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Abstract
Oligodendrocytes are the critical cell types giving rise to the myelin nerve
sheath enabling efficient nerve transmission in the central nervous system
(CNS). Oligodendrocyte precursor cells differentiate into mature
oligodendrocytes and are maintained throughout life. Deficits in the
generation, proliferation, or differentiation of these cells or their
maintenance have been linked to neurological disorders ranging from
developmental disorders to neurodegenerative diseases and limit repair
after CNS injury. Understanding the regulation of these processes is critical
for achieving proper myelination during development, preventing disease,
or recovering from injury. Many of the key factors underlying these
processes are epigenetic regulators that enable the fine tuning or
reprogramming of gene expression during development and regeneration in
response to changes in the local microenvironment. These include
chromatin remodelers, histone-modifying enzymes, covalent modifiers of
DNA methylation, and RNA modification–mediated mechanisms. In this
review, we will discuss the key components in each of these classes which
are responsible for generating and maintaining oligodendrocyte myelination
as well as potential targeted approaches to stimulate the regenerative
program in developmental disorders and neurodegenerative diseases.
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Introduction
Oligodendrocytes are the specialized glial cells of the cen-
tral nervous system (CNS) that produce the myelin sheaths  
surrounding axons and enabling salutatory conduction as 
well as providing metabolic support to axons1. Defects in the  
myelination process have been associated with developmental  
disorders such as autism2–5 and coloboma, heart disease, atresia 
choanae, retarded growth and development, genital hypopla-
sia, and ear abnormalities (CHARGE) syndrome6,7 as well as 
neurodegenerative diseases such as the demyelinating disease 
multiple sclerosis (MS) and various leukodystrophies8. The late-
onset neurodegenerative diseases may also stem from subtle  
dysregulation of early developmental processes. In addi-
tion, dysregulation of the processes controlling proliferation 
and differentiation in the oligodendrocyte lineage has been  
linked to the development of various brain cancers9. Understand-
ing developmental myelination and remyelination processes 
will have impacts for the development of treatments to improve  
functional recovery after injury or disease10–13.

The oligodendrocyte lineage originates from multi-potent neu-
ral progenitor cells (NPCs). Early NPC divisions result pre-
dominantly in neurons before switching to a primarily glial 
progeny later in development14–16. First, NPCs become primitive 
oligodendrocyte progenitor cells (pri-OPCs or pre-OPCs) express-
ing Olig1/2, then committed OPCs (PDGFRα+/NG2+), which 

persist in the CNS throughout life17. OPCs can further proliferate 
and differentiate into mature myelinating oligodendrocytes18–21.  
The transition into each of these stages requires the coordina-
tion of intrinsic and extra-cellular cues where transcriptional 
regulatory events are closely interconnected and function 
together to safeguard the oligodendrocyte identity and prevent  
alternative cell fates such as astrocytes or neurons (Figure 1A).

The oligodendrocyte lineage is highly responsive to environ-
mental cues. For example, activity or experience can promote 
myelination of axons by newly formed oligodendrocytes and 
even induce the proliferation of OPCs22–29. Additionally, there 
exist critical periods during oligodendrocyte development and 
myelination30,31 when oligodendrocytes are highly receptive and 
adaptive to environmental cues such as neuronal activity32. The  
plasticity of myelinating oligodendrocytes and adaptive myeli-
nation are important for normal neural circuit function and  
cognition33. Epigenetic regulation is likely the process through 
which the effects of these kinds of stimuli are carried out. At 
present, how epigenetic mechanisms mediate the environmental  
cues for oligodendrocyte myelination and remyelination remains 
poorly defined.

In recent years, the importance of epigenetic mechanisms and 
their non-genetic regulation of gene expression and cell states 
has been increasingly recognized18,20,34,35 (Table 1). Epigenetic 

Figure 1. Differentiation of progenitor cells is a highly choreographed process. (A) A diagram depicts an epigenetic landscape of cellular 
fate decision-making during oligodendrocyte development from neural progenitor cells. Beginning with neural progenitors, cell differentiation 
occurs along multiple potential pathways with cells taking on neuronal, astrocyte, or oligodendrocyte lineages. This differentiation from 
a common progenitor population involves the fine tuning of gene expression and turning on and off of lineage-specific genes and their 
epigenetic regulators. (B) Many modulators of gene expression are through epigenetic mechanisms, which alter gene expression on the 
basis of local environmental factors. These mediators include covalent modifications to DNA or histones, RNA-mediated regulation of gene 
expression, or the enzymes responsible for mediating the effects of these modifications. BRG1, Brahma-related 1; CHD, chromodomain 
helicase DNA-binding; cOPC, committed oligodendrocyte progenitor cell; DNMT, DNA methyltransferase; HAT, histone acetyltransferase; 
HDAC, histone deacetylase; OL, oligodendrocyte; pri-OPC, primitive oligodendrocyte progenitor cell; TET, ten-eleven translocation.
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Table 1. Epigenetic pathways in oligodendrocyte development and myelination.

Epigenetic regulators Component Description Function in oligodendrocytes

ATP-dependent 
chromatin remodelers

BRG1 (also known as 
Smarca4)

A key helicase subunit of 
the SWI/SNF Family

Stage-dependent promotion of OPC differentiation 
but not required for OPC survival36,37.

CHD7 Member of the chromo 
helicase domain family

CHD7 is required for oligodendrocyte differentiation 
and remyelination in the spinal cord6,38,39.

CHD8 Member of the chromo 
helicase domain family

CHD8 has been linked to autism disorder with 
white matter defects. CHD8 knockout in the 
oligodendrocyte lineage leads to myelination 
defects40,41.

Histone acetylation 
modifiers

EP300 (also known as p300) Histone acetyltransferase Associated with Rubinstein–Taybi syndrome42,43 and 
regulates oligodendrocyte differentiation44.

EP400 (E1A Binding Protein 
P400)

Key subunit of TIP60 
histone acetyltransferase 
complex

Deletion in CNP+ oligodendrocytes leads to defects 
in terminal differentiation and hypomyelination45.

HDAC1 Class I histone 
deacetylase (HDAC)

Regulates oligodendrocyte differentiation via 
co-repressor complexes46,47,48 and has non–
histone-dependent effects in oligodendrocyte 
differentiation49.

HDAC2 Class I HDAC Functionally redundant regulation of 
oligodendrocyte differentiation with HDAC146.

HDAC3 Class I HDAC 
Complexes with co-
repressors NCOR/SMRT

Regulates the fate choice of primitive OPCs 
between astrocytic and oligodendrocytic fates and 
myelination47.

SIRT1 Class III NAD+ HDAC Stage-dependent effects on OPC proliferation. 
Increased OPC differentiation when knocked out in 
OPCs50.

SIRT2 Class III NAD+ HDAC Highly expressed in mature oligodendrocytes. Its 
level is positively correlated with oligodendrocyte 
differentiation51.

HDAC6 Class II HDAC Regulates oligodendrocyte differentiation via is 
acetylation of tubulin in the cytoskeleton52.

HDAC10 Class II HDAC No clear role, likely due to functional redundancy 
with other HDACs in its regulation of OLIG1 nuclear 
localization49.

HDAC11 Class IV HDAC Regulates oligodendrocyte differentiation possibly 
via modulating regulatory elements of myelin-
related genes53,54,55.

Histone methyl-
transferases

COMPASS-like complex Major subunits include 
SETD1A, MLL1, and MLL2 
(KMT2A)

MLL2 works with CHD8 to deposit H3K4me3 
at active promotors of oligodendrocyte lineage 
genes41.

PRC2 complexes Major subunits include 
EZH2, EED, and SUZ12

Responsible for H3K27me3 deposition. Promotes 
oligodendrogenesis and OPC differentiation56,57.

PRMT1 Catalyzes histone arginine 
methylation

Required for proper OPC differentiation resulting in 
hypomyelination defects58.

PRMT5 Catalyzes histone arginine 
methylation

Required for proper OPC differentiation resulting in 
hypomyelination defects59–61.

DNA methyl-
transferases and 
demethylases

DNMT1 DNA methyltransferase Knockout early development impairs OPC 
differentiation and results in hypomyelination62. Has 
no effect on myelin repair55.

DNMT3a DNA methyltransferase Plays a role in myelin repair after injury but not early 
development of the oligodendrocyte lineage55.

TET1–3 
(ten-eleven translocation)

DNA demethylases that 
catalyze the conversion of 
5mC to 5hmC

Differentially regulated at different stages during OL 
development. Tet1 is required for OL differentiation 
in vitro63.
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Epigenetic regulators Component Description Function in oligodendrocytes

microRNAs Dicer Enzyme responsible for 
processing microRNAs 
into mature form

Required for OPC differentiation, myelination, and 
myelin maintenance64–66.

miR-219 miR-219 is necessary and sufficient to induce 
differentiation65,66. Also required for remyelination 
after lysophosphatidylcholine (LPC)-induced 
demyelination67.

miR-338 miR-338 is dispensable for OPC differentiation  
or myelination in vivo but has synergistic with  
miR-21967.

miR-212 Negatively regulates common oligodendrocyte and 
myelin-related genes by miR-21268.

miR-125a-3p Upregulated in cerebrospinal fluid from multiple 
sclerosis patients with active demyelinating 
lesions. Negatively regulates oligodendrocyte 
differentiation69.

Long non-coding 
RNAs

lncOL1 LncOL1 positively regulates OPC differentiation 
while having no effect on OPC formation. Affects 
timing of myelinogenesis but not the maintenance 
of myelin56.

Lnc-OPC Knockdown of lnc-OPC in NPCs limited their 
differentiation into OPCs without affecting NPC 
proliferation70.

Pcdh17it A marker of the immature premyelinating 
oligodendrocyte population71.

SOX8OT Regulates oligodendrocyte differentiation through 
targeting SOX872,73.

Neat1 Knockout reduces the number of oligodendrocytes 
in the frontal cortex74.

Lnc158 Correlates with oligodendrocyte differentiation-
associated gene expression75.

N6-methyl-adenosine 
(m6A) modifiers

METTL14 m6A RNA writer Required for OPC differentiation and proper 
myelination76.

PRRC2A An m6A RNA binding 
protein

Highly expressed in OPCs and white matter 
tracks. Required for normal OPC proliferation and 
differentiation77.

FTO m6A RNA demethylase 
(alpha-ketoglutarate–
dependent dioxygenase)

Knockout mimics the effects of PRRC2A 
overexpression increasing Olig2 expression77.

CHD, chromodomain helicase DNA-binding; HDAC, histone deacetylase; OL, oligodendrocyte cell line; OPC, oligodendrocyte progenitor cell; NPC, neural 
progenitor cell.

regulation of gene expression occurs through a variety of 
mechanisms, including covalent modifications of chromatin to  
regulate stearic access to DNA, ATP-dependent nucleo-
some remodeling, DNA methylation, non-coding RNAs, and  
RNA modifications21,78. All of these processes can modulate  
large-scale genetic programs to alter and maintain cell states 
during oligodendrocyte progenitor proliferation and maturation 
(Figure 1B). Epigenetic modifications are often reversible and 
provide the necessary plasticity for progenitor cells to respond 
to environmental cues. Such pathways are amenable to pharma-
cological intervention and could be targeted to promote myelin  
growth or repair.

ATP-dependent chromatin remodelers in 
oligodendrocyte lineage progression and 
regeneration
ATP-dependent chromatin remodeling uses ATP to remodel 
the nucleosome, opening up areas for enhancing transcrip-
tion, and is critical for neural cell growth and differentiation79,80. 
Early work in cell cultures showed that OPCs differentiating 
into mature oligodendrocytes underwent substantial chroma-
tin reorganization within the nucleus81. The chromatin remod-
elers consist of several multi-subunit complexes which fall  
into four major families: the SWI/SNF family with the major 
ATPase subunits Brahma-related 1 (BRG1, also known as 
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Smarca4) and Brahma (BRM, also known as SMARCA2), the 
INO80 family which includes the ATPases INO80 and SRCAP, the 
ISWI family with ATPase subunits SNF2L and SNF2H, and the  
chromodomain helicase DNA-binding (CHD) family consisting 
of CHD1–980,82,83. Of these, the SWI/SNF family and the CHD 
family members are dynamically regulated over the course of 
OPC specification and differentiation and have been implicated in  
oligodendrocyte development and myelination (Figure 2).

SWI/SNF family members
The SWI/SNF family of ATPase dependent chromatin remodel-
ers have been shown to play critical roles in the development of 
the oligodendrocyte lineage. Deletion of Brg1/Smarca4, the core 
helicase component of the SWI/SNF family, in NPCs inhib-
its oligodendrocyte and astrocyte lineage development while 
increasing neuronal differentiation in the ventricular zone of 
the developing brain80,84. A lineage-specific transcription factor,  
OLIG2, can recruit the BRG1/SWI/SNF complex to the pro-
moters and enhancers of oligodendrocyte lineage genes such 
as Sox10 to activate their transcription. BRG1 is also neces-
sary for OPC differentiation. BRG1 expression increases after 
induction of rat OPC differentiation with T3 thyroid hormone36. 
These increasing levels are critical for OPC differentiation as 
conditional knockout in Olig1-expressing oligodendrocyte  
progenitors and PDGFRa-expressing OPCs in vivo leads  
to oligodendrocyte differentiation defects and profound dys-
myelination defects36 (JW and QL, unpublished). Of note, 
the loss of Brg1 does not affect OPC survival in culture or  
in vivo36. However, Brg1 knockout in later OPCs, such as NG2+ 
or CNP+, committed or post-mitotic OPCs, respectively, had 
progressively less severe effects on differentiation37, suggest-
ing that BRG1 effects are stage-dependent. This stage-dependent 
severity suggests that BRG1 activates early pro-differentiation 
factors, such as SOX10, that can continue to mediate down-
stream genetic programs in oligodendrocyte lineage progres-
sion despite the upstream loss of BRG136,37. In addition, other  
chromatin remodelers such as CHD8 or CHD7 (discussed below) 
potentially compensate for the loss of BRG1 at later stages.

CHD family members
CHD7 is highly enriched in the oligodendrocyte lineage, espe-
cially in differentiating oligodendrocytes. CHD7 mutations 
result in a series of birth defects called CHARGE syndrome, 
which exhibits impaired white matter development and myeli-
nation in addition to other congenital developmental abnor-
malities85,86. CHD7, like BRG1 above, does not affect OPC  
formation but instead causes defects in OPC differentiation6,38,39. 
In fact, Chd7 is a direct target of the OLIG2/BRG1 complex and 
its expression is greatly increased by the binding of this com-
plex at its promoter6. CHD7 can complex with SOX10 to acti-
vate downstream regulators of oligodendrocyte differentiation.  
CHD7 activates the expression of OPC pro-differentiation  
regulators, including SOX10 and NKX2-239, as well as other 
oligodendrocyte-expressing transcription factors such as 
Osterix/Sp7 and Creb3l26,39. Intriguingly, deletion of Chd7 in  
PDGFRa+ OPCs appears to impair OPC survival via p53  
upregulation39. CHD7 binds to the p53 promotor in OPCs and  
limits p53 expression to maintain the survival of OPCs39.

CHD7 is also required for remyelination after lysolecithin-
induced demyelination6 or spinal cord laminectomy, wherein it 
interacts with SOX2 to drive OPC differentiation38. Chd7 dele-
tion impairs OPC proliferation after spinal cord injury38 but 
not in the developing brain6,39, suggesting a context-dependent  
CHD7 regulation of OPC proliferation. However, CHD7 appears 
to be dispensable for the maturation of oligodendrocytes,  
possibly due to compensation by other CHD members such as 
CHD839, which has been shown to work together with CHD7 to  
regulate OPC survival and maturation39.

Another CHD family member, CHD8, is also critical for proper 
oligodendrocyte development. CHD8 has been linked to a  
subset of autism disorders, which exhibit a defect in white  
matter tracts and myelination40,41,87–89. Chd8 knockout in Olig1+ 
progenitors causes defects in CNS myelination, particularly in the  
spinal cord because of severe reductions in PDGFRα-expressing 
OPCs in this region41, suggesting a region-specific role of  
CHD8 in OPC survival and differentiation. Deletion of Chd8 
at the post-natal stages with an inducible PDGFRα-CreER 
driver also blocks OPC differentiation. The defects in oli-
godendrocyte differentiation are due to the cell-specific loss 
of Chd8 in the oligodendrocyte lineage as there are no defects  
seen after Chd8 knockout in post-mitotic neurons41. This sug-
gests that the myelination defects seen in CHD8 mutant 
patients are cell-autonomous defects due to the loss of CHD8.  
Remyelination after lysophosphatidylcholine (LPC)-induced 
demyelinating lesions in the spinal cord is also dependent on 
CHD8 expression41. CHD8 dysregulation may be an important  
factor for white matter pathogenesis and remyelination failure  
given the critical role of CHD8 for OPC replenishment and  
remyelination in demyelinating lesions.

CHD7 and CHD8 have similar structures and can bind many 
of the same targets. However, they target different gene 
regions during oligodendrocyte differentiation. CHD7 pre-
dominantly binds to promotor regions in OPCs but switches 
to enhancer regions in oligodendrocytes39. CHD8, in contrast,  
binds predominantly to promotor elements near transcription 
start sites marked by an activating histone mark H3K4me3 in 
OPCs and oligodendrocytes where it recruits an H3K4 activat-
ing histone methyltransferase MLL2 (mixed lineage leukemia 2) 
complex to drive expression of oligodendrocyte lineage genes41. 
MLL2–4 and other family members can form a macromolecu-
lar complex called COMPASS (complex of proteins associated 
with Set1) to methylate H3K4 and regulate gene transcription90.  
Strikingly, blocking lysine demethylase KDM5, an enzyme 
that erases methylation on H3K491, with a pan-KDM5 inhibi-
tor CPI-455 rescues the differentiation defects in Chd8  
mutant OPCs41, suggesting that targeting this eraser to enhance 
H3K4me3 levels might facilitate the restoration of myelination 
defects caused by CHD8 defects.

The chromatin remodelers may all work together to regulate  
oligodendrocyte development but each has its own preferences 
for regulatory elements and mechanisms to control expression  
of specific sets of targeted genes. Of these, CHD8 appears to 
turn on the earliest, eventually promoting BRG1 expression 
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Figure 2. Global expression levels of key epigenetic regulators during oligodendrocyte differentiation from progenitor cells. Epigenetic 
modifiers, including ATP-dependent chromatin remodelers, histone acetyltransferases and deacetylases, histone methyltransferases, and 
demethylases, are critical components of the differentiation process, according to the data from a bulk RNA sequencing dataset92. The 
change of epigenetic modifiers across oligodendrocyte differentiation is depicted. The global changes of expression levels in the epigenetic 
modifications themselves are based on the studies41,44,62,63,66,93. OPC, oligodendrocyte progenitor cell.
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which in turn induces CHD7 expression6. This successive sig-
naling cascade enables the progression from OPCs to mature 
myelinating oligodendrocytes and likely forms convergent 
points upon which other checkpoints and regulatory mechanisms 
act to facilitate this development. Nonetheless, these chromatin 
remodelers could operate simultaneously in a non-linear fashion  
to promote oligodendrocyte lineage progression.

Histone acetylation control of cell fates and 
differentiation in the oligodendrocyte lineage
Histone acetylation, in particular, has been strongly implicated 
in the regulation of oligodendrocyte development. The addi-
tion and elimination of acetyl groups are balanced through the 
competing work of histone acetyltransferases (HATs)94 and  
histone deacetylases (HDACs).

HATs
The activity of HATs is responsible for the acetylation of his-
tones, leading to relaxed chromatin coiling and increased 
gene expression. The acetylation of histone H3 on lysine 27 
(H3K27ac) is often deposited at active regulatory elements 
such as enhancers and promoters and is positively correlated 
with the activation of gene transcription95. H3K27 acetylation 
is catalyzed by multiple HATs, including p300 (also known as 
EP300), CREB-binding protein (CBP), TIP60, and PCAF96,97.  
Histone acetylation status can be further recognized by 
bromo-, PHD-, Tudor-, or WD40-domain-containing transcrip-
tion activating regulators, which further modulate target gene  
expression95,98–100.

In line with a critical role for histone acetylation in regulating 
the oligodendrocyte lineage, the loss of multiple HATs can 
lead to defects in the myelination process. Deletion of EP400, 
a key subunit of the TIP60 HAT complex, in Cnp-expressing  
oligodendroglial cells results in a defect in oligodendrocyte ter-
minal differentiation, leading to profound hypomyelination45.  
A genetic disorder, Rubinstein–Taybi syndrome, is associated 
with mutations in p300 (also known as EP300), which is char-
acterized in part by hypoplasia of the corpus collosum and con-
genital hypomyelination42,43. The role of p300 in controlling 
oligodendrocyte development is still being explored, but p300 
has been shown to interact with HDAC3 (discussed in more 
detail below) partly facilitating the role of HDAC3 in pro-
moting oligodendrocyte as opposed to astrocytic cell line-
ages during early differentiation from NPCs via its promotion 
of Olig2 expression101. Also, inhibition of p300 activity itself 
can lead to pronounced defects in OPC differentiation (JW and  
QL, unpublished).

HDACs
Histone acetylation status can be reversed by HDACs. Mam-
mals possess four classes of HDACs. Class I contains HDACs 
1–3 and 8, class II contains HDACs 4–7 and 9 and 10, class III 
are NAD-dependent HDACs (also known as sirtuins, encom-
passing SIRT1–7), and finally class IV contains one HDAC,  
HDAC11102,103. Pharmacological studies using HDAC inhibi-
tors have indicated the importance of HDACs in oligodendrocyte  
fate specification and differentiation. Treating rat NPCs with  

valproic acid inhibited oligodendrogenesis and astrogenesis 
while promoting neurogenesis likely through NeuroD1 upregu-
lation following the inhibition of HDAC activity104. Blocking  
HDAC activity with pan inhibitors also disrupts the differ-
entiation of OPCs into mature oligodendrocytes105. The tim-
ing of this treatment appears to be critical. Treating cells 
with pan-HDAC inhibitors after the differentiation process 
has been shown to have minimal effect on oligodendrocyte  
differentiation106. These studies indicate that HDACs play vari-
ous roles at different stages during OPC differentiation and  
subsequent myelination. However, classic pan-HDAC inhibitors 
are non-specific and target HDACs across multiple classes. 
Genetic manipulation can specifically target individual HDACs 
to define their specific functions during oligodendrocyte lineage  
progression.

Class I HDACs
The expression levels and functions of class I HDACs are impor-
tant for oligodendrocyte fate specification and differentiation 
(Figure 2). HDAC1 and HDAC2, when knocked out individu-
ally in the oligodendrocyte lineage, have no obvious effects on 
OPC formation, proliferation, or differentiation46. However,  
the double-knockout animals die shortly after birth, and analy-
sis revealed a severe defect in OPC proliferation or differen-
tiation in these animals, suggesting that HDAC1 and HDAC2 
can functionally compensate for the loss of the other in  
oligodendrocyte lineage determination46. Another HDAC class I  
family member, HDAC3, has been implicated in the control of 
oligodendrocyte lineage specification44 but differs from those  
effects observed in HDAC1. HDAC3 deletion at the same 
stages as HDAC1 and 2 above results in a switch from  
oligodendrocyte to astrocytic fates, suggesting that HDAC3 
regulates the fate choice of primitive OPCs between astrocytic  
and oligodendrocytic cell lineages44.

HDACs have been shown to exhibit non–histone dependent 
functions during oligodendrocyte development. HDAC1/2  
co-repressor complexes can compete with β-catenin for binding 
to TCF7L2 (TCF4), a member of the TCF transcription factor 
family, resulting in the disinhibition of TCF7L2, which then is 
free to promote OPC differentiation46,47,48. This is an example of 
how non-enzymatic activity of HDACs through protein–protein  
interaction in addition to the deacetylase activity can function  
to regulate genetic expression. HDAC1 can also be 
recruited by YY1 transcription factor to the promotor of  
oligodendrocyte differentiation inhibitory genes such as Id4 to 
reduce their expression107,108. In addition, HDAC1 and HDAC3 
can deacetylate the OLIG1 transcription factor, increasing its  
likelihood of nuclear translocation and ultimate promotion of  
OPC differentiation49.

HDAC activity can be modulated through co-regulators or cova-
lent modifications109. For example, casein kinase 2 (CK2) phos-
phorylates HDAC3 to activate its activity while phosphatase 
4 dephosphorylates it110. Of interest, in vitro experiments 
revealed that the CK2 kinase, which activates HDAC3, also  
elevates expression of OLIG2, a critical transcription factor  
for initiating oligodendroglial cell fate111. HDAC3 also forms  
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protein complexes with co-repressor complexes such as NCOR 
and SMRT to regulate its activity112. NCOR has been shown to 
negatively regulate astrogenesis through inhibiting JAK-STAT 
signaling, activation of which leads to astrocyte differentiation113.  
In addition, HDAC3/NCOR can deacetylate and inactivate 
astrocyte-promoting factor STAT3 and therefore promote oli-
godendrogenesis while inhibiting the astroglial fate44. HDAC3 
also forms complexes with the HAT p300, to regulate OLIG2 
expression levels during OPC specification44. This interaction 
likely indicates that the coordinated activity of two opposing 
factors is required for oligodendrocyte and astrocytic lineage  
fate decisions.

HDAC3 functions not only as a transcriptional co-repressor, 
as one may assume from its histone deacetylation activity, but 
also as a transcriptional co-activator as in its role in the activa-
tion of retinoic acid response elements114,115. It is worth noting 
that HDAC3 deacetylase activity may not be vital for oli-
godendrocyte development. HDAC3 requires NCOR and SMRT 
to promote its deacetylation activity. Deleting the deacetylase- 
activating domains (DADs) in NCOR and SMRT abrogates 
the deacetylase activity of HDAC3. However, the DAD dele-
tion mice survive to adulthood and exhibit normal myelination 
whereas the ablation of HDAC3 is embryonic lethal116. Although 
the function of HDAC3 catalytic site mutants remains to be 
determined, the current data suggest that HDAC3 may serve as a  
scaffold for multi-component transcriptional regulatory  
complexes vital for oligodendrocyte myelination.

Other HDAC classes
Among class II HDACs, HDAC6 has been shown in rat oli-
godendrocyte cultures to acetylate the microtubule-associated 
protein tau and α-tubulin, both of which are required for normal 
oligodendrocyte development52. HDAC10, along with HDAC1 
and HDAC3, has also been shown to regulate the nuclear locali-
zation of OLIG1 for oligodendrocyte maturation49. It is worth  
noting that the enzymatic activity of class II HDACs is  
dependent on the HDAC3/SMRT/N-CoR complex117.

The class III HDACs SIRT1 and SIRT2 have been shown to regu-
late early oligodendrocyte lineage determination50,51,118. SIRT2, 
in particular, is highly expressed in mature oligodendrocytes119 
and regulates the differentiation of oligodendrocytes as block-
ing its activity or overexpressing it prevents or promotes dif-
ferentiation of CG4 oligodendroglial cells, respectively120–122. 
This class of HDACs also relies on NAD as a co-factor for 
deacetylase activity123. The loss of NAMPT, the rate-limiting 
enzyme for NAD biosynthesis in mammals, leads to defective 
oligodendrocyte development118,124. Like those of many other  
epigenetic factors, the effects that SIRT1 and SIRT2 have 
on development are stage-dependent. For example, Sirt1  
knockout in NPCs increases OPC proliferation50 while Sirt1 
knockout in PDGFRa+ OPCs promotes cell cycle exit and 
OPC differentiation125. Notably, SIRT2 is depleted in myelin 
sheathes of PLP-deficient oligodendrocytes, a model for spastic 
paraplegia, suggesting that SIRT2 might have a role in myelin  
sheath maintenance and provide trophic support of axons126.

Finally, the class IV HDAC, HDAC11 has been shown to regu-
late H3K9 and H3K14 acetylation and expression levels of 
Mbp and Plp genes53,54. HDAC11 overexpression enhances the 
maturation of an oligodendrocyte cell line (OL-1) in vitro53,54,  
suggesting a potential role of HDAC11 in regulating myelin 
gene expression. At present, how the function of each HAT and 
HDAC is controlled, individually and coordinately, on a system-
wide level to regulate the complex processes of oligodendro-
cyte development and myelination remains to be defined.  
This is of particular importance given the reiterative involve-
ment of many HAT and HDAC enzymes in the gene regulatory  
network during CNS development and regeneration.

Histone methylation regulates oligodendrocyte 
differentiation
Histone methylation can be linked to either gene activation or 
gene repression. The activating histone mark H3K4 trimethyla-
tion (H3K4me3) is deposited mainly at promoter elements and 
associated with gene transcription127. The COMPASS-like com-
plex, consisting of SETD1A and MLL1/2, is a major enzyme 
responsible for H3K4me3 deposition128,129, although its function  
in oligodendrocyte development has not been fully defined.

During differentiation from a more plastic state to a more dif-
ferentiated state, the level of repressive histone marks, for 
example, H3K27me3 and H3K9me3 increases across many 
different cell types130,131, including oligodendrocyte line-
age cells56,93. The histone methyltransferases mediating the 
deposition of these marks are critical in the differentiation of  
oligodendrocytes. Inhibition of H3K9 histone methyltrans-
ferases in cell culture via pharmacological inhibitors or shRNAs 
suggested a role of H3K9 deposition in the progression of the 
OL lineage and the suppression of neuronal gene programs93.  
However, the in vivo role of these H3K9 histone methyl-
transferases in oligodendrocyte development remains to be  
defined.

The importance of H3K27 trimethylation (H3K27me3) in oli-
godendrocyte development is more defined. Polycomb repres-
sive complex 2 (PRC2), consisting of EZH2, EED, and SUZ12, 
is the sole enzyme responsible for H3K27me3 in mammals132–134. 
Expression of PRC2 complex components exhibits a 
spatiotemporal-specific pattern135–137, suggesting that individual 
PRC2 subunits may play distinct functions during oligodendro-
cyte development and myelination. EZH2, the core catalytic 
subunit of PRC2 mediating its methyltransferase activity, pro-
motes oligodendrogenesis from neural stem cells as opposed to 
astrocyte formation in a dose-dependent manner57. In addition,  
the loss of Ezh2 at later stages in Olig1-expressing progeni-
tors prevents OPC differentiation, decreasing the number of 
mature oligodendrocytes in vivo56. These observations suggest 
that elevation of H3K27me3 levels is required for oligodendro-
cyte differentiation. Of note, mutations in the histone such as 
H3.3K27M precludes PRC2-mediated H3K27me3138,139. This  
mutation limits the capacity for OPC differentiation and is 
a major factor contributing to the development of malignant  
diffuse intrinsic pontine glioma (DIPG)138,140,141. OPCs or  
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pri-OPCs have been implicated as the tumor cells of origin for 
H3K27M midline gliomas142,143, highlighting the critical nature 
of this epigenetic mechanism in regulating the development  
of the oligodendrocyte lineage.

Another histone methyltransferase family that catalyzes arginine 
instead of lysine methylation, PRMTs144, is also implicated 
in OPC differentiation. PRMT158 and PRMT559–61 have both 
been shown to be required for proper differentiation of OPCs 
into mature oligodendrocytes, and loss-of-function mutants  
develop hypomyelination phenotypes. The function of other 
PRMT family members in oligodendrocyte myelination 
remains to be further defined. Overall, these studies demon-
strate that the balance of histone methyltransferases and histone 
demethylases is likely critically important for the regulation of  
oligodendrocyte development and remyelination.

DNA methylation and demethylation in 
oligodendrocyte development
DNA methylation is an epigenetic regulatory mechanism where 
cytosines, specifically those preceding guanine in so-called CpG 
islands, are methylated. CpG islands are preferentially found 
in the 5′ promotor region of genes and their methylation state 
can inhibit or promote the expression of the relevant gene145. 
The methylation status of these sites is regulated by the coordi-
nated activity of DNA methyltransferases (DNMTs), which add 
methyl groups to convert cytosine into 5-methylcytosine, and  
ten-eleven translocation (TET) proteins or DNA demethy-
lases, which catalyze the conversion of 5-methylcytosine 
to 5-hydroxymethylcytosine (5hmC), beginning the proc-
ess of converting 5-methylcytosine back to cytosine146. The 
expression of individual DNMTs and TETs varies across 
the OL lineage, suggesting a potential stage-specific role of  
DNMTs and TETs for oligodendrocyte development, myelina-
tion, and remyelination. In line with these observations, there 
was also a significant increase in DNA methylation during  
OL maturation62.

DMNT1 is downregulated during oligodendrocyte differen-
tiation where other DMNT family members had no change62. 
Deletion of Dmnt1 early in the oligodendrocyte lineage had 
a profound effect on oligodendrocyte differentiation, result-
ing in hypomyelination in vivo62. This effect was not due to the  
upregulation of normally methylated genes alone; defects in 
alternative splicing mediated by DNA methylation were also 
attributed to the failure in myelination62. In contrast to the 
Dmnt1 knockout, Dmnt3a knockout in NPCs had no effect62. 
However, after lysolecithin-induced demyelination, tamoxifen-
inducible Dnmt3a deletion in mature oligodendrocytes using a  
PLP-CreERT2 driver line impaired remyelination whereas the 
inducible Dnmt1 knockout had no effect147. Taken together, these 
results suggest that in some cases remyelination in adulthood  
does not fully recapitulate the developmental program.

TET1, TET2, and TET3 have all been implicated in the dif-
ferentiation of oligodendrocytes in vitro63. However, they each 
have different structures and their expression and subcellular 
localizations differ63, suggesting that they may play different  

roles in regulating oligodendrocyte differentiation. TET1 is 
downregulated in mature oligodendrocytes, TET2 translo-
cates from the cytoplasm to the nucleus during OPC differ-
entiation, and TET3 is seen only in the nucleus of maturing  
oligodendrocytes63. Of these, TET1 appears to show the strong-
est effect in regulating the oligodendrocyte lineage where the 
knockout impairs oligodendrocyte development and remyelination  
after lysolecithin-induced demyelination148,149.

Non-coding RNAs in oligodendrocyte development 
and myelination
Non-coding RNAs such as microRNAs (miRNAs) or long-non-
coding RNAs (lncRNAs) play regulatory roles in oligodendro-
cyte development, myelination, and remyelination. miRNAs 
are short RNA sequences that bind to homologous sequences 
on mRNA transcripts to inhibit translation into proteins. These 
miRNAs are processed into their mature active form by the 
enzyme Dicer. Conditional deletions of Dicer in OPCs and 
mature oligodendrocytes have all resulted in defects in myelina-
tion. Despite the myelin defects, the population of proliferating  
OPCs is increased in these animals, indicating a critical role for 
miRNAs in balancing OPC proliferation and differentiation64–66. 
Post-natal Dicer1 ablation in mature oligodendrocytes results 
in demyelination and oxidative damage, leading to neuronal 
degeneration and inflammatory astrogliosis and microgliosis in 
the brain64, suggesting a critical role of Dicer and thus miRNAs  
in myelin lipid maintenance and redox homeostasis.

miRNAs
Comparisons between OPCs and immature and mature  
oligodendrocytes revealed a set of miRNAs enriched during  
oligodendrocyte differentiation, including miR-219, miR-138, 
and miR-33864–66,150. miR-219 is necessary and sufficient to 
induce differentiation and can even partially rescue the Dicer 
knockout phenotype65,66. Knockout of miR-219–encoding genes  
(miR-219-1 and miR-219-2) led to reduced myelination through-
out the CNS67. In contrast to miR-219, miR-338 is dispensa-
ble for OPC differentiation or myelination in vivo. However, 
there was a synergistic effect on the myelination defects in 
miR-219 and miR-338 double-conditional knockout mice. 
miR-219 is also required for remyelination after LPC-induced 
demyelination. Overexpression of miR-219 in OPCs increased  
oligodendrocyte differentiation and could even promote repair 
when overexpressed genetically or administered with intrath-
ecal injections of miR-219 mimics67. miR-219 likely func-
tions by repressing inhibitors of OPC differentiation, including 
Lingo1 and Etv567. miR-219 has been suggested in zebrafish to 
regulate oligodendrocyte lineage specification from NPCs151.  
However, there were no defects of OPC specification in the miR-
219-1/2 double-null animals67, suggesting a species-specific 
effect. Other miRNAs have been associated with oligodendro-
cyte development (reviewed in more detail in 152), but of these  
miR-219 exhibits the strongest effects.

A set of miRNAs have been identified to negatively regulate 
oligodendrocyte differentiation. One of these, miR-212 was 
found to be downregulated in oligodendrocytes after spinal  
cord injuries in rats, where it appears to repress expression of  
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differentiation-associated genes68. Another such miRNA, 
miR-125a-3p, was enriched in cerebrospinal fluid from MS 
patients with active demyelinating lesions. miR-125a-3p over-
expression impaired oligodendrocyte differentiation whereas  
knocking it down promoted differentiation69. Similarly, over-
expression of miR-27a inhibits oligodendrocyte differentiation 
and myelination by activating the Wnt/beta-catenin signaling  
pathway153. Such negative regulatory miRNAs are potential  
targets for enhancing remyelination.

LncRNAs
LncRNAs are long RNA sequences (more than 200 nucle-
otides) that are highly conserved across species but have no 
coding potential154. LncRNAs have been implicated in the reg-
ulation of both normal development155,156 and diseases157,158. 
LncRNAs can be very specifically expressed in the oligodendro-
cyte lineage; for instance, lncOL1 and Pcdh17it were recently  
identified as specific markers for oligodendrocytes and imma-
ture premyelinating oligodendrocytes, respectively56,71. Gene-
chip microarrays were initially used to identify lncRNAs such 
as SOX8OT (SOX8 opposite transcript) in cultured OPCs. 
SOX8OT might have a role in regulating oligodendrocyte  
differentiation through its regulation of SOX872,73.

Combining RNA sequencing and chromatin mapping across 
oligodendrocyte lineage stages revealed several lncRNAs that 
are actively transcribed and restricted to this lineage56. Of 
these, lncOL1 was identified as a top candidate on the basis of 
its abundance, regulation during oligodendrocyte differentia-
tion, and preliminary screening for effects on myelin-associated 
gene expression. lncOL1 overexpression led to precocious  
oligodendrocyte differentiation in mouse embryos, and lncOL1 
knockout led to defects in OPC differentiation while having 
no effect on OPC formation. Interestingly, these myelination 
defects were seen only during development but not in adult-
hood, suggesting a role of lncOL1 in regulating the timing of 
myelinogenesis and not the maintenance of myelin. lncOL1 
mediates this effect in part by its interaction with SUZ12,  
a member of the PRC2 complex which mediates histone meth-
ylation through EZH2. lncOL1 directs the PRC2 complex to 
silence the expression of OPC-associated genes via H3K27me3  
deposition56. In contrast to lncOL1, lnc-OPC, another lncRNA 
found in the oligodendrocyte lineage, is enriched in OPCs and 
regulated by OLIG270. Knockdown of lnc-OPC in cultured NPCs 
limited their differentiation into OPCs without affecting NPC 
proliferation70. In similar fashion, lnc158 expression directly 
correlated with oligodendrocyte-associated protein expres-
sion and differentiation along the oligodendrocyte lineage75.  
In addition, another lncRNA, Neat1, was downregulated in 
schizophrenia. Neat1 knockout mice exhibited a reduction in 
the number of oligodendrocytes in the frontal cortex because 
of a failure in the retention of oligodendrocyte transcription  
factors in the nucleus74. These studies indicate that lncRNAs  
regulate oligodendrocyte development and myelination via  
various processes such as controlling mRNA transcripts, 
nuclear localization of transcription factors, or interactions with  
chromatin remodelers.

m6A RNA modification in oligodendrocyte 
progression and homeostasis
N6-methyladenosine (m6A) is the most abundant internal modi-
fication of mRNA in eukaryotes. A methyl group can be added 
to the N6 position of adenosines in specific sequences by 
m6A methyltransferases (m6A writers) such as METTL3 and 
METTL14 or removed by demethylases (m6A erasers) such 
as FTO and ALKBH5. The effects of m6A methylation on  
translation and RNA stability is mediated by m6A-specific bind-
ing proteins (m6A readers) including YTH-domain containing  
family proteins, hnRNP proteins, PRRC2A, and IGF2BP159–161.

Recent studies have revealed a differential m6A meth-
ylation of core oligodendrocyte lineage genes during OPC  
differentiation, suggesting an important role for this process 
in OL differentiation76. Deleting the METTL14 led to defects 
in OPC differentiation and hypomyelination at least in part by  
regulating alternative mRNA splicing in OL-expressing genes,  
including the paranodal protein NF155, which is critical for 
the establishment and maintenance of nodes of Ranvier76. In 
addition, the m6A RNA binding protein PRRC2A is highly 
expressed in OPCs during development in the white matter 
tracks. Both knockout and knockdown of PRRC2A in NPCs 
via Nestin-Cre or Olig2-Cre+ oligodendrocyte lineage cells led 
to hypomyelination due to defects in OPC proliferation and  
differentiation77. PRRC2A was shown to bind to the Olig2 mRNA 
and further stabilize the expression of Olig2 transcript in an  
m6A-dependent manner. Knocking out the RNA demethylase 
FTO mimicked the effects of PRRC2A overexpression77 and led 
to increased Olig2 expression levels. These studies suggest a 
critical role for m6A modification in the OL myelination process.  
The function of other mRNA modification enzymes remains  
to be determined in myelination and remyelination in the CNS.

Conclusion and perspectives
Chromatin modifications and epigenetic regulation are cru-
cial for oligodendrocyte fate specification, OPC proliferation, 
and oligodendrocyte differentiation (Figure 1). Many mem-
bers of chromatin modifiers discussed above have not yet 
been examined in the context of oligodendrocyte development 
and regeneration. In particular, although the major mediators  
of these developmental processes are being identified, the envi-
ronmental influences that modulate the epigenetic mecha-
nisms are very poorly understood. A better understanding of the 
mechanisms underlying the windows of epigenetic engagement  
will facilitate oligodendrocyte regeneration and remyelination.

Targeting epigenetic factors to influence OPC differentia-
tion as a means to promote myelin regeneration after nerve 
injury or in demyelinating diseases is an exciting potential 
therapeutic avenue. In MS, for example, many demyelinating  
plaques still contain OPCs; however, these cells fail to  
differentiate to replace those lost. Additionally, oligodendro-
cyte loss and the subsequent loss of myelin sheaths have been 
implicated in Alzheimer’s disease55,92,162,163. Stimulating OPCs to  
proliferate and differentiate would be an exciting treatment  
option in slowing the disease progression.
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In the future, it may prove fruitful to further scrutinize 
in vivo models of demyelinating diseases for temporal changes 
in chromatin landscape, structure, occupancy, and activity in 
response to myelin-promoting stimuli or pharmacological treat-
ments, such as those used in MS disease-modifying therapies. 

Future work of exploring these various family members of  
chromatin modifiers and identifying specific epigenetic  
modifiers responsible for CNS myelination and remyelination 
will facilitate the development of effective treatments for  
developmental disorders and neurodegenerative diseases.
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