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Cardiorenal syndrome (CRS) is defined as a disorder of the heart and kidney, in

which acute or chronic injury of one organ may lead to acute or chronic

dysfunction of the other. It is characterized by high morbidity and mortality,

resulting in high economic costs and social burdens. However, there is currently

no effective drug-based treatment. Emerging evidence implicates the

involvement of mitophagy in the progression of CRS, including

cardiovascular disease (CVD) and chronic kidney disease (CKD). In this

review, we summarized the crucial roles and molecular mechanisms of

mitophagy in the pathophysiology of CRS. It has been reported that

mitophagy impairment contributes to a vicious loop between CKD and CVD,

which ultimately accelerates the progression of CRS. Further, recent studies

revealed that targeting mitophagy may serve as a promising therapeutic

approach for CRS, including clinical drugs, stem cells and small molecule

agents. Therefore, studies focusing on mitophagy may benefit for expanding

innovative basic research, clinical trials, and therapeutic strategies for CRS.
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1 Introduction

Accumulated evidence demonstrated the increasing incidence of cardiac and renal

failure, and the co-existence of these two diseases is characterized with an extremely poor

prognosis. Cardiorenal syndrome (CRS) has been introduced to emphasize the crosstalk

between the kidney and heart in the context of acute or chronic disease (Ronco et al.,

2010). CRS is mainly divided into five types according to clinical etiology. Herein, we

principally focus on Cardiorenal syndrome type 4 (CRS4), since cardiovascular disease

(CVD) is the most common complication, as well as the leading cause (over 50%) of death

in chronic kidney disease (CKD) patients (Granata et al., 2016). It is estimated that up to
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30% of CKD patients suffer from heart failure (HF), while

approximate 40–50% of patients with HF also accompanies by

CKD (Tuegel and Bansal, 2017). In addition, the risk of HF is

reported to be much higher in patients with an estimated

glomerular filtration rate (eGFR) < 60 ml/min per 1.73 m2,

especially in those dialysis patients (Tuegel and Bansal, 2017)

(Bansal et al., 2017). However, the underlying mechanisms by

which CKD patients suffer increased susceptibility to CVD or

patients with CVD often coexist with CKD remain elusive.

Therefore, further clarifying the mechanism of CRS4 and

developing efficient treatments are urgently needed.

The heart and kidney are the top two organs with the most

mitochondria in the human body. Mitochondria play a crucial

role in the pathophysiological processes in these two organs,

including energy metabolism remodeling, reactive oxygen

species (ROS) production, apoptosis, and signaling

transduction, while mitochondrial injury is a common feature

of both CKD and CVD. Of note, the damaged mitochondria will

release a large amount of ROS, which will further aggravate

mitochondrial damage, forming a vicious circle. Mitochondria-

specific autophagy (mitophagy) is an essential and fundamental

process for maintaining mitochondrial health in various types of

cells, including cardiomyocytes and renal cells. Mitophagy

preserves mitochondrial homeostasis and mitochondrial

quality control through selectively eliminating damaged

mitochondria. Recently, the role and mechanism of mitophagy

have been extensively investigated in multiple disease models

(Bravo-San Pedro et al., 2017) (Kerr et al., 2017) (Lou et al.,

2020)), and numerous studies have confirmed the association

between mitophagy and CKD as well as CKD-associated CVD

(Huang et al., 2020b) (Bhargava and Schnellmann, 2017).

Therefore, targeting mitophagy might ameliorate both CKD

and CVD, which sheds new light that mitophagy may serve as

a promising therapeutic target for CRS4. In this review, we will

summarize the important findings of mitophagy in CKD and

CVD, especially the crucial roles and underlying mechanisms of

FIGURE 1
The schematic diagram of the review.

FIGURE 2
The overview of mitophagy pathways.
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mitophagy activation in CRS, and highlight the pharmacologic

modulation of mitophagy as a potential therapeutic strategy

(Figure 1).

1.1 Molecular mechanisms of mitophagy

The molecular mechanisms of mitophagy have been

intensively investigated in multiple species. There are mainly

two types of mitophagy, according to the signal pathway,

including receptor-dependent and -independent mitophagy. In

addition to the traditional signal pathways, there are also some

newly reported genes that can trigger mitophagy, such as C-type

lectin domain containing 16A (Clec16a) and Prohibitin 2

(PHB2). Here we summarize the current important pathways

involved in mitophagy (Figure 2).

1.2 Receptor-independent mitophagy

Most of the studies investigating the role of mitophagy in

physiological or pathological conditions focus on the PTEN

Induced Kinase 1 (PINK1)-Parkin RBR E3 Ubiquitin Protein

Ligase (Parkin) pathway, which is the most classic mitophagy

signaling. PINK1 is a serine/threonine kinase that acts as a

molecular sensor mainly through recruiting and activating

Parkin. Under normal conditions, PINK1 enters

mitochondrial inner membrane via its mitochondria-targeting

sequence with the help of translocase of the outer mitochondrial

membrane (TOM) and the endomembrane translocation

enzyme TIM23 complex. After entering mitochondrial inner

membrane, PINK1 is cut by mitochondrial processing

peptidase, and mitochondrial protease presenilin associated

rhomboid like (PARL) to produce a 52 kD PINK1 with

N-terminal deletion (Deas et al., 2011). PINK1 is then

released into the cytoplasm, where it targets N-degron type-2

E3 ubiquitin ligase and is degraded by ubiquitin proteasome

system (Yamano and Youle, 2013). This ordered input and

degradation of PINK1 keep PINK1 at a very low level in

healthy mitochondria. But in pathological condition,

PINK1 cannot be imported into the mitochondrial inner

membrane, and then accumulate in the mitochondrial outer

membrane, which is an important step for activating Parkin.

Once entering the mitochondrial inner membrane, Parkin will

enhance the ubiquitination of mitochondrial outer membrane

proteins, thereby recruiting autophagosomes to the damaged

mitochondria. Importantly, Parkin can also be recruited to

depolarized mitochondria and drive mitophagy even without

PINK1 (Ni et al., 2015). Once recruited into mitochondria,

Parkin will ubiquitinate several mitochondrial outer

membrane proteins, including mitochondrial fusion proteins

mitofusin-1 (Mfn1), mitofusin-2 (Mfn2), and the voltage-

dependent anion channel (VDAC), to initiate mitophagy.

Mfn1, Mfn2 and dynamin-related protein 1 (DRP1) are key

participants in controlling mitochondrial dynamics and

coordinating mitochondrial network connections and activities

(Mishra and Chan, 2016). Ubiquitination and proteasome

degradation of Mfn1, Mfn2 or DRP1 lead to mitochondrial

fission or fusion (Chan et al., 2011), but the function remains

during the fission process, thereby promoting mitophagy

(Tanaka et al., 2010). It has also been reported that

PINK1 can phosphorylate Mfn2 and then act as a Parkin

receptor to clear damaged mitochondria (Chen and Dorn,

2013). It has also been proved that VDAC1 plays a vital role

in the initiation of mitophagy via interacting with Parkin and

participating in Parkin recruitment and ubiquitination

(Shoshan-Barmatz et al., 2018).

1.3 Receptor-dependent mitophagy

Receptor-dependent mitophagy is another kind of

recognition initiation mechanism, which depends on the LC3-

interacting region (LIR) proteins such as FUN14 domain-

containing 1 (FUNDC1), Bcl-2/adenovirus E1B 19 kDa

interacting protein (Bnip3) and Bnip3 like (Bnip3L/NIX) on

the impaired mitochondrial outer membrane.

2 FUN14 domain-containing 1

FUNDC1 is a recently discovered mitochondrial protein.

FUNDC1-mediated mitophagy is regulated by reversible

phosphorylation. Under physiological conditions, the LIR of

FUNDC1 is phosphorylated by casein kinase 2 (CK2) at

Ser13 and Src protein-tyrosine kinase at Tyr18, thus inhibiting

its interaction with LC3. Therefore, it has almost no mitophagy

activity under normal conditions (Kuang et al., 2016). However,

under the stimulation of hypoxia or Carbonyl cyanide 4-

trifluoromethoxy phenylhydrazone (FCCP), the

dephosphorylation of Ser13 and Tyr18 enhance the

interaction between FUNDC1 and LC3, leading to mitophagy.

(Liu et al., 2014). Moreover, under pathological conditions,

FUNDC1 is phosphorylated by unc-51 like autophagy

activating kinase 1 (ULK1) at Ser17 to promote its binding to

LC3, contributing to the occurrence of mitophagy (Wu et al.,

2014). Recently, a mitochondria ubiquitin ligase, membrane

associated ring-CH-type finger 5 (MARCH5), has also been

proved to be involved in FUNDC1-mediated mitophagy. The

aggregated MARCH5 interacts with and degrades

FUNDC1 through Parkin-mediated ubiquitination, resulting

in a decrease in the binding of FUNDC1 to LC3 and a

negative regulation of mitophagy, maintaining a certain level

of mitophagy and cell homeostasis (Chen Z. et al., 2017). In

addition, FUNDC1 can also interact with mitochondrial fusion

and fission proteins (DRP1 and OPA1) to regulate mitochondrial
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dynamics and mitophagy. (Chen et al., 2016). Under hypoxic

conditions, the binding of FUNDC1 to DRP1 is enhanced, which

leads to the recruitment of DRP1 to mitochondria and

subsequent mitochondrial division, thereby promoting the

occurrence of mitophagy (Wu et al., 2016).

3 BNIP3/NIX

Bnip3 is initially considered to be a mitochondrial pro-

apoptotic protein (Chen et al., 1997). NIX share homology

with Bnip3 (53%–56% amino acid sequence identity)

(Matsushima et al., 1998). Recent studies have shown that

Bnip3 and its homolog NIX can specifically activate

mitophagy through directly interacting with LC3 via their LIR

motifs on autophagosomes (Hanna et al., 2012) (Novak et al.,

2010). Bnip3 is usually expressed as an inactive monomer in

cytosol. After stress signal, it forms a stable homodimer via its

C-terminal transmembrane domain (TM) and integrates into the

mitochondrial outer membrane. C-terminal NIX

phosphorylation and its consequent dimerization loss could

decrease the induction of NIX-mediated mitophagy.

(Marinkovic et al., 2021).

3.1 Mitophagy-related novel genes

3.1.1 Clec16a
Clec16a has been previously identified as a susceptibility

gene for type 1 diabetes, multiple sclerosis, and adrenal

dysfunction, but its physiological function remains unclear

(Hakonarson et al., 2007) (International Multiple Sclerosis

Genetics, 2009) (Skinningsrud et al., 2008). Recent studies

reported that Clec16a is a membrane-associated endosome

protein which can interact with the E3 ubiquitin ligase

Neuregulin receptor degradation protein-1 (Nrdp1)

(Soleimanpour et al., 2014). Loss of Clec16a leads to an

increase in the Nrdp1 target Parkin, a master regulator of

mitophagy. Islets from mice with pancreas-specific deletion of

Clec16a have abnormal mitochondria with reduced oxygen

consumption and ATP concentration (Soleimanpour et al.,

2014).

3.1.2 Prohibitin 2
PHB2 is a conserved inner mitochondrial membrane

(IMM) protein which plays an important role in multiple

cellular processes, including mitochondrial dynamics (Artal-

Sanz and Tavernarakis, 2009). PHB2, as a mitophagy

receptor, is involved in targeting mitochondria for

mitophagic degradation. Upon mitochondrial

depolarization and proteasome-dependent outer

membrane rupture, PHB2 interacts with the

autophagosomal membrane-associated protein LC3 via a

LIR domain. (Wei et al., 2017). On the other hand,

PHB2 forms a ternary protein complex with sequestosome

1 (SQSTM1) and LC3, resulting in the loading of LC3 into

damaged mitochondria (Xiao et al., 2018). Further,

PHB2 depletion destabilizes PINK1 in mitochondria,

thereby preventing the mitochondrial recruitment of

Parkin, ubiquitin and optineurin (OPTN). Therefore,

PHB2 knockdown inhibits mitophagy, while

overexpression of PHB2 alleviates mitochondrial

dysfunction by ameliorating pyrin domain-containing

protein 3 (NLRP3)-induced inflammatory pathways. (Xu

et al., 2019).

3.1.3 Autophagy and beclin 1 regulator 1
Autophagy and beclin 1 regulator 1 (AMBRA1) is a

multifunctional protein with well-known autophagic and

mitophagic functions (Di Rienzo et al., 2021)

(Strappazzon et al., 2020) (Strappazzon et al., 2015) (Zhou

et al., 2020). Upon mitochondrial depolarization, the pro-

autophagic protein AMBRA1 is recruited to the OMM and

interacts with PINK1 and ATPase family AAA domain

containing 3A (ATAD3A), a transmembrane protein that

mediates mitochondrial import and degradation of PINK1.

Emerging evidences have reported that AMBRA1 regulates

mitophagy though other two critical steps. Upon mitophagy

stimulation, AMBRA1 translocates from cytosol to

mitochondria, acting as a cofactor for

HUWE1 E3 ubiquitin ligase, favoring its binding to its

substrate Mfn2 and subsequent targeting to the

proteasome. This event is crucial and required for

AMBRA1-induced mitophagy. In the second step, similar

to other mitochondrial receptors, AMBRA1 is

phosphorylated at S1014 in its LIR motif, and then

interacts with LC3, ultimately leading to the engulfment

of damaged mitochondria by autophagosomes. This post-

translational modification is controlled by IKKα kinase upon

mitophagy stimulation. (Di Rita et al., 2018).

FIGURE 3
The role of mitophagy in cardiorenal syndrome type 4.
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4 Mitophagy in cardiorenal syndrome
type 4

CRS4 is defined as chronic cardiac damage caused by CKD,

including left ventricular hypertrophy, cardiac insufficiency, and/

or increased adverse cardiovascular events. In the present study,

we speculate that modulating mitophagy may serve as one of the

promising therapeutic strategies for the progression of CRS4

(Figure 3).

4.1 Mitophagy in chronic kidney disease

The kidney plays a vital role in maintaining normal function

of the body and requires a large amount of energy, which is

provided by mitochondrial oxidative metabolism. Therefore,

maintaining mitochondrial homeostasis and quality control is

critical for renal function. Previous studies have shown that

mitochondrial damage and dysfunction play a pivotal role in

the progression of CKD (Aparicio-Trejo et al., 2020) (Bai et al.,

2019) (Fujimura et al., 2020) (Gu et al., 2021) (Zhu et al., 2021)

(Li X. et al., 2020). Given that mitophagy is a key mechanism in

the control of mitochondrial quality, targeting mitophagy may be

an important therapeutic approach in the pathogenesis and

progression of CKD.

4.2 Renal fibrosis

As reported, mitophagy-related genes PINK1, Mfn2 and

Parkin were decreased in human patients and animal models

with renal fibrosis (Chen et al., 2018). Pink1−/− and Parkin−/−

mice exhibited suppression of mitophagy, impaired

mitochondrial homeostasis, enhanced recruitment of

profibrotic M2 macrophages, and aggravated renal fibrosis

(Bhatia et al., 2019). In adenine-induced CKD mice,

elimination of Mfn2 in myeloid cells resulted in decreased

mitophagy and increased recruitment of macrophages to the

kidney, enhanced the macrophage-derived fibrotic response, and

eventually deteriorated renal function. However, Li et al. found

that the Pink1-Parkin pathway was activated in UUO models,

while the deletion of PINK1-Parkin signaling aggravated renal

tubular injury and subsequent renal fibrosis, which could be

alleviated by using a mitochondrial-targeted antioxidant,

MitoTEMPO.

4.3 Chronic kidney disease

Diabetes is the leading cause of CKD in both developing and

developed countries (Webster et al., 2017b). It is well known that

mitophagy is inhibited under high glucose conditions

(Audzeyenka et al., 2021). For example, the expression levels

of mitophagy receptors, OPTN and PINK1, were significantly

decreased in human diabetic specimens (Chen et al., 2018). Of

note, overexpression of OPTN significantly enhanced the

activation of mitophagy by inhibiting NLRP3 inflammasome,

retarded cell senescence and alleviated diabetic nephropathy,

while OPTN silencing markedly inhibited high glucose-

induced mitophagy. Therefore, OPTN-mediated mitophagy

plays a crucial regulatory role in high glucose-induced

inflammation and renal tubular senescence in diabetic

nephropathy. Mdivi-1, a mitochondrial fission/mitophagy

inhibitor, accelerated renal tubular senescence, while Torin1,

an autophagy/mitophagy agonist, inhibited cell senescence

(Chen et al., 2018). In addition to renal tubular cells,

podocyte injury plays a central role in the development of

diabetic nephropathy. Therefore, protecting podocytes delayed

the progression of diabetic nephropathy (Jiang et al., 2020) (Kong

et al., 2020) (Zheng T. et al., 2022). Recombinant human PGRN

protein activated Sirt1-PGC1α-Foxo1 signaling to improve

mitophagy and maintain mitochondrial homeostasis in

podocytes, which provides a new therapeutic target for DKD.

Meanwhile, non-coding RNAs are also closely related to

mitophagy in diabetes. Silencing lncRNA SNHG17 alleviated

DKD by activating Parkin-dependent mitophagy via regulating

the degradation of Mst1. The above studies demonstrate that

mitophagy possess considerable protective effect in DKD and

targeting mitophagy may provide new concepts for the treatment

of DKD.

4.4 Chronic kidney disease-related
cardiovascular disease

Cardiac and renal hemodynamic regulation is a dynamic

system. The kidney receives about 25% of cardiac output, thus the

continuous decline of cardiac output leads to insufficient renal

artery perfusion. As reported, CVD is one of the most common

complications of CKD. CVD, including coronary artery disease,

congestive HF, arrhythmias, and sudden cardiac death, is the

leading cause of death in CKD patients (Schefold et al., 2016)

(Whitman et al., 2012) (Narala et al., 2013). Notably,

mitochondrial damage-mediated CVD is not only the result of

renal dysfunction, but also contributing factor to renal damage,

promoting the progression of CKD and eventually forming a

vicious circle (Dickhout et al., 2011). Therefore, timely removal

of damaged mitochondria through mitophagy to maintain

mitochondrial homeostasis is particularly important for the

normal contractile function of the myocardium.

It has been reported that general autophagy and mitophagy

transiently increased in cardiac tissue during the early stages of

HF, and mitophagy levels significantly decreased during the

chronic phase of TAC. Meanwhile, Previous studies have

shown that the expression level of PINK1 was reduced in the

tissues of patients with end stage HF (Billia et al., 2011),
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indicating that mitophagy is inhibited in the process of HF.

Subsequent studies showed that PINK1 silenced or knocked out

mice were susceptible to reperfusion injury and stress overload,

resulting in HF (Siddall et al., 2013). Moreover, cytoplasmic

p53 bound to Parkin and interfered with its translocation to

damaged mitochondria. Inhibition of mitophagy led to increased

Adriamycin-induced cardiomyocyte injury, demonstrating that

inhibition of mitophagy contributes to mitochondrial

dysfunction and accelerates the progression of HF. In

addition, numerous studies have shown that moderate

increase of mitophagy level can repress the progression of HF

(Dhingra and Kirshenbaum, 2022) (Abudureyimu et al., 2020)

(Li Q. et al., 2022) (Yu et al., 2018), (Shirakabe et al., 2016)).

Wang et al. reported that overexpression of

AMPKα2 phosphorylated PINK1 at Ser495 site, activated the

PINK1-Parkin-SQSTM1 pathway, and eliminated the impaired

mitochondria in HF. In addition, the expression of

DRP1 significantly increased from 2 to 5 days in the stress

overload model, which was consistent with the activation

period of mitophagy. Meanwhile, DRP1 deletion led to

inhibition of mitophagy, aggravating the stress-induced

cardiac dysfunction. Although proper mitophagy is protective

during HF, excessive mitophagy may exacerbate cellular damage.

Another study demonstrated that abnormal upregulation of

Bnip3 destroyed the mitochondrial integrity, leading to the

increase of superoxide production and the release of pro-

apoptotic factors (such as cytochrome c and apoptosis-

inducing factor (AIF)) in the process of cardiac ischemia-

reperfusion injury (IRI) (Hamacher-Brady et al., 2007).

Subsequently, Abhinav et al. reported that ventricular

remodeling and dysfunction were significantly alleviated in

Bnip3 knockout (KO) mouse model after myocardial IRI. NIX

was also reported to enhance cardiomyocyte apoptosis and lead

to pathological myocardial remodeling (Yussman et al., 2002).

The above data collectively suggested that moderate mitophagy

removes damaged mitochondria, reduces mitochondrial ROS

and maintains myocardial homeostasis. However, excessive

mitophagy leads to excessive mitochondrial clearance, leading

to insufficient energy production to preserve myocardial

consumption. Since mitophagy has dual roles, how to control

the degree of mitophagy in myocardial injury needs further

investigation.

4.5 Atherosclerosis

The level of mitophagy is highly correlated with oxidized

low-density lipoprotein (OX-LDL), which is a key factor in

promoting the development of atherosclerosis. In vitro studies

showed that the activation of mitophagy inhibited the apoptosis

of human VSMC induced by OX-LDL (Swiader et al., 2016).

Enhance expression of PINK1 improved the level of mitophagy,

thereby increasing its protective effect on VSMC, while silencing

PINK1 reversed this effect (Swiader et al., 2016) (Docherty et al.,

2018)). On the contrary, excessive mitophagy overtly consumed

mitochondrial mass, leading to an energy shortage and

mitochondrial dysfunction. Such as, in ApoE−/− mice induced

atherosclerosis, apelin-13 enhanced Pink1/Parkin-mediated

mitophagy via activating p-AMPKα, therefore, induced VSMC

proliferation to aggravate the development of atherosclerotic

lesions (He et al., 2019). In addition, phosphatase and tensin

homolog (PTEN) promoted endothelial cell apoptosis by

inhibiting mitophagy (Li P. et al., 2020). Thus, precisely

modulating mitophagy is a challenging and promising

therapeutic approach for atherosclerosis.

4.6 Uremic toxins

4.6.1 Indoxyl sulfate
The accumulation of uremic toxins in blood and tissues is

associated with the progression of CKD and its complications,

including CVD. Indoxyl sulfate (IS) has shown nephrotoxic

effects through generation of ROS (Owada et al., 2008),

depletion of anti-oxidative systems (Shimizu et al., 2011), and

induction of fibrosis and inflammation. Our previous studies

have shown that IS inhibited the DRP1-mediated mitophagy flux,

whereas DRP1 overexpression attenuated IS-induced mitophagy

inhibition and cell damage (Huang et al., 2020b). Moreover,

administration of an oral adsorbent for IS, AST-120, attenuated

IS-induced DRP1 reduction and mitophagy impairment in CKD

mice (Huang et al., 2020b). IS also implicated with CVD, vascular

calcification, vascular stiffness, and congestive HF in patients

with ESRD (Hung et al., 2017). In vitro studies have shown that IS

directly induced endothelial dysfunction, an early marker of

atherosclerosis (Hung et al., 2017). Collectively, these reports

imply that IS may inhibit mitophagy during CRS4.

4.6.2 High phosphate
Vascular calcification refers to the ectopic deposition of

calcium and phosphorus complexes in the vascular wall,

which is a common pathological manifestation in CKD

patients. Disruption of mineral homeostasis and high

phosphate (HP) levels are the main determinants of vascular

calcification in CKD. (Voelkl et al., 2018) (Alesutan et al., 2017).

As reported, increased levels of calcium phosphate products

associated with the development of vascular calcification in

CKD (Chen J. et al., 2017; Liu et al., 2018; Voelkl et al., 2019)

(Cozzolino et al., 2019), which would lead to increased vascular

stiffness, the main contributing factor to CVD in dialysis patients

(Galetta et al., 2005) (Melamed et al., 2006). Interestingly, in

calcific aortic stenosis, the increase of lactic acid was

accompanied by the increase of mitophagy and mitochondrial

damage, but the use of RAPI to enhance mitophagy can still

alleviate valve calcification (Morciano et al., 2021). Our recent

study demonstrated that HP-induced downregulation of PGC1α
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contributed to CRS4 via upregulating IRF1, while restoring

PGC1α expression ameliorated energy metabolism disorders

and HF (Huang et al., 2020a).

4.7 Metabolic characteristics of CRS4

The metabolic characteristics of CRS4 is characterized by a

reduction of FAO and OXPHOS, accompanied by a

compensatory increase in glycolysis, which were observed in

both cardiac and renal injury. This metabolic flux shifts are also

termed energy metabolism remodeling (Razeghi et al., 2002)

(Huang et al., 2020a). Growing evidences, including ours, have

suggested damaged mitochondria as a vital contributor to energy

metabolism remodeling in CRS (Huang et al., 2020a) (Mapuskar

et al., 2019; Tirichen et al., 2021; Shi et al., 2022). Mitophagy is an

essential machinery for the removal of damaged mitochondria,

maintaining mitochondrial quality control and cellular

homeostasis (Pickles et al., 2018). Mitophagy was activated by

TAT-Beclin 1 to alleviate HFD-induced mitochondrial

dysfunction, myocardial lipid accumulation, and diastolic

dysfunction (Tong et al., 2019). Damaged mitochondria

initiate mitophagy to eliminate impaired mitochondria and

ROS, maintaining energy metabolism (Pickles et al., 2018).

Further studies have shown that impairment of mitophagy

induces mitochondrial dysfunction and lipid accumulation,

thereby exacerbating diabetic cardiomyopathy (Shao et al.,

2020). In addition, high fat diet (HFD) could suppress

mitophagy activity and cause damaged mitochondria to

accumulate in the heart, while acetyl coenzyme A carboxylase

2 (ACC2) knockout-mediated increased FAO prevents HFD-

induced cardiomyopathy by the maintenance of mitochondria

function via enhancing Parkin-mediated mitophagy (Jones and

Sies, 2015). Therefore, modulating mitophagy may alleviate

CRS4 via restoring energy metabolism modeling.

4.8 Mitophagy in cardiorenal syndrome
type 4

Studies have shown that CKD is an independent prognostic

risk factor for CVD, and renal insufficiency significantly

increases mortality in patients with HF (Inaguma et al., 2017).

The main pathological changes of kidney in CKD include

glomerulosclerosis, tubular atrophy, interstitial fibrosis and

inflammatory cell infiltration (Webster et al., 2017a; Wang X.

H. et al., 2022), while a growing body of evidence observes cardiac

interstitial fibrosis, cardiomyocyte hypertrophy, and

mitochondrial swelling and damage in the heart (Bigelman

et al., 2018). Of note, mitochondrial injury has been identified

as the common pathological change in both kidney and heart in

the state of CKD (Shi et al., 2022). Recent studies have reported

that modulating mitophagy may reverse the above pathological

changes in the injured kidney and heart through eliminating

damaged mitochondria and maintaining mitochondrial

homeostasis (Quiles and Gustafsson, 2022), hinting that

mitophagy might link these pathological changes between the

heart and kidney.

Further, we speculate that the underlying mechanisms are as

follows. First, damaged kidney releases pro-inflammatory factors

or uremic toxins into the circulation (Brennan et al., 2021; Ravid

et al., 2021), such as indoxyl sulfate (IS), high phosphate (HP),

and p-Cresyl Sulfate (PCS), which can directly damage the

mitochondria of the heart and regulated mitophagy. Second,

kidney-derived soluble biomolecules or proteins, such as C-X3-C

motif chemokine ligand 1 (CX3CL1), apolipoprotein A1,

albumin, the tumor necrosis factor superfamily member 14

(TNFSF14), circulate to cardiomyocytes, binding to the

receptors or adapters on the surface of cardiomyocytes, thus

affecting the mitophagy of cardiomyocytes (Zhao et al., 2019;

Zheng C. et al., 2022). Mitochondria may sense these various

stimuli in the extracellular environment and respond to heart

(kidney)-derived biomolecules via the activation or inhibition of

mitophagy. Finally, impaired mitophagy leads to insufficient

ATP synthesis, which further exacerbates oxidative stress,

inflammation and apoptosis, ultimately forming a vicious

cycle and leading to pathological damage to the heart and

kidney. Targeting mitophagy might break the crosstalk and

improve the pathophysiological changes of CRS. These results

suggest the vicious circle between kidney and heart may be

mediated by impaired mitophagy.

In view of the complex process and mechanism of

mitophagy, targeting mitophagy is currently controversial in

different disease models (Li et al., 2021). Some studies have

reported that enhancing mitophagy plays a protective role in

atherosclerosis, as well as HF (Abudureyimu et al., 2020; Poznyak

et al., 2021; Duan et al., 2022). On the contrary, other studies

suggest that promoting mitophagy can accelerate AS progression

and HF (Li et al., 2018; Zhang et al., 2020). Simultaneously,

mitophagy might play distinct roles in the progression of

different disease stages. For instance, mitophagy improves

cardiac function and exerts a protective effect on HF.

However, as the disease progresses, cardiac remodeling

decompensates, and excessive mitophagy leads to unnecessary

protein degradation, thereby accelerating the development of HF

(Kostin et al., 2003). Hence, timely and appropriate regulation of

mitophagy to maintain mitochondrial homeostasis of

cardiomyocytes can serve as potential therapeutic approaches

against CKD, which still requires more basic experiments and

clinical studies to verify.

Moreover, in the pathological process of CRS4, the specific

mechanism leading to the activation of mitophagy remains

unclear. And the functional role of mitophagy in different cell

type of kidney and heart remains elusive. For example,

promoting mitophagy in VSMCs accelerates atherosclerosis

progression (Kostin et al., 2003; He et al., 2019), whereas in
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endothelial cells and macrophages, promoting mitophagy

exerts an atheroprotective role (Li P. et al., 2020; Choi

et al., 2021; Jin Y. et al., 2022). Besides, although enhanced

mitophagy in rat ventricular myoblast cells (H9c2) has been

demonstrated to provoke HF (Huo et al., 2021), it has also

been reported that the promotion of mitophagy in murine

cardiac myocyte cell line (HL-1) prevents the development of

HF. These controversial results further confirm that the

regulation of mitophagy levels in distinct cell types may

determine the progress and fate of disease. Comprehensive

understanding of the explicit function and regulatory

mechanisms of mitophagy in different cell types in

CRS4 will be beneficial for developing new therapeutic

strategies for CRS4. The mechanistic studies and clinical

trials are urgently required to gain a deeper understanding

of the efficacy and safety of these potential treatments.

5 Mitophagy-targeted therapy

In view of the pivotal role of mitophagy in CRS4,

pharmacological modulation of mitophagy may serve as a

promising strategy for the prevention and treatment.

Pharmacological enhancement of mitophagy is beneficial in

cardiac and renal disease models, including renal fibrosis,

DKD and HF (Ma et al., 2021) (Liu B. et al., 2022) (Han

et al., 2021) (An et al., 2021). Therefore, the potential therapy

aimed at modulating mitophagy may be a promising treatment

strategy against CRS4 (Table 1).

5.1 Clinical drugs

5.1.1 ACEIs
Ameta-analysis reported that monotherapy or the combination

of an angiotensin-converting-enzyme inhibitor (ACEI) and an

angiotensin II receptor blocker (ARB) was one of the most

effective strategies against end-stage renal disease (ESRD)

(Palmer et al., 2015). It has been reported that the ARB drug,

valsartan, relieved left ventricular hypertrophy, improved

myocardial autophagy and mitophagy, and increased

mitochondrial biosynthesis to relieve unilateral renovascular

hypertension in pigs (Zhang et al., 2014). ACEIs drugs are also

strictly limited for clinical use in patients with renal insufficiency,

anuric renal failure and CKD patients with serum creatinine levels

greater than 225 μmol per liter (Ferrario et al., 2022).

5.1.2 Statins
The existence of a causative role of lipids in the pathogenesis of

proteinuria and kidney disease has been demonstrated by both

clinical and experimental studies (Vaziri, 2016) (Herman-Edelstein

et al., 2014) (Hao and Breyer, 2007). Statins were demonstrated to be

effective for cardiovascular protection in predialysis CKD patients

(Sharp Collaborative Group, 2010) (Cannon et al., 2015) (Wahl

et al., 2016). As reported, statins, such as simvastatin, promoted

mitophagy against HF via increasing PINK1 and Parkin protein

expression in vivo (Hsieh et al., 2019). Further, the SHARP trial

(Sharp Collaborative Group, 2010) demonstrated that lowering

LDL-cholesterol level using simvastatin plus ezetimibe reduced

the incidence of major atherosclerotic events in patients with

TABLE 1 Potential treatments targeting mitophagy in CRS4.

Potential
treatments

Key findings References

Clinical drugs ARB: Alleviate left ventricular hypertrophy Zhang et al. (2014)

Statins: Inhibit cardiomyocyte apoptosis and improve CKD by reducing inflammation and oxidative stress Hsieh et al. (2019)

Metformin: Relieve myocardial injury in Adriamycin-induced heart injury and protect human renal epithelial cells
from high glucose-induced apoptosis

Zhao and Sun, (2020)

Arinno et al. (2021)

BMSCs: Inhibit apoptosis and pyroptosis to ameliorate SI-AKI. Guo et al. (2021)

Stem cells TUDCA: Improve the functional recovery, including kidney recovery, limb salvage, blood perfusion ratio, and vessel
formation

Yoon et al. (2019)

MSCs: Exhibit lower levels of urinary albumin-to-creatinine ratio, less mesangial expansion, higher number of
podocytes

Savio-Silva et al. (2021)

Ameliorate mitochondrial dysfunction, apoptosis in endothelial cells in diabetic rats Zhu et al. (2018)

UMI-77: Ameliorate renal fibrosis in UUO mice Jin et al. (2022a)

Small molecule agents MitoTEMPO: Ameliorate renal function and podocytes injury in CKD rats Liu et al. (2022a)

AKG: Inhibit pressure overload-induced myocardial hypertrophy and fibrosis and improved cardiac systolic
dysfunction

An et al. (2021)

JQ1: Improve mitochondrial function, and repair the cardiac structure and function of the diabetic heart Mu et al. (2020)
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CKD. These results were reinforced by outcomes of the subsequent

IMPROVE-IT study (Cannon et al., 2015). Emerging evidence

suggests that pitavastatin triggers mitophagy though the calcium-

dependent CAMK1-PINK1 pathway to promote endothelial

progenitor cell (EPC) proliferation and retard the progression of

atherosclerosis, hinting that statins may hold the potential

therapeutic effect on the treatment of CRS4 (Yang et al., 2022).

5.1.3 Metformin
As reported, metformin, a classic anti-diabetic drug, restored

Parkin-mediated mitophagy by activating protein phosphatase

2A (PP2A) to inhibit nuclear factor kappa B (NF-κB), thereby
protecting human renal epithelial cells from high glucose-

induced apoptosis (Zhao and Sun, 2020). Notably, another

study found metformin significantly relieved myocardial

injury in Adriamycin-induced cardiac injury by reducing the

excessive mitophagy, oxidative stress and inflammation (Arinno

et al., 2021). These studies indicate that metformin exerts

different effects on mitophagy in different cell models, which

may be due to the bidirectional regulation of mitophagy by

metformin, but the ultimate effect is to protect cells against

damage (Arinno et al., 2021). Metformin is recommended as a

first-line treatment for type 2 diabetes because of its safety, low

cost, and potential cardiovascular benefits (Tanner et al., 2019).

However, the use of metformin was restricted in CKD patients

due to concerns about drug accumulation andmetformin-related

lactic acidosis. Although there is currently insufficient evidence

to support the safety of metformin in patients with eGFR values

below 30 ml/min/1.73 m2, metformin is generally recommended

to be discontinued, when renal function falls below this level.

5.1.4 Stem cells
Mesenchymal stem cells (MSCs) are one of the most promising

cell sources for curing kidney diseases due to their self-renewal and

multi-directional differentiation potential in regenerative medicine

research (Zhou and Glowacki, 2017). Previous studies have reported

that MSCs transplantation showed therapeutic effects in heart-

kidney injury models (Yuan et al., 2021) (Ishiuchi et al., 2020)

(Jin et al., 2019) (Tseng et al., 2021) (Liao et al., 2019) (Cai et al.,

2016). MSCs could migrate to the damaged kidney tissues of rats,

and then upregulate SIRT1-Parkin axis to promote mitophagy in

renal tubular epithelial cells, thereafter alleviating sepsis-induced

AKI (Guo et al., 2021). In mice with CKD-associated hindlimb

ischemia, tauroursodeoxycholic acid (TUDCA) protected

mitochondrial membrane potential and restored mitochondrial

dysfunction in CKD-HMSCs by activating mitophagy. Recently,

it has been reported that uremic toxin P-Cresol (PC) can impair the

function of MSCs, while pioglitazone can up-regulate the expression

of PINK1 to activatemitophagy and protectMSCs fromPC-induced

mitochondrial dysfunction (Lee et al., 2018). In CVDs, MSCs have

been reported to activate mitophagy and significantly alleviate

mitochondrial dysfunction as well as apoptosis though inhibiting

the expressions of Parkin, PINK1 and TFAM in human umbilical

vein endothelial cells (HUVEC) exposed to high glucose (Savio-Silva

et al., 2021) (Zhu et al., 2018). These results collectively suggest that

stem cells can be used as a potential therapy strategy for CRS, which

needs further experimental investigations and clinical trials.

Although stem cells have a good therapeutic prospect in the

treatment of CRS, due to the complex source of stem cells, the

preparation process and quality control of stem cells cannot be

controlled, which affects the safety and effectiveness of stem cell

therapy (Sivanathan and Coates, 2020). Moreover, stem cells may

have potential carcinogenicity, which greatly limits their clinical

applications (Hickson et al., 2016). Emerging evidence confirms that

MSC-exosomes can be used as natural carriers for targeted drug

delivery (Cao et al., 2022). Thus, therapeutic agents can be efficiently

incorporated into exosomes and then delivered to diseased tissues.

In addition, MSC exosomes contain biologically active substances,

such as proteins, messenger RNAs and microRNAs (Suzuki et al.,

2016; Yea et al., 2021). Therefore, MSC-exosomes have emerged as a

promising cell-free therapy for CVD.

5.1.5 Small molecule agents
Small molecule agents mainly refer to some chemical synthetic

compounds with molecular weight less than 1000. The structure of

small molecule agents has good spatial dispersion, and its chemical

properties determine its performances and pharmacokinetic

properties. These characteristics make small molecule agents

show great advantages in CRS and other complications.

As reported, UMI-77 enhanced mitophagy, reversed

mitochondrial damage, reduced ROS production, and inhibited

renal fibrosis in UUO mice (Jin L. et al., 2022). In addition, mito-

TEMPO, a mitochondrial targeting antioxidant, activated PINK1-

Parkin pathway to induce mitophagy in vivo and in vitro, which

significantly ameliorated the podocyte injury in a rat model of CKD

(Liu B. et al., 2022). Another small moleculemetabolite of tricarboxylic

acid (TCA) cycle, α-ketoglutarate (AKG), promoted mitophagy to

eliminate damaged mitochondria, mitigated myocardial hypertrophy

andfibrosis caused by pressure overload, and improved cardiac systolic

dysfunction during cardiac injury (An et al., 2021). It has also been

reported that the up-regulation of BRD4 in the heart of diabetic mice

inhibited PINK1-Parkin-mediated mitophagy, while the selective

bromine domain inhibitor JQ1 inhibited the expression of BRD4,

activated PINK1-Parkin-mediated mitophagy, and subsequently

reduced the accumulation of damaged mitochondria to alleviate

cardiac structural and functional damage (Mu et al., 2020). These

results suggest that small molecule agents are promising and effective

strategies for CRS. Small molecule agents also have limitations in their

application, including poor bioavailability, lack of tissue targeting and

safety evaluation (Uddin et al., 2021). Therefore, a comprehensive

evaluation of safety for clinical applications is necessary. Secondly,

advanced drug delivery systems such as nanoparticle-mediated drug

delivery and molecular structure optimization to increase

bioavailability and tissue targeting are also required. We believe that

small-molecule agents remain a promising therapeutic agent by

optimizing the structure and improving the above shortcomings.
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6 Conclusion and prospect

Mitophagy plays a vital role in mitochondrial homeostasis in

multiple diseases, particularly CKD, CVD, and CRS4. In this review,

we discussed the complex interaction between the heart and kidney

as well as the function of mitophagy during this process. In addition,

general clinical drugs, stem cells and small molecule agents are

considered as feasible therapeutic strategies targeting mitophagy to

retard the progression of CRS4. Therefore, delicate modulation of

mitophagy may serve as a novel therapeutic strategy against CRS4.

Further, it cannot be ignored that excessive mitophagy may also be

harmful and ultimately result in cell death, even if the loss of

mitophagy is deleterious to mitochondrial homeostasis. In

developing drugs and small-molecule agents for mitophagy, how

to modulate the targeting of mitophagy is still an urgent problem to

be solved. The development of nanomaterials targeting kidney and

heart may be a promising direction for the treatment of CRS4.

Simultaneously, the efficacy, specificity, and sensitivity of natural

inducers of mitophagy have not been demonstrated in human CRS,

and therefore future clinical trials are urgently required. Despite

these limitations, the current experimental and clinical findings

collectively indicate that targeting mitophagy might be a promising

therapeutic approach for those patients with CRS4.
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