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Glioma is the most common neoplasm of the central nervous system (CNS); the progression and outcomes of which are affected by
a complicated network of genes and pathways. We chose a gene expression profile of GSE66354 from GEO database to search core
biomarkers during the occurrence and development of glioma. A total of 149 samples, involving 136 glioma and 13 normal brain
tissues, were enrolled in this article. 1980 differentially expressed genes (DEGs) including 697 upregulated genes and 1283
downregulated genes between glioma patients and healthy individuals were selected using GeoDiver and GEO2R tool. Then,
gene ontology (GO) analysis as well as Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were carried out
using the Database for Annotation, Visualization and Integrated Discovery (DAVID). Moreover, Cytoscape with Search Tool
for the Retrieval of Interacting Genes (STRING) and Molecular Complex Detection (MCODE) plug-in was employed to
imagine protein-protein interaction (PPI) of these DEGs. The upregulated genes were enriched in cell cycle, ECM-receptor
interaction, and p53 signaling pathway, while the downregulated genes were enriched in retrograde endocannabinoid signaling,
glutamatergic synapse, morphine addiction, GABAergic synapse, and calcium signaling pathway. Subsequently, 4 typical
modules were discovered by the PPI network utilizing MCODE software. Besides, 15 hub genes were chosen according to the
degree of connectivity, including TP53, CDK1, CCNB1, and CCNB2, the Kaplan-Meier analysis of which was further identified.
In conclusion, this bioinformatics analysis indicated that DEGs and core genes, such as TP53, might influence the development
of glioma, especially in tumor proliferation, which were expected to be promising biomarkers for diagnosis and treatment of glioma.

1. Introduction

Gliomas comprise about 30% of all brain tumors and central
nervous system (CNS) tumors and 80% of all malignant
brain tumors [1]. Malignant glioma is the most common
brain glioma (accounting for ~70%) with an annual inci-
dence of 5 per 100,000 and an extremely malignant clinical
outcome. Taking the most common type, glioblastoma
(GBM), for example, possesses a median overall survival of
only 10–15 months, which gives rise to serve health burden
[2]. The pathogenesis of gliomas is very complicated;
although a great many genes and proteins take part in the
occurrence and development of gliomas, the mechanism still

remains not clear [3]. At present, genetic factors and residual
embryonic primitive cells in the brain are vital endogenous
influences contributing to glioma while harmful physical
and chemical factors along with virus infection serve as exog-
enous factors [4, 5]. Regardless of these different factors of
pathogenesis, gliomas share similar mechanisms of oncogen-
esis, such as retinoblastoma (RB), p53, and receptor tyrosine
kinase (RTK) signaling pathways, which play critical parts in
the development of glioma, especially in GBM. Hence, genes
and proteins that can modulate these pathways are not only
used for therapeutic targets and diagnostic markers but can
also be utilized to assess the pathological characteristics of
gliomas [6, 7]. For example, isocitrate dehydrogenase (IDH)
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[8], epidermal growth factor receptor (EGFR) [9], and neuro-
fibromatosis type 1 (NF1) [10] have been the center of atten-
tion in glioma genesis.

Currently, the diagnosis of gliomas mainly depends on
pathological feature and medical imaging such as CT, MRI,
DSA, PET, and SPECT, which have been closely related to
experience of surgeons [11]. Because of lacking specificity
of auxiliary examination biomarker, it is difficult for surgeons
to obtain an accurate diagnosis and treatment of glioma as
early as possible, so that many patients miss the optimal
chance for surgery, thus increasing the risk of death. On the
other hand, the common treatment strategies of gliomas con-
sist of surgical resection as well as chemo and radiotherapy
while targeting drugs are still limited [12]. Hence, searching
for specific and sensitive biomarkers as well as some core
genes or proteins as therapeutic target will benefit the diag-
nosis and treatment of gliomas.

At present, high-throughput sequencing has been
applied as a very critical tool for medical research [13]. In
this analysis, we chose GSE66354 from Gene Expression
Omnibus (GEO) and used GeoDiver and GEO2R online tool
to find the differentially expressed genes (DEGs). Subse-
quently, we made PPI network of the DEGs and selected
core genes with a high degree of connectivity. In addition,
analysis of biological process (BP), molecular function
(MF), cellular component (CC), and KEGG pathways of the
DEGs and four modules was performed. Moreover, overall
survival (OS) analysis of these core genes was carried out.
Then, the correlation analysis using TCGA database was
employed to observe the potential relationship between
genes. Briefly, this study would provide novel targets for
diagnosis and treatment of glioma.

2. Results

2.1. Identification of DEGs and Hub Genes. There were 136
glioma (including 21 high-grade gliomas, 15 pilocytic astro-
cytomas, 19 medulloblastomas, 17 atypical teratoid/rhabdoid
tumors, and 64 ependymomas) samples and 13 normal sam-
ples in our study. The results of DEGs analysis were freely
available in GeoDiver (https://www.geodiver.co.uk/). The
heat map and volcano plot showed these DEGs in glioma
(Figure 1). The GEO2R online analysis tool was applied to
detect the DEGs, using adjust p value< 0.01 and ∣logFC∣ ≥ 2
as cutoff criteria. A total of 1980 DEGs were detected after
the analysis of GSE66354; of which, 697 were upregulated
genes and 1283 were downregulated. Besides, 15 hub genes
with a high degree of connectivity were selected (Table 1).

2.2. GO Function and KEGG Pathway Analysis of DEGs.
To obtain a more in-depth understanding of the selected
DEGs, GO function and KEGG pathway analysis were
applied using DAVID (Figure 2). GO analysis results showed
that upregulated DEGs and downregulated DEGs were par-
ticularly enriched in biological process (BP), including
mitotic cell cycle, mitotic cell cycle process, cell cycle process,
mitotic nuclear division, and cell division for upregulated
DEGs, and for downregulated DEGs including synaptic sig-
naling, anterograde trans-synaptic signaling, trans-synaptic

signaling, chemical synaptic transmission, and nervous sys-
tem development (Table 2). For molecular function (MF),
the upregulated DEGs were mainly enriched in extracellular
matrix structural constituent, coreceptor activity, Wnt pro-
tein binding, microtubule motor activity, and growth fac-
tor binding, and the downregulated DEGs were enriched
in gated channel activity, ion channel activity, substrate-
specific channel activity, channel activity, and passive trans-
membrane transporter activity (Table 2). In addition, GO cell
component (CC) analysis also displayed that the upregulated
DEGs were significantly enriched in the extracellular matrix
component, proteinaceous extracellular matrix, extracellular
matrix, basement membrane, and microtubule cytoskeleton,
and downregulated DEGs were enriched in synapse, neuron
part, synapse part, neuron projection, and axon (Table 2).

Figure 2(c) and Table 3 show the most significantly
enriched KEGG pathway of the upregulated and downregu-
lated DEGs. The upregulated DEGs were enriched in cell
cycle, ECM-receptor interaction, p53 signaling pathway,
pathways in cancer, and hepatitis B, while the downregulated
DEGs were enriched in retrograde endocannabinoid signal-
ing, glutamatergic synapse, morphine addiction, GABAergic
synapse, and calcium signaling pathway.

2.3. The Kaplan-Meier Plotter and Expression Level of Hub
Genes. The prognostic information of the 15 hub genes was
freely available at http://gepia.cancer-pku.cn/detail.php. It
was found that expression of TP53 (HR 1.9, p = 3 1 × 10–7)
was associated with worse overall survival (OS) for glioma
patients, as well as TOP2A (HR 4.4, p = 0), CDK1 (HR 4.8,
p = 0), CCNB1 (HR 5.9, p = 0), CDC20 (HR 5.2, p = 0),
CCNA2 (HR 5.1, p = 0), NDC80 (HR 5.8, p = 0), AURKA
(HR 5.3, p = 0), BIRC5 (HR 5, p = 0), CCNB2 (HR 5.4, p =
0), KIF11 (HR 2.3, p = 1 5 × 10–10), and MAD2L1 (HR 4.4,
p = 0), while expression of PHLPP2 (HR 0.41, p = 1 3 ×
10–11), DLG4 (HR 0.59, p = 3 5 × 10–5), and MYC (HR 0.58,
p = 2 1 × 10–5) was associated with better overall survival
(OS) for glioma patients (Figure 3). Then, we used GEPIA
to detect the hub gene expression level between cancer and
normal brain tissue, and Figures 4(a) and 4(b) reflect that
compared to normal brain tissue, the expression level of
TP53 significantly increased in cancer tissue while the
expression level of DLG4 significantly decreased in glioma.
The immunohistochemical data of patients with or without
glioma based on the Human Protein Atlas (HPA) also veri-
fied the expression of these hub genes (Figures 4(e) and 4(f)).

2.4. Hub Genes and Module Screening from PPI Network.
Based on the information in the STRING protein query from
public databases, we made the PPI network of the top 15 hub
genes with higher degree of connectivity (Figure 2(d)). We
selected TP53, TOP2A, CDK1, CCNB1, CDC20, CCNA2,
NDC80, AURKA, BIRC5, CCNB2, KIF11, and MAD2L1,
which with worse overall survival situation according to the
Kaplan-Meier plotter. Based on the GO function, the KEGG
pathway analysis, and the survival analysis, we found that
TP53, CDK1, CCNB1, and CCNB2 were enriched in cell
cycle, especially in p53 signaling pathway.
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Figure 1: Continued.
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In order to detect significant modules in this PPI net-
work, we used MCODE plug-in. The top 4 modules were
selected (Figure 5). KEGG pathway enrichment analysis
showed that these 4 modules were mainly correlated with
cell cycle, neuroactive ligand-receptor interaction, calcium
signaling pathway, and arrhythmogenic right ventricular
cardiomyopathy (ARVC) (Table 4).

3. Discussion

The rising trend of the glioma morbidity has raised our atten-
tion in recent years, which is mainly caused by the failure to
early diagnosis and treatment. Therefore, sensitive and spe-
cific biomarkers as well as core therapeutic targets of glioma
are urgently needed to be screened. In the present analysis,
136 glioma samples (including 21 high-grade gliomas, 15
pilocytic astrocytomas, 19 medulloblastomas, 17 atypical
teratoid/rhabdoid tumors, and 64 ependymomas) and 13
normal samples were enrolled from the GEO database of
GSE66354. A total of 1980 DEGs were identified, including
697 upregulated genes and 1283 downregulated genes. To
obtain an in-depth understanding of these DEGs, we per-
formed the GO function and KEGG pathway analysis of
these DEGs. And we found that the upregulated DEGs are
mainly implicated with cell cycle, ECM-receptor interac-
tion, and p53 signaling pathway, while the downregulated
genes were enriched in retrograde endocannabinoid signal-
ing, glutamatergic synapse, morphine addiction, GABAergic
synapse, and calcium signaling pathway. In the meantime, we
verified the effects of these hub genes on survival in patients
with glioma. Of these 15 hub genes, PHLPP2, DLG4, and
MYC displayed significant positive correlation with over-
all survival while TP53, TOP2A, CDK1, CCNB1, CDC20,
CCNA2, NDC80, AURKA, BIRC5, CCNB2, KIF11, and
MAD2L1 negatively correlated with overall survival in
patients with glioma. Subsequently, we further confirmed
the expression of TP53 and DLG4 in GBM and LGG.
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Figure 1: (a) Differentially expressed gene expression heat map of glioma (top 100 upregulated and downregulated genes). (b) Differentially
expressed genes were selected by volcano plot filtering (fold change≥ 1 and p value≤ 0.05). The blue point in the plot represents the
differentially expressed genes with statistical significance.

Table 1: Top 15 hub genes with higher degree of connectivity.

Gene Degree of connectivity Adjusted p value

TP53 183 1.53E − 15
TOP2A 166 5.17E − 13
CDK1 146 3.55E − 17
PHLPP2 139 5.44E − 17
DLG4 124 4.68E − 18
CCNB1 115 3.09E − 05
MYC 115 2.43E − 04
CDC20 111 3.57E − 04
CCNA2 107 5.72E − 05
NDC80 105 2.00E − 10
AURKA 105 5.00E − 05
BIRC5 103 6.26E − 07
CCNB2 102 1.70E − 08
KIF11 102 5.41E − 11
MAD2L1 101 2.98E − 06
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3.1. DEGs Are Promising Candidates for the Diagnosis of
Glioma. Our analysis picked up 1980 DEGs between patients
with glioma and normal individuals. In our heat map, a total
of 100 DEGs with most differential expression were captured.
We hypothesized that these DEGs would be promised to be
candidates for the diagnosis of glioma in future. In fact, some
of these DEGs have been already uncovered to be good pre-
dictors of glioma. For instance, WEE1 is a regulator of the
G2 checkpoint in cell. The WEE1-positive nuclear area is
correlated with malignancy grade and WEE1 is associated
with prognosis in GBM inversely [14]. LGI3, a secreted pro-
tein member of leucine-rich glioma inactivated (LGI) family,
is predominantly expressed in the brain, skin, and adipose
tissues, exerting roles as a multifunctional cytokine [15].
Studies have revealed that low expression levels of LGI3 are
obviously associated with poor prognosis of glioma [16].

Collectively, the clinical value of these DEGs needs to be
further explored.

3.2. Hub Genes May Serve as Core Therapeutic Targets in
Glioma. In this study, we selected 15 hub genes in glioma,
which were in the core nodes in PPI network; thus, they
might be the key therapeutic targets to combat glioma.
TOP2A, one of the important molecular markers, would pre-
dict response to chemotherapy. In glioma, high levels of
TOP2AmRNA have been noted in GBM in comparison with
grade II and III astrocytomas and also correlate with tumor
TOP2A protein levels. Interestingly, temozolomide inhibited
TOP2A activity and siRNA knocked down of TOP2A ren-
dered a glioma cell line resist. Hence, the transcript of
TOP2A should be a good prognostic indicator in GBM
patients receiving temozolomide chemotherapy. AURKA is
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Figure 2: GO analysis results showed that upregulated DEGs (a) and downregulated DEGs (b) were particularly enriched in BP, MF, and CC.
(c) The most significantly enriched KEGG pathway of the upregulated and downregulated DEGs. (d) The protein-protein interaction network
of top 15 hub genes. GO: gene ontology; BP: biological process; MF: molecular function; CC: cell component; KEGG: Kyoto Encyclopedia of
Genes and Genomes.
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located on chromosome 20q13, frequently amplified and
overexpressed in human malignancies, involving breast can-
cer [17], pancreatic cancer [18], and gastric cancer [19]. A
recent study has demonstrated that AURKA could confer
self-renewal capacity of competing away the binding of
AXIN from β-catenin, inducing β-catenin stabilization and
activating Wnt signaling in glioma-initiating cells [20].
Hence, endogenous or exogenous drugs that could target
these genes will combat glioma. For example, miR-124, an
important downstream target gene of hedgehog (Hh) signal-
ing, potentially interacts with the 3′-UTR region of AURKA;
thus, upregulating miR-124 significantly reduces the expres-
sion of AURKA and inhibits the proliferation and growth of
human glioma cells [21].

3.3. TP53 Is Essential for the Progression of Glioma. Tumor
protein p53 (TP53), also known as BCC7, LFS1, P53, and
TRP53, encodes a tumor suppressor protein containing

transcriptional activation, DNA binding, and oligomeriza-
tion domains [22]. The encoded protein responds to diverse
cellular stresses to regulate expression of target genes, thereby
inducing cell cycle arrest, apoptosis, senescence, DNA repair,
or changes in metabolism [23]. Mutations in this gene are
associated with a variety of human cancers, such as breast
cancer [24], prostate cancer [25], liver cancer [26], and colo-
rectal carcinoma [27]. The PPI network analysis found that
TP53 had a higher combined score with CDK2. Figure 4(c)
shows the results of the correlation analysis between TP53
and CDK2. TP53 and CDK2 were obviously positively corre-
lated. The CDK2 gene encodes a member of the serine/thre-
onine protein kinase family that is involved in cell cycle
regulation [28]. The CDK2 protein is implicated in the con-
trol of cell cycle progression [29]. Thus, targeting of cell cycle
checkpoints in cancer cells may inhibit tumor growth and
induce cell death. CDK2 is a vital regulator of S-phase pro-
gression and has been regarded as an anticancer drug target

Table 2: Gene ontology analysis of differentially expressed genes associated with glioma.

Expression Category Term Count Ratio (%) p value FDR

Upregulated

GOTERM_BP_FAT GO:0000278_mitotic cell cycle 105 15.21739 1.34E − 26 2.60E − 23
GOTERM_BP_FAT GO:1903047_mitotic cell cycle process 100 14.49275 1.81E − 26 3.51E − 23
GOTERM_BP_FAT GO:0022402_cell cycle process 120 17.3913 1.00E − 22 1.94E − 19
GOTERM_BP_FAT GO:0007067_mitotic nuclear division 62 8.985507 1.10E − 21 2.14E − 18
GOTERM_BP_FAT GO:0051301_cell division 71 10.28986 5.72E − 21 1.11E − 17

GOTERM_MF_FAT
GO:0005201_extracellular matrix

structural constituent
15 2.173913 2.78E − 07 4.37E − 04

GOTERM_MF_FAT GO:0015026_coreceptor activity 9 1.304348 2.11E − 05 3.32E − 02
GOTERM_MF_FAT GO:0017147_Wnt protein binding 8 1.15942 4.31E − 05 6.79E − 02
GOTERM_MF_FAT GO:0003777_microtubule motor activity 12 1.73913 4.41E − 05 6.93E − 02
GOTERM_MF_FAT GO:0019838_growth factor binding 15 2.173913 5.77E − 05 9.08E − 02
GOTERM_CC_FAT GO:0044420_extracellular matrix component 36 5.217391 1.74E − 21 2.56E − 18
GOTERM_CC_FAT GO:0005578_proteinaceous extracellular matrix 55 7.971014 3.38E − 19 4.99E − 16
GOTERM_CC_FAT GO:0031012_extracellular matrix 65 9.42029 1.05E − 17 1.54E − 14
GOTERM_CC_FAT GO:0005604_basement membrane 26 3.768116 3.08E − 15 4.59E − 12
GOTERM_CC_FAT GO:0015630_microtubule cytoskeleton 93 13.47826 2.04E − 14 3.01E − 11

Downregulated

GOTERM_BP_FAT GO:0099536_synaptic signaling 194 15.39683 1.23E − 90 2.39E − 87
GOTERM_BP_FAT GO:0098916_anterograde trans-synaptic signaling 194 15.39683 1.23E − 90 2.39E − 87
GOTERM_BP_FAT GO:0099537_trans-synaptic signaling 194 15.39683 1.23E − 90 2.39E − 87
GOTERM_BP_FAT GO:0007268_chemical synaptic transmission 194 15.39683 1.23E − 90 2.39E − 87
GOTERM_BP_FAT GO:0007399_nervous system development 324 25.71429 2.19E − 60 4.25E − 57
GOTERM_MF_FAT GO:0022836_gated channel activity 95 7.539683 1.44E − 38 2.37E − 35
GOTERM_MF_FAT GO:0005216_ion channel activity 101 8.015873 2.22E − 33 3.67E − 30
GOTERM_MF_FAT GO:0022838_substrate-specific channel activity 101 8.015873 5.72E − 32 9.44E − 29
GOTERM_MF_FAT GO:0015267_channel activity 103 8.174603 1.31E − 30 2.16E − 27

GOTERM_MF_FAT
GO:0022803_passive transmembrane

transporter activity
103 8.174603 1.57E − 30 2.59E − 27

GOTERM_CC_FAT GO:0045202_synapse 232 18.4127 9.60E − 105 1.43E − 101
GOTERM_CC_FAT GO:0097458_neuron part 306 24.28571 1.50E − 104 2.23E − 101
GOTERM_CC_FAT GO:0044456_synapse part 202 16.03175 2.51E − 97 3.73E − 94
GOTERM_CC_FAT GO:0043005_neuron projection 232 18.4127 1.87E − 80 2.79E − 77
GOTERM_CC_FAT GO:0030424_axon 131 10.39683 4.44E − 58 6.61E − 55

GO: gene ontology; BP: biological process; MF: molecular function; CC: cell component; FDR: false discovery rate.
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in several studies [30, 31]. Recent studies show that for both
DNA damage- and oncogene-induced cellular senescence,
CDK2 transcript and protein are inhibited in a p53- and

RB-dependent manner, and this repression is necessary for
cell cycle exit during senescence, suggesting that there may
exist a potential relationship between TP53 and CDK2 [32].

Table 3: KEGG pathway analysis of differentially expressed genes associated with glioma.

Expression Term Count Ratio (%) p value Genes FDR

Upregulated

hsa04110:
cell cycle

23 3.333333 3.25E − 11

CDK1, E2F5, TP53, TTK, CHEK1, CDC20, CDK6,
MCM2, SFN, CDK4, TGFB1, WEE1, CDK2, MCM5,

CCNB1, CCND1, MAD2L1, CCNB2, CDKN2C, BUB1,
BUB1B, MYC, CCNA2

4.06E − 08

hsa04512:
ECM-receptor
interaction

19 2.753623 1.55E − 10

TNC, COL3A1, HSPG2, ITGA2, ITGA4, COL4A6,
COL5A1, HMMR, LAMA2, LAMA1, LAMA4,

LAMB2, CD36, CD44, COL6A3, COL1A2, COL6A2,
COL6A1, COL1A1

1.94E − 07

hsa04115:
p53 signaling
pathway

17 2.463768 1.72E − 10
STEAP3, CDK1, TP53, CHEK1, CDK6, SFN, PMAIP1,
CDK4, CDK2, CCNB1, TP53I3, CCND1, CCNB2, RRM2,

CASP8, SERPINE1, FAS
2.16E − 07

hsa05200:
pathways
in cancer

32 4.637681 2.06E − 06

WNT5A, STK36, ERBB2, MMP9, LPAR4, CXCL8, GLI2,
TGFB1, TCF7L1, LAMB2, CXCR4, CASP8, FAS, MYC,
BMP2, TGFBR1, TP53, ITGA2, BIRC5, CDK6, FZD2,

CDK4, MECOM, COL4A6, CDK2, FZD6, LAMA2, SMO,
LAMA1, LAMA4, CCND1, F2R

2.58E − 03

hsa05161:
hepatitis B

18 2.608696 3.02E − 06
TGFBR1, MMP9, TP53, HSPG2, CXCL8, TLR3, BIRC5,

CDK6, CDK4, CDK2, TGFB1, CCND1, CASP8,
CREB3L4, FAS, MYC, CCNA2, NFATC1

3.78E − 03

Downregulated

hsa04723:
retrograde

endocannabinoid
signaling

38 3.015873 1.92E − 20

ADCY1, GABRB3, GABRB2, GABRB1, ADCY5, RIMS1,
KCNJ3, SLC32A1, PLCB4, CNR1, MGLL, GNG3, PLCB1,

GNG7, GABRD, GABRG1, GABRG2, GABRA2,
GABRA1, GABRA4, GABRA5, PRKCG, GRIA3, GRIA4,
GRM1, ITPR1, PRKCB, SLC17A7, GRM5, SLC17A6,
KCNJ6, KCNJ9, GRIA2, FAAH, GNB5, CACNA1D,

CACNA1A, CACNA1B

2.45E − 17

hsa04724:
glutamatergic

synapse
40 3.174603 2.94E − 20

ADCY1, GRIK2, ADCY5, PPP3R1, GRIN3A, KCNJ3,
SLC1A2, PLCB4, GRIN2C, SLC1A6, PPP3CB, DLG4,
GNG3, PPP3CA, PLCB1, SLC1A1, GNG7, DLGAP1,
GRIN2A, PRKCG, GRIA3, GRIA4, HOMER1, GRM1,
SHANK2, SHANK3, ITPR1, PRKCB, GRM5, SLC17A7,

GRM3, GRM2, SLC17A6, GRIA2, GRM7, GNB5,
PLA2G4C, CACNA1D, GRK3, CACNA1A

3.76E − 17

hsa05032:
morphine
addiction

32 2.539683 2.87E − 16

ADCY1, GABRB3, GABRB2, ADCY5, GABRB1,
GABBR1, GABBR2, ADORA1, KCNJ3, SLC32A1,
PDE1C, PDE4A, PDE1A, GNG3, GNG7, GABRG1,
GABRD, GABRG2, GABRA2, GABRA1, GABRA4,

GABRA5, PRKCG, PDE10A, PRKCB, KCNJ6, PDE2A,
KCNJ9, GNB5, GRK3, CACNA1A, CACNA1B

4.22E − 13

hsa04727:
GABAergic
synapse

30 2.380952 2.91E − 15

ADCY1, SLC6A1, GABRB3, GABRB2, ADCY5, GABRB1,
GABBR1, GABBR2, SLC32A1, PLCL1, GAD2, GNG3,
GAD1, NSF, GNG7, GABRG1, GABRD, GABRG2,

GABARAPL1, GABRA2, GABRA1, GABRA4, GABRA5,
PRKCG, PRKCB, KCNJ6, GNB5, CACNA1D,

CACNA1A, CACNA1B

3.69E − 12

hsa04020:
calcium
signaling
pathway

43 3.412698 5.62E − 15

SLC8A3, ADCY1, ERBB3, CAMK2G, PPP3R1, ITPKA,
ATP2B2, ATP2B3, PLCB4, GRIN2C, PDE1C, PTK2B,

PDE1A, PPP3CB, CAMK2B, PPP3CA, PLCB1, CAMK2A,
NOS1, SLC8A2, CCKBR, CACNA1I, GRIN2A, PRKCG,
GRM1, ITPR1, PRKCB, P2RX5, GRM5, GNAL, ADRB1,
CAMK4, CHRM3, CHRM1, CACNA1G, RYR1, RYR2,

CACNA1E, CACNA1D, HTR2C, CACNA1A,
CACNA1B, HTR2A

7.24E − 12

KEGG: Kyoto Encyclopedia of Genes and Genomes; FDR: false discovery rate.
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Limited by few studies about the relationship between TP53
and CDK2 in glioma, further research is necessary to clarify
the underlying correlation and mechanism between TP53
and CDK2.

Cyclin-dependent kinase 1 (CDK1), also called CDC2,
CDC28A, and P34CDC2, encodes the protein of a member
of the serine/threonine protein kinase family. This protein
is a catalytic subunit of the highly conserved protein kinase
complex known as M-phase promoting factor (MPF), which
is essential for G1/S- and G2/M-phase transitions of eukary-
otic cell cycle [33]. Mitotic cyclins stably associate with this
protein and function as regulatory subunits. The kinase activ-
ity of this protein is controlled by cyclin accumulation and
destruction through the cell cycle. The phosphorylation and
dephosphorylation of this protein also play important regula-
tory roles in cell cycle control [34]. A previous study indicates
that apoptosis induced by cdk1 inhibition is dependent on
caspase activation and is concomitant with upregulation of
transcriptional targets of TP53 [35]. Since CDK1 is associ-
ated with many types of human cancers, it is believed that
CDK1 might play an important role in diagnosis and therapy
of glioma.

Taken together, our bioinformatics analysis identified
DEGs and they might play central roles in the occurrence,
development, and prognosis of glioma. In this study, a total
of 1980 DEGs and 15 hub genes were selected, and TP53,

CDK1, CCNB1, and CCNB2 might be the core genes of gas-
tric cancer. In order to get more accurate correlation results,
we need to start a series of verification experiments later to
confirm the results of this prediction. Anyway, this study
could provide some powerful evidence for the future geno-
mic individualized treatment of glioma.

4. Materials and Methods

4.1. Microarray Data. We chose a gene expression profile of
GSE66354 from GEO database. GSE66354 was based on the
Agilent GPL570 platform ([HG-U133_Plus_2] Affymetrix
Human Genome U133 Plus 2.0 Array). The GSE66354 data-
set included 149 samples, containing 136 glioma samples
(including 21 high-grade gliomas, 15 pilocytic astrocytomsa,
19 medulloblastomas, 17 atypical teratoid/rhabdoid tumors,
and 64 ependymomas) and 13 normal brain tissues [36].
Besides, we downloaded the Series Matrix File of GSE66354
from GEO database.

4.2. Differential Gene Expression Analysis (DGEA). GeoDiver
(https://www.geodiver.co.uk/) was an online web application
for performing differential gene expression analysis (DGEA)
and generally applicable gene-set enrichment analysis
(GAGE) on gene expression datasets from the publicly avail-
able Gene Expression Omnibus (GEO) [37]. GeoDiver used
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Figure 3: Prognostic value of 15 genes (TP53, TOP2A, CDK1, PHLPP2, DLG4, CCNB1, MYC, CDC20, CCNA2, NDC80, AURKA, BIRC5,
CCNB2, KIF11, and MAD2L1) in glioma patients. HR: hazard ratio.
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Figure 4: (a) Expression level of TP53 in cancer and normal tissues. GBM: glioblastoma multiforme; LGG: brain lower grade glioma; ∗p <
0 05. (b) Expression level of DLG4 in cancer and normal tissues; ∗p < 0 05. (c) The correlation analysis between TP53 and CDK2. TP53
and CDK2 are obviously positively correlated. (d) The correlation analysis between DLG4 and ADAM22. DLG4 and ADAM22 are
obviously positively correlated. (e) TP53 protein was strongly upregulated in glioma tissues compared with normal brain tissues based on
the Human Protein Atlas database. The normal brain tissue of TP53 was from a male, age 62, (patient ID: 1609; staining: not detected;
intensity: negative; quantity: negative; location: none), and the glioma tissue was from a male, age 61, (patient ID: 2522; staining: high;
intensity: strong; quantity: >75%; location: nuclear). (f) DLG4 protein was strongly downregulated in glioma tissues compared with
normal brain tissues based on the Human Protein Atlas database. The normal brain tissue of DLG4 was from a male, age 45, (patient ID:
2521; staining: medium; intensity: moderate; quantity: >75%; location: membranous nuclear), and the glioma tissue was from a male, age
48 (patient ID: 3092; staining: not detected; intensity: negative; quantity: negative; location: none).
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Figure 5: Continued.
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Figure 5: Top 4 modules from the protein-protein interaction network. (a) Module 1: score = 63.788, (b) module 2: score = 24.69, (c) module
3: score = 18.537, and (d) module 4: score = 14.186.
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the limma R package to identify differentially expressed genes
by fitting a linear model to each gene, which estimated the
fold change in expression while accounting for standard
errors by applying empirical Bayes smoothing. The adjust p
values were used to decrease the false positive rate utilizing
Benjamini and Hochberg false discovery rate method by
default. Genes were ordered according to the fold change in
the expression values. This information was presented as a
heat map and a volcano plot.

4.3. Data Processing of DEGs. GEO2R (https://www.ncbi.nlm
.nih.gov/geo/geo2r/) was used to search DEGs between gli-
oma samples and normal samples. GEO2R was an interactive
online tool allowing users to compare two or more groups of
samples in a GEO series and it analyzed most GEO series

with gene symbol [38]. The adjusted p values were used to
decrease the false positive rate using Benjamini and Hoch-
berg false discovery rate method by default. The adjust p
value< 0.01 and ∣logFC∣ ≥ 2 were set as the cutoff criterion.
Then, 1980 DEGs were found, including 697 upregulated
genes and 1283 downregulated genes, and the top 15 genes
with a high degree of connectivity as hub genes were selected.

4.4. Gene Ontology and KEGG Pathway Analysis of DEGs.
Gene ontology (GO) analysis served as a useful approach to
annotate genes and gene products and also identify charac-
teristic biological attributing to high-throughput genome or
transcriptome data [39]. Kyoto Encyclopedia of Genes and
Genomes (KEGG) was a collection of databases which helps
to handle genomes, biological pathways, diseases, chemical

Table 4: The enriched pathways of top 4 modules from the protein-protein interaction network.

Module Term p value FDR Genes

1

Cell cycle 7.17E − 13 5.94E − 10 CCNB1, CDK1, MAD2L1, CCNB2, BUB1, TTK,
BUB1B, CHEK1, CDC20, MCM2, CCNA2

Progesterone-mediated
oocyte maturation

4.89E − 06 4.05E − 03 CCNB1, CDK1, MAD2L1, CCNB2, BUB1, CCNA2

p53 signaling pathway 4.27E − 05 3.54E − 02 CCNB1, CDK1, CCNB2, RRM2, CHEK1

Oocyte meiosis 2.85E − 04 0.235961 CDK1, MAD2L1, BUB1, AURKA, CDC20

DNA replication 5.21E − 03 4.233590 POLE2, MCM2, RNASEH2A

2

Neuroactive
ligand-receptor
interaction

4.44E − 11 4.86E − 08 OPRK1, GABBR1, NPY1R, GABBR2, ADORA1, S1PR3,
GRM3, SSTR2, GRM2, GRM7, CNR1, S1PR5, ADRA2A

Morphine addiction 2.16E − 08 2.36E − 05 ADCY1, ADCY5, GABBR1, GNB5, GABBR2,
GNG3, ADORA1, GNG7

Glutamatergic synapse 1.04E − 07 1.14E − 04 ADCY1, GRM3, GRM2, ADCY5, GRM7, GNB5, GNG3, GNG7

GABAergic synapse 4.26E − 07 4.66E − 04 ADCY1, ADCY5, GABBR1, GNB5, GABBR2, GNG3, GNG7

cAMP signaling pathway 4.42E − 06 4.84E − 03 ADCY1, SSTR2, NPY, ADCY5, GABBR1, GABBR2,
NPY1R, ADORA1

3

Calcium signaling pathway 2.75E − 08 2.95E − 05 GRM5, PLCB4, CCKBR, CHRM3, CHRM1, PLCB1, GRM1,
HTR2C, HTR2A, F2R

Neuroactive
ligand-receptor
interaction

9.29E − 08 9.95E − 05 GRM5, CCKBR, CHRM3, CHRM1, F2RL1, LPAR4, NTSR2,
GRM1, HTR2C, HTR2A, F2R

Gap junction 2.79E − 05 2.99E − 02 GRM5, PLCB4, PLCB1, GRM1, HTR2C, HTR2A

Endocytosis 7.19E − 05 7.69E − 02 SH3GL3, DNM3, DAB2, DNAJC6, DNM1, SH3GL2,
F2R, AMPH

Inflammatory mediator
regulation of TRP channels

6.88E − 04 0.734597 PLCB4, F2RL1, PLCB1, HTR2C, HTR2A

4

Arrhythmogenic
right ventricular

cardiomyopathy (ARVC)
3.06E − 12 3.25E − 09 CACNA2D1, CACNG8, CACNB2, RYR2, CACNG3,

CACNB3, CACNG2, CACNB4, CACNA2D3, CACNA1D

Cardiac muscle contraction 5.12E − 12 5.43E − 09 CACNA2D1, CACNG8, CACNB2, RYR2, CACNG3,
CACNB3, CACNG2, CACNB4, CACNA2D3, CACNA1D

Hypertrophic
cardiomyopathy (HCM)

7.38E − 12 7.82E − 09 CACNA2D1, CACNG8, CACNB2, RYR2, CACNG3,
CACNB3, CACNG2, CACNB4, CACNA2D3, CACNA1D

Dilated cardiomyopathy 1.47E − 11 1.56E − 08 CACNA2D1, CACNG8, CACNB2, RYR2, CACNG3,
CACNB3, CACNG2, CACNB4, CACNA2D3, CACNA1D

Oxytocin signaling pathway 1.77E − 10 1.88E − 07 CACNA2D1, CCND1, CACNG8, CACNB2, RYR2, CACNG3,
CACNB3, CACNG2, CACNB4, CACNA2D3, CACNA1D

FDR: false discovery rate.
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substances, and drugs [40]. The Database for Annotation,
Visualization and Integrated Discovery (DAVID, https://
david.ncifcrf.gov/) was a web-based online bioinformatics
resource that aims to provide tools for the functional inter-
pretation of large lists of genes or proteins [41]. p < 0 05
was regarded as the cutoff criterion. We could visualize the
core biological process (BP), molecular function (MF), cellu-
lar component (CC), and pathways among those DEGs using
DAVID.

4.5. PPI Network and Module Analysis. Search Tool for the
Retrieval of Interacting Genes (STRING) was a useful online
tool designed to assess the protein-protein interaction (PPI)
information [42]. To explore the potential relationship
among those DEGs, we applied STRING app in Cytoscape
and mapped the DEGs into STRING. And confidence
score≥ 0.4 and maximum number of interactors = 0 were
set as the cutoff criterion. Moreover, the Molecular Complex
Detection (MCODE) app was utilized to screen modules of
the PPI network in Cytoscape with degree cutoff=2, node
score cutoff=0.2, k-core = 2, and max. depth= 100. The path-
way analysis of genes in these modules was performed by
DAVID. In the meantime, 15 hub genes were also inserted
into STRING with confidence score≥ 0.4 and maximum
number of interactors = 0. GO and KEGG pathway analyses
were also carried out to identify the potential information.

4.6. Comparison of the Hub Gene Expression Level. The
GEPIA (http://gepia.cancer-pku.cn/index.html) was a newly
developed interactive web server that could analyze the
RNA sequencing expression data of 9736 tumors and 8587
normal samples from the TCGA and the GTEx projects,
using a standard processing pipeline [43]. It offered custom-
izable functions involving tumor and normal differential
expression analysis, and we could unveil the expression level
of hub genes in glioma tissues and normal tissues. Then, the
boxplots were performed to visualize the correlations. The
Human Protein Atlas (HPA, https://www.proteinatlas.org/)
was a Swedish-based program initiated in 2003 with the
aim to map all the human proteins in cells, tissues, and
organs using integration of various omics technologies,
including antibody-based imaging, mass spectrometry-
based proteomics, transcriptomics, and systems biology
[44]. By acquiring immunohistochemical data of patients
with or without glioma based on HPA, we further verified
the expression of these hub genes.

4.7. Survival Analysis of Hub Genes. The relapse-free and
overall survival information were based on TCGA database
and the GTEx projects based on GEPIA [43]. The hazard
ratio (HR) with 95% confidence intervals and log rank p
value were calculated and displayed on the plot.
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