 0.01, ***p < 0.001.
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Figure 6. Decreased Tc17 and Th17 cell infiltration in lung by blockade of IL-23. A–B – Representative flow cytom-
etry dot plots for each treatment group. All plots were gated on the lymphocyte population based on CD3+CD8- (A) 
and CD3+CD8+ (B). Numbers in the upper left (A) or upper right (B) quadrant indicate the percentage of IL-17+  
T cells among the indicated lymphocyte population. C – Percentages of IL-17+ CD3+CD8– T cells for each treatment 
group. D – Percentages of IL-17+ CD3+CD8+ T cells for each treatment group

Data are expressed as the mean ± SEM (n = 6 in each group). Results are representative of two independent experiments with 
similar results; **p < 0.01, ***p < 0.001.
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IL-23 receptor and the lineage-specific transcrip-
tion factors RORα and RORγt [37]. Our previous 
study showed that the percentages of Th17 cells 
and Tc17 cells were higher in both patients with 
asthma and asthmatic mice compared with con-
trols [16]. Other studies also indicated the involve-
ment of Tc17 cells in the pathogenesis of asthma 
[17, 18]. The goal of this study therefore was to 
explore whether the IL-23/Tc17 cell axis also ex-
ists in an OVA-induced asthmatic mouse model. 

In the OVA-induced group, Tc17 cells and Th17 
cells were up-regulated in lung tissue compared 
with negative control subjects, accompanied by 
an elevated IL-17 level in lung tissue homogenate.  

Anti-IL-23 Ab treatment reduced Tc17 cell and Th17 
cell infiltration and the IL-17 level, and subsequently 
significantly alleviated airway inflammation, as well 
as eosinophil and neutrophil infiltration in BALF, 
mucus hypersecretion, and OVA-induced AHR. In 
our experiment, the numbers of lymphocytes were 
not reduced significantly by anti-IL-23 treatment. 
We think that there might be two reasons. First, 
although IL-23 stimulates differentiation of naïve 
T-lymphocytes into Th/Tc17 cells, the total number 
of T-lymphocytes may not change during the pro-
cess; second, besides the Th/Tc17 cells there are 
other subtypes of T-lymphocytes in the pathogen-
esis of asthma, and their differentiation may not be 
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influenced by IL-23. So this may lead to no signifi-
cant change in the number of lymphocytes.

Tc17 cells were also one kind of effector T cell 
subset involved in the induction of inflammation 
and autoimmune tissue injury [38, 39]. Recently, 
studies have suggested that Tc17 cooperates with 
Th17 in similar functions in inflammatory condi-
tions, including autoimmune diseases, infection, 
and antitumor immunity [38, 40]. Our findings fur-
ther demonstrated that the cell sources of IL-17 in 
allergic lung inflammation were not only CD4+ T 
cells but also CD8+ T cells, and Tc17 cells and Th17 
cells may both be involved in the mechanism of 
asthma.

In conclusion, our findings demonstrated not 
only the IL-23/Th17 cell axis but also the IL-23/
Tc17 cell axis in allergic airway inflammation. The 
role of Tc17 cells in allergic diseases needs to be 
investigated more deeply.
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