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Abstract

The function of microRNAs (miRNAs) during alcoholic liver disease (ALD) has recently become of great interest in biological research. Studies
have shown that ALD associated miRNAs play a crucial role in the regulation of liver-inflammatory agents such as tumour necrosis factor-alpha
(TNF-a), one of the key inflammatory agents responsible for liver fibrosis (liver scarring) and the critical contributor of alcoholic liver disease.
Lipopolysaccharide (LPS), a component of the cell wall of gram-negative bacteria, is responsible for TNF-o release by Kupffer cells. miRNAs are
the critical mediators of LPS signalling in Kupffer cells, hepatocytes and hepatic stellate cells. Certain miRNAs, in particular miR-155 and miR-
21, show a positive correlation in up-regulation of LPS signalling when they are exposed to ethanol. ALD is related to enhanced gut permeability
that allows the levels of LPS to increase, leads to increased secretion of TNF-o by the Kupffer cells and subsequently promotes alcoholic liver
injury through specific miRNAs. Meanwhile, two of the most frequently dysregulated miRNAs in steatohepatitis, miR-122 and miR-34a are the
critical mediators in ethanol/LPS activated survival signalling during ALD. In this review, we summarize recent findings regarding the experi-
mental and clinical aspects of functions of specific microRNAs, focusing mainly on inflammation and cell survival after ethanol/LPS treatment,
and advances on the role of circulating miRNAs in human alcoholic disorders.
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Introduction

leading cause of death in the United States, according to the National
Institute on Alcohol Abuse and Alcoholism and accounted for a total

Alcoholic liver disease presents a global health concern [1]. This dis-
ease ranges from alcoholic fatty liver and steatohepatitis to alcoholic

cirrhosis, and includes hepatocellular carcinoma [2, 3]. It is the 12th
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alcoholic or are alcoholics. Several million more adults could be on
their way to alcohol problems. More notably, alcohol is implicated in
more than 200 diseases and is a direct causal factor in 60 types of
diseases and injury [4]. The liver is the main site of alcohol metabo-
lism and a major target organ of alcohol-induced injury [1]. Alcoholic
liver disease has been the leading cause of liver-related disease
worldwide [5-7]. Alcoholic liver disease is defined by scarring of the
liver by the inflammatory agent tumour necrosis factor-alpha (TNF-o)
which is secreted by Kupffer cells in the liver [8]. The release of TNF-
o is triggered by the binding of lipopolysaccharide (LPS) by toll-like
receptor 4 (TLR4) on Kupffer cells [9]. It is the translocation of these
bacterial products in the lumen of the intestine that causes homeo-
static imbalances in the liver. Because of the liver's importance to
homeostasis and the worldwide prevalence of alcoholic liver disease,
liver function has been given extra emphasis in biomedical research.

One control point regulating inflammatory response and cellular
apoptosis in ALD involves microRNA targeting of critical inflamma-
tion/apoptosis signalling proteins. MicroRNAs are short functional
RNAs that cause reduced expression of their target genes through
post-transcriptional mechanisms. In general, this targeting involves
imperfect base-pairing between the microRNA and the cognate mRNA
target, resulting in altered protein production [10, 11]. In human
ALDs, microRNAs are intimately involved in development and pro-
gression of liver injury, and act to alter expression of disease-related
targets [12, 13]. Much attention has been devoted to microRNA func-
tion in recent years, in part because microRNA biology is still being
elucidated, and in part because of their promise in diagnosis and
treatment of disease. Modulation of microRNA function is an attrac-
tive emerging approach to ALD treatment, and studies to understand
the underlying mechanisms of altered microRNA expression and
functions are necessary to pursue this treatment strategy.

LPS

Lipopolysaccharide exposure is initiated by the liver’s detoxification
process upon exposure to gram-negative bacterial cell wall [14-16].
Lipopolysaccharide is released into the blood stream when gram-neg-
ative bacterial cells die or lyse and are then transported to the liver for
detoxification [17]. The LPS alone has been found to increase with
alcoholic liver consumption when gut permeability is severely com-
promised. The experiments with alcohol-fed mice revealed that endo-
toxin levels increased in alcohol-fed mice when compared with
normal mice [14-16]. It was concluded from this experiment that
such results were a direct result of the weakening of the intestinal
tight junctions by ethanol [18]. The excess of endotoxins is absorbed
by the intestinal lumen and later passes through the liver, where
monocytes and macrophages, such as Kupffer cells are then exposed
to the toxin [19, 20]. In addition to the increased permeability of the
intestinal lumen due to ethanol exposure, ethanol exposure also
seems to be correlated with an increased amount of gram-negative
bacterial growth in the lumen of alcoholics’ intestines. Although this
increase in bacterial growth is not certain, suggestive evidence has
led to further research on the subject [21]. Since alcohol can signifi-
cantly increase the translocation of LPS from the gut. The study of
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these interactions may provide potential new targets for therapeutic
intervention.

TLR4

Toll-like receptors were first discovered in Drosophila and later as
corresponding human homologs [9]. One particular toll-like receptor,
TLR4, identifies and binds LPS through its co-receptors CD14 or MD-
2 [22, 23]. MD-2 is a soluble protein that non-covalently associates
with TLR4 and binds LPS directly to form a complex with LPS in the
absence of TLRs [24]. MD-2 has been shown to have increased con-
centrations in alcohol-fed mice [25]. It is known to exist in a soluble
form which, when in high concentrations, has shown to be an inhibi-
tor of endotoxin-activated TNF-o secretion [9]. CD14, however, is
found in monocytes, macrophages, parenchymal cells and fibroblasts
[26, 27]. Its use in the LPS induced TNF-o pathway was confirmed
during CD14 inhibition in mice. CD14 inhibited mice became resistant
to endotoxin shock [28]. Upon contact with TLR4 receptors and co-
receptors, LPS induces Kupffer cells to release TNF-o [6]. Because of
this, the TLR4 and LPS relation plays a key role in the mediation of
inflammatory agents in the liver.

There is ample evidence for increased inflammatory cascade acti-
vation in ALD. Toll-like receptor 4 is expressed in all cell types of the
liver; thus, gut-derived endotoxin can modulate the function of all liver
cells in ALD [9, 29, 30]. Qver the years, compelling evidence has
revealed that the TLR4-LPS signalling pathway plays a critical role in
alcohol-induced liver injury [31]. Both chronic and acute (or binge)
alcohol use affects the various components of TLR4 signalling. There
is increased expression of TLR4 and its co-receptors, as well as other
TLRs, in ALD in mice [9]. The studies in TLR4 mutant mice demon-
strated protection from early ALD, and recent reports using TLR4
deficient mice validated the important role of TLR4 in the pathogene-
sis of ALD [25].

Some feedback mechanisms exist to limit LPS mediated toxic
effects. Several soluble decoy receptors, such as soluble TLR4, and
splice variants of signal-transduction proteins, including MyD88-s,
IRAK-M and TAG, are the key regulators [32]. Toll-like receptor 4
mediates LPS signalling with the assistance of its co-receptors, CD14
or MD-2 [22, 23]. Lipopolysaccharide/TLR4 enlists the adaptor mole-
cules MyD88 and TRIF, and subsequently activates downstream sig-
nalling pathways, respectively. Activation of NF-kB by TLR4-MyD88
complex enhances the production of pro-inflammatory cytokines,
such as TNF-o, interleukin (IL)-6 and IL-1b [23]. Tank Binding
Kinase-1/IkB kinase-e/IKKi (TBK/IKKe) phosphorylation and activation
of the interferon regulatory factor-3 by TRIF signalling lead to the pro-
duction of IFN-y-interferons [33]. Within 4 days of ethanol exposure,
there was a striking spike in expression of IFN-y, along with TNF-o.
and IL-6 — prior to hepatic triglyceride accumulation or increased
plasma alanine aminotransferase (ALT) activities, as well as before
the induction of cytochrome P450 2E1 or oxidative stress [34]. There-
fore, activation of both of the pro-inflammatory and IFN-y pathways
could be either LPS/TLR4 dependent or independent, and evaluation
of these specific pathways may have translational impact on ALD
[9, 34]. microRNAs have also been introduced, such as miR-146a
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and miR-21, which is induced by LPS and negatively targets signal-
ling proteins such as IRAK1, TRAF6 and PDCD4 at the post-transcrip-
tional level [32, 35, 36].

TNF-o

Tumour necrosis factor-alpha is an inflammatory agent in the liver
which has been found to be a key contributor to alcoholic liver dis-
ease [5]. Tumour necrosis factor-alpha is released by macrophages
in the liver upon introduction of LPS, which binds to TLR4. The
release of TNF-o causes inflammation, which leads to liver fibrosis
[37]. A recent study determined that the production of TNF-o in the
liver by Kupffer cells was increased both by the introduction of etha-
nol and LPS individually. In this study, the levels of TNF-o increased
when a dosage of LPS was introduced to the liver macrophages while
keeping the ethanol levels unchanged. The reverse experiment was
conducted where ethanol was increased and no additional LPS was
introduced into the system. In both experiments the TNF-o produc-
tion rose. Since LPS is the known component to activate the TLR4
pathway, this experiment confirmed that it is not ethanol’s direct
involvement in the pathway’s activation, but rather ethanol’s media-
tion of LPS and other factors that leads to the liver scarring [31]. The
TLR4 pathway plays a key role in the activation of TNF-o, but it is the
TNF-o: protein, which regulates the inflammation.

Kupffer cells and increase in TNF-o
secretion

Kupffer cells are resident macrophages in the liver that become acti-
vated upon recognition of an LPS signal both in vivo and in vitro
[9,31]. Kupffer cells were identified as a key component of alcoholic
liver disease through studies of their activation and deactivation. /nac-
tivation of Kupffer cells with gadolinium chloride or clodronate injec-
tion can ameliorate alcohol- induced liver disease [38, 39]. It was
concluded, thereafter, that Kupffer cells are, in part, responsible for
alcoholic liver disease [38, 39]. LPS signalling to TLR4 and its
co-receptors stimulates Kupffer cells to release TNF-o, which causes
scarring of liver tissue and ultimately alcoholic liver disease [31]. The
damage caused by TNF-o from Kupffer cells in the liver ranges from
steatosis and inflammation to hepatocyte damage in alcoholic liver
disease [40, 41]. There exist three particular miRNAs that regulate the
production of TNF-o in Kupffer cells: miR-155 and miR-146a [36,
42], although only one shows positive up-regulation of TNF-o:: miR-
155 [43]. As the major macrophage population of the body that has
direct contact with the blood, Kupffer cells have been of great interest
in recent research.

microRNAs

microRNAs are segments of RNA, which serve as epigenetic regula-
tors. The first discovery and observation of miRNA’s function occurred
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in 1993, and over the subsequent 10 years, 300+ miRNA sequences
have been discovered. Today, ~17,000 miRNAs have been described in
142 species. Of these, around 1000 are present in the human genome
[44, 45]. MicroRNAs (miRNAs) belong to a group of non-protein-coding
RNAs (ncRNAs) about 20-22 nucleotides long [46-48] that have been
found to be key regulators of gene expression [5, 6]. They are tran-
scribed from RNA polymerase Il or Poly 1. They begin their existence
in the nucleus, and then travel to the cytoplasm where they mature
(Fig. 1). They are responsible for the alternation of hundreds of genes
by binding to the untranslated regions of mRNA [49]. miRNAs have
also been found to have influence on the modulation of methylation
[50, 51]. Certain miRNAs have been linked to specific diseases such as
hepatocellular carcinoma and various types of hepatitis. These miR-
NAs are the first responders when cells signal damage or pathogenic
infection. They are important in the body’s immune response. [6] Due
to their vast amount of influence on the body, the study of miRNAs has
gained a significant amount of interest in recent research.

miRNA and epigenetics

Epigenetics, in its essence, defines the alternation of gene expression
without disruption of DNA sequences. Epigenetic regulation is altered
and manipulated by several factors, including DNA methylation, modi-
fications of histones and RNA silencing by non-protein-coding RNAs
(ncRNAs) [46, 47]. DNA methylation is an epigenetic modification
that can regulate gene expression and is tightly regulated by at least
three DNA methyltransferases (DNMT-1, DNMT-3A and DNMT-3B).
Aberrant DNA methylation has been implicated in many human dis-
eases including alcoholic liver disease [52-54]. Alcohol consumption
causes cellular injury. Recent developments indicate that ethanol
induces epigenetic alterations, particularly acetylation, methylation of
histones, and hypo- and hypermethylation of DNA [55-57]. This has
opened up a new area of interest in ethanol research and is providing
novel insight into actions of ethanol at the nucleosome level in rela-
tion to gene expression and pathophysiological consequences.
Although DNA methylation has been tightly linked to liver injury and
poor disease outcome in many hepatic disorders, including human
ALD, its application to ethanol-dependent ncRNA expression is novel.
A better understanding of how ethanol interacts with specific DNA
methyl transferases and contributes to aberrant ncRNA expression
will clearly advance the field and increase our understanding of the
mechanisms involved in the development of ALD.

Altered DNA methylation occurs after alcohol consumption during
initial periods of alcohol abuse. Global hypomethylation of DNA in
liver after long-term ethanol exposure has been reported [58].
Regional hypomethylation of the c-myc gene occurs in the liver after
long-term consumption of alcohol. Decreased DNA methylation with
a concomitant decrease in DNMT activity after ethanol exposure of
pregnant rats has been reported in foetal tissues [59]. Decreased
activity of DNMT has also been discovered in peripheral blood cells
from ALDs. Moreover, ethanol consumption has also been shown to
be associated with reduced DNMT transcript levels and altered meth-
ylation of imprinted DNA regions in sperm [60-62]. In addition,
chronic ethanol consumption can impair 1-carbon metabolism,
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Fig. 1 Aberrant expression and functional changes of specific miRNAs during alcoholic liver injury. During alcoholic liver disease, Ethanol affects
miRNA expression by altering activation of transcription factors including lipopolysaccharide, interleukin-6 and tumour necrosis factor-alpha, and/or
epigenetic modification enzymes such as methyltransferases, such as DNA methyltransferases 1 (DNMT1), DNMT3A and DNMT3B. miRNA precur-
sors are cleaved by RNases Drosha and Dicer while undergoing transport from the nucleus to the cytoplasm. Association of the mature miRNA with
an Argonaut protein (Ago) directs the complex to complementary target sequences in specific messenger RNAs. If the target is perfectly comple-
mentary to the miRNA, Argonaute 2, a ribonucleoprotein associated with the miRNA, can mediate its cleavage. However, the imperfect match
between miRNA and target may only result in translational repression without mRNA alterations [104-106].

consequently diminishing the availability of S-adenosyl-methionine.
This methyl donor is required for both DNA and histone methylation
[63, 64]. Ethanol-mediated reductions in DNA methylation could be
expected to increase the expression of affected genes, including
ncRNAs. Therefore, the intriguing possibility worthy of investigation
is that epigenetic changes as a result of ethanol may account for
altered expression of some miRNAs.

miRNA is also a modulator of epigenetics in the liver at a post-
transcriptional level. It is responsible for gene expression regulation.
They are responsible for the hindering of several translational ele-
ments to include: initiation, elongation, degradation, and degradation
of target mRNA [65-67]. The role of miRNA epigenesis does not only
involve the regulation of LPS signalling or TNF-o. production, miRNA
is also a major component in regulating intestinal permeability [67].
Ethanol has a prolonged effect on the regulation of miRNA (Table 1).
Several studies showed that ethanol alters miRNA concentration in
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alcohol-fed mice. Several different miRNAs were found to be aber-
rantly expressed with ethanol exposure. While the predisposing risk
factors and aetiologies of ALDs were varied, the deregulation of some
specific miRNAs was commonly identified in the published studies,
suggesting their importance in alcoholic liver injury. Among these,
the over-expression of miR-21, miR-34a, miR-155, miR-320 and the
under-expression of miR-122, miR-181a, miR-199a, miR-200a were
reported by more than one publication. These miRNAs are described
in Table 2. Three of the more notable ones are miR-122, miR-34a and
miR-21. It accounts for over 70% of the liver's total miRNA content.
The other notable one is, of course, miR-155, which regulates inflam-
matory agent secretion in the liver [68]. One of the miRNA’s responsi-
ble for maintaining intestinal permeability is the miR-122, which as
was mentioned before is negatively affected by ethanol exposure. Eth-
anol also up-regulates miR-155, which is responsible for the media-
tion of LPS induced TNF-o secretion [69].

© 2014 The Authors.
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Table 1 miRNA gene expression studies in ALD.

Year Profiling method Main conclusions of the studies References
2008 Microarray/Northern HCC cases associated with alcohol consumption displayed a decrease in miR-126 [98]
blot expression

2009 qPCR Ethanol-induced miR-199 down-regulation may contribute to augmented HIF-1alpha and [99]
ET-1 expression

2009 Microarray Hepatic specimens from mice fed with an ethanol-containing diet (Lieber—DeCarli) indicated [100]
features of alcoholic steatohepatitis and had an increased expression of miR-320,
miR-486, miR-705, and miR-1224 and a decreased expression for miR-27b, miR-214,
miR-199a-3p, miR-182, miR-183, miR-200a, and miR-322

2009 qPCR Expression of miR-375 was shown to be highly expressed and was shown to increase with [101]
alcohol consumption, suggesting that this miRNA could represent a molecular fingerprint
of alcohol consumption

2011 qPCR Chronic alcohol consumption increases miR-155 in macrophages via NF-xB and the [31]
increased miR-155 contribute to alcohol-induced elevation in TNF-o production via
increased mRNA stability

2012 Microarray/Northern Methylation-associated miRNA, miR-34a, was increased in ethanol feeding mice liver [52]

blot/qPCR

2012 gPCR miR-217 is increased after ethanol treatment and is a specific target of ethanol action in [91]
the liver

2012 gqPCR The increase of miR-21 expression during liver regeneration is more robust in ethanol-fed [102]
rats

2013 Microarray/qPCR Several miRNAs that were significantly altered by chronic EtOH feeding, including miR-34a, [103]

miR-103, miR-107 and miR-122 have been reported to play a role in regulating hepatic
metabolism and the onset of these miRNA changes occurred gradually during the time

course of EtOH feeding

miR-155 and ethanol exposure

miRNA is a known regulator of Kupffer cell response to LPS. Three
miRNAs in particular, miR-155, miR-125b and miR-146a, have been
of interest in studies and shown to be key contributors to LPS regula-
tion [69]. Only miR-155 and miR-146a, however, seemed to show
up-regulation in macrophages such as Kupffer cells. Although both
miR-146a and miR-155 was shown unregulated, only miR-155
showed to have a positive regulatory effect on the secretion of the
inflammatory agent TNF-o. by enhancing its translation (Fig. 2).
Because of these findings, miR-155 received particular attention in
the study of miRNAs’ effect on alcoholic liver disease [42, 70]. Recent
studies have shown that alcohol targets miR-155 and induces miR-
155 in RAW264.7 macrophages and Kupffer cells. It was concluded
from this study that miR-155 is directly correlated with TNF-o. levels.
Alcohol-fed mice showed increased levels of TNF-oo and miR-155
[31]. This same study tested other miRNA’s such as miR-125b and
miR146a, but only miR-155 showed a significant affect in the inflam-
matory response of RAW 264.7 macrophages [31]. Similar studies
have also shown that alcohol treatment increases miR-155 in the
same RAW 264.7 macrophages in vitro. Since miR-155 plays such a
crucial role in the stimulation of LPS-induced TNF-o production, this

© 2014 The Authors.

study stated that the inhibition of miR-155 prevents alcohol-induced
sensitization to LPS. Inversely, it was found that the up-regulation of
miR-155 increased Kupffer cell sensitivity to LPS signalling. Experi-
mentation on alcohol-fed mice showed that alcohol exposure up-reg-
ulates miR-155 [43], which leads to Kupffer macrophage activation
through miRNA mediation, causing the cells to release more TNF-o
[31]. Earlier reports using pharmacological inhibitors of NF-«xB [31]
have demonstrated that alcohol-induced up-regulation of miR-155 is
via NF-xB, thus linking NF-xB with miR-155.

miR-155 and TNF-o

The up-regulation of TNF-o production in Kupffer cells by LPS and
alcohol was determined in two individual experiments: one in which
LPS alone was increased, the other in which ethanol exposure alone
was increased. In both experiments the production of TNF-o by resi-
dent macrophages was increased. A tertiary experiment also proved
that miR-155 is the bridge step between ethanol and LPS up-regula-
tion. In this experiment, miR-155 induced cells produced more TNF-o
than the controls with no miR-155 overexposure. Lipopolysaccharide
levels were also higher though no LPS was introduced. This led to the
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Table 2 Most commonly dysregulated miRNAs in ALD.

Chromosome

miRNA location Dysregulation References
miR-122 18¢21.3 Decreased/Increased  [52, 103]
miR-125b  11q24.1 Decreased [103]
miR-126 9q34.3 Decreased [98]
miR-155 21g21.3 Increased [31, 99]
miR-181a  1¢32.1 Decreased [52, 100]
miR-199a  1g24.3 Decreased [99, 100]
miR-200a  1p36.33 Decreased [100, 103]
miR-21 17923.2 Increased [62, 102]
miR-217 2p16.1 Increased [91]
miR-320 8p21.3 Increased [100, 103]
miR-34a 1p36.22 Increased [52, 103]
miR-375 2q35 Increased [101]
miR-486 8p11.21 Increased [100]
let-7b 22q13 Decreased [52]
Kupffer call’s
response LPS

* | Sensitivity to LPS

* | TNF-alpha

= | Activation

o | IL-104

TLR4
miR-155
miR-21

Inflammation

Fig. 2 microRNAs mediated lipopolysaccharide (LPS)/toll-like receptor 4
signalling in Kupffer's cells during alcoholic liver injury. Alcohol con-
sumption may increase gut permeability and subsequent bacterial or
microbial translocation into intestinal lumen and result in the increase
of LPS in the portal circulation. The excess of LPS in the liver affects
Kupffer's cells through miR-155/miR-21, and in response there is the
activation of NF-xB signaling as well as the alterations of its down-
stream effects.

conclusion that miR-155 is directly involved in LPS-induced TNF-o
production, not ethanol [31]. The effects of LPS on Kupffer cells,
however, become saturated past a point where alcohol-induced miR-
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155 no longer has any significant effect on the production on TNF-o
after LPS stimulation [31].

miR-135 and NF-xB

Studies have linked the inhibition of miR-155 to the NF-xB inhibitor.
NF-xB inhibitors have proven to mediate the up-regulation of miR-
155 in Kupffer cells [31]. Furthermore, NF-xB has shown to be acti-
vated with chronic ethanol exposure and LPS stimulation [42, 71].
This leads to the studies to prove that miR-155 is regulated by NF-«xB
[72]. NF-kB is a heterodimeric transcription factor usually composed
of p50 and p65 subunits and is a pleiotropic regulator of various
inflammatory and immune responses during alcoholic liver injury.
Under unactivated condition, p50/p65 dimers are sequestered in the
cytoplasm bound to its inhibitors, the l«Bs, which prevent the translo-
cation into the nucleus. Following various stimulations, the IxBs are
rapidly degraded, activating NF-xB. The active form of NF-xB rapidly
translocates into the nucleus, binding to consensus sequences in the
promoter/enhancer region of various genes, promoting their tran-
scription [73]. The increase in NF-«xB nuclear binding activity of p65/
p50 and p50/p50 in prolonged alcohol treatment has been demon-
strated, the same as the increase in LPS-induced NF-xB activation.
The NF-xB and LPS activation relation was proven during an experi-
ment where NF-xB was inhibited by MG-132 or Bay11-1782. The inhi-
bition of NF-xB decreased miR-155 in ethanol, LPS and alcohol +
LPS treated macrophages. This gave the conclusion that NF-xB is
indeed the mediator of miR-155 expression in alcohol-induction [31].

miRNA and endotoxin altered
permeability

Another regulator of gut-endotoxin permeability, other than ethanol,
is miRNA. It was discovered that miRNA increases the permeability of
the intestinal lumen in a similar way to ethanol. miRNA, however,
does so by affecting the Zonula occludens 1 (Z0-1) protein negatively
to induce intestinal lumen permeability. The Z0-1 protein is a critical
component that insures the permeable response of the intestinal
lumen to endotoxins. Just like with alcohol, the permeability of the
intestinal lumen leads to higher absorption of endotoxins that are later
transported to the liver to be detoxified. In this process, the detoxifi-
cation of these endotoxins leads to an LPS-TNF-o chain reaction that
causes alcoholic liver disease. In addition to its effects on gut perme-
ability, ethanol also up-regulates miRNA responsible for the reduction
of lumen permeability [74]. One particular miRNA, miR-212, has been
identified as a contributor to the loss of tight junctions in the intestinal
lumen through the Z0-1 protein. Another miRNA strand identifies as a
key contributor to endotoxin permeability is the miR-122a, which also
interacts with Z0-1 protein to regulate lumen permeability [6]. Such
findings suggest that miRNA has more than one role in the develop-
ment of alcoholic liver disease, first as a mediator of the endotoxins
that activate the inflammatory scarring agents and then as a mediator
to such specific signalling in liver macrophages.

© 2014 The Authors.

Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.



microRNA and hepatic cell survival

Several investigations have demonstrated the regeneration and
remodelling potentials of the adult cells in the liver after injury includ-
ing hepatocytes and cholangiocytes and with newer studies showing
the plasticity of hepatic stellate cell (HSC) and perhaps other cell
types as well [75-78]. The persistence of endotoxin during ALDs not
only activates the liver immune cells of the liver, but also affects the
function of other liver cells (hepatocytes, cholangiocytes and HSCs)
[24, 78]. Habitual alcohol consumption promotes hepatocyte death
and inhibits the proliferation of mature hepatocytes that survive, lead-
ing to chronic liver damage. Alcoholic liver damage is generally
accompanied by a ductular reaction that is characterized by periportal
accumulation of atypical cholangiocytes. As in many other types of
chronic liver disease [79], in alcoholic liver disease the intensity of
this ductular reaction closely parallels the severity of liver injury [80].
Cholangiocytes and HSCs have been defined as unique subpopula-
tions in ALDs that possess the ability to initiate regeneration pro-
cesses as well as liver fibrosis [78]. Although the evidence has been
provided to support the role of liver parenchymal and HSC in ALDs,
the identity and functions of bile duct cells remains a mystery.
Changes in the survival and remodelling activities may be used to
characterize certain liver regeneration and fibrotic processes. The
new and innovative technique to functionally characterize the remod-
elling properties of specific hepatic cells may ultimately allow the
development of new diagnostic and therapeutic strategies for ALD
patients.

The key pathophysiological features of ALD are altered lipid
metabolism and hepatocyte apoptosis. The results of recent studies
show a significant down-regulation of miR-122, a liver-specific miR-
NA [81, 82], which is important for normal lipid metabolism, and the
marked up-regulation of miR-34a, a critical regulator of apoptosis
[83], in the livers of mice fed with ethanol (Fig. 3). Several recent
reports have shown that miRNAs miR-122 and miR-34a are two of
the most frequently dysregulated miRNAs in steatohepatitis [84, 85].
Serum/plasma miR-122 has been correlated with ALT increases in
the liver damage caused by alcohol, and was predominantly associ-
ated with the exosome-rich fraction [86]. Both miR-122 and miR-34a
were aberrantly expressed in both alcoholic steatohepatitis and non-
alcoholic fatty liver disease [52, 84, 87]. Sirtuin (silent mating type
information regulation 2 homolog) 1 (SIRT1) is a verified target pro-
tein of miR-34a [88]. SIRT1 plays an important role in protecting cells
from cellular oxidative stress and DNA damage [89, 90]. Specific
miRNA promotes ethanol-induced fat accumulation in hepatocytes by
down-regulating SIRT1 [91]. Once SIRT1 is activated, SIRT1 deacety-
lates histones and histone methyl-transferases. SIRT1 also deacety-
lates a variety of non-histone target proteins, such as p53, the
retinoblastoma protein (Rb), FoxO transcription factors, Ku70, NF-kB
and PGC-1alpha. SIRT1-mediated deacetylation of Lys382 decreases
p53-mediated transcriptional activation and reduced the downstream
protein such as p21 and PUMA levels [92]. Therefore, SIRT1 medi-
ates the survival of cells during periods of severe stress through the
inhibition of apoptosis. Overexpression of miR-34a decreased SIRT1
expression, leading to an increase in acetylated p53 levels and p53
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Fig. 3 microRNA mediated survival mechanisms in alcoholic liver injury.
miR-34a is anti-apoptotic, while miR-122, the liver specific miRNA, is
the critical regulator of cell cycle. In normal liver, miR-34a and miR-122
cooperatively repress gene expression to balance cell survival and pro-
liferation. Ethanol increases miR-34a and decreases miR-122 in the
liver, resulting in altered target gene expressions, and consequently,
increased cell proliferation while maintaining overall apoptosis resis-
tance.

targets, such as p21 and PUMA [93]. miR-34a overexpression also
induced apoptosis in cancer cells expressing p53, but not cancer cells
not expressing p53. These results suggest that miR-34a induces
apoptosis in part through a pathway that involves: miR-34a—SIRT1
—p53 acetylation [93]. However, the other relevant targets of miR-
34a largely remain to be identified. Luciferase-based analysis has
implicated E2F3, Foxp1, the Notch1 receptor, as well as its ligand
Delta1, as potential miR-34a targets [94].

Circulating miRNAs as stable blood-
based markers for ALDs

The development of minimally invasive tests for the detection and
monitoring of ALD could greatly reduce the worldwide health burden
of alcoholic liver injury. The demonstration that miRNA profiles could
reveal smoke-related effects in the liver of mice exposed to ethanol
established a proof-of-principle for the use of miRNAs to evaluate
early steps of ALD process, which could be extended to other risk fac-
tors. However, the most useful approach would be to distinguish spe-
cific biomarkers circulating in the bloodstream before alcoholic liver
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injury become clinically apparent. To this end, miRNAs can potentially
become useful biomarkers for human ALD. Actually, deregulated
miRNAs are found in liver as well as in the blood of ALD patients.
Because of their innate stability, miRNAs may be detected blood
based assays for ALD. miRNAs are present in plasma in a stable form,
making them feasible biomarkers for the detection of ALD and other
liver disorders [95, 96]. Recent proof-of-principle studies established
that the analysis of miRNA expression in serum or plasma may be a
promising approach for blood-based diagnosis of a number of human
ALDs and other liver diseases [86, 97]. These studies suggest that
the effect of ethanol consumption may be revealed by quantifying
miRNAs circulating in serum/plasma. Further investigations will
explore possibilities for circulating miRNAs as stable blood-based
diagnostic markers and predicting progression for human ALDs.

Conclusion

The role of miRNA in alcoholic liver disease is certainly a crucial one.
In the past decade and in recent years its role in alcoholic liver dis-
ease has found keen interest. miRNA’s interaction with alcohol plays
a pivotal role in alcohol-induced liver scarring and fibrosis. The pro-
cess that leads to alcoholic liver disease begins, of course, with etha-
nol consumption and exposure. Ethanol exposed mice have shown
loss of permeability of the intestinal lumen. This permeability alterna-
tion occurs in two ways: First, with the direct influence of ethanol on
the permeability of the intestinal lumen and allowing endotoxins to
enter the liver. Second, ethanol induces miRNA, a known mediator of
intestinal permeability, in the intestinal lumen to do the same. Once in
the liver these endotoxins, produced by the decomposition of gram-
negative bacteria and pathogens, follow a pathway that leads to liver
inflammation. The endotoxins that are taken in by the intestinal lumen

find their way to the liver, where they are detoxified. The detoxification
of the endotoxins from gram-negative bacteria releases a particular
kind of endotoxin called LPS, which once in the liver, attaches to
TLR4, and sets in action the pathway that leads to alcoholic liver dis-
ease. Toll-like receptor 4 is not composed of two coreceptors, MD-2
and CD14, but these two proteins may be required for response of
cell to LPS stimulation via TLR4. Both of these receptors have been
identified as key components of alcoholic liver disease since both
their deactivations help reduce progression of the disease. Upon acti-
vation of TLR4, macrophages in the liver release inflammatory agents
that cause liver fibrosis. One particular macrophage of interest is the
Kupffer cell, which releases TNF-o.. The role miRNA takes part in this
process involves the regulation of the LPS signalling to the TLR4
receptor. It is miRNA that regulates the LPS reception in Kupffer cells.
It is also known that ethanol regulates miRNA (miR-122 and miR-
34a) in the liver that contributes to hepatocytes/HSC survival. There-
fore, as alcohol consumption increases, so does miRNA in the liver
and thus the reception of LPS and TNF-a: release. Although still under
study, microRNAs have been shown to play a pivotal role in the devel-
opment, causation and regulation of alcoholic liver disease.
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