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TO THE EDITOR:

Studies in recent years have revealed that increasing age is
associated with the accumulation of post-zygotic genetic aberra-
tions in different cell lineages even in the absence of active
malignancy. Clonal hematopoiesis of indeterminate potential (CHIP)
is defined as the detection of somatic mutations in genes
commonly associated with myeloid neoplasms in the peripheral
blood of individuals with no sign of hematological malignancy. The
process of CHIP derives from ageing hematopoietic stem cells that
have accumulated mutations, rendering proliferative advantage
compared with their peers, resulting in clonal expansion [1, 2]. CHIP
is an age-related phenomenon, regularly observed in healthy older
individuals at frequencies up to 10% at age 70 years. CHIP has been
associated with increased risk of hematological malignancies as
well as cardiovascular diseases [1-3].

In parallel, peripheral leukocytes often show mosaic loss of
chromosome Y (LOY) in ageing men [4], detectable in more than
40% of the men above the age of 70 years, in the UK Biobank [5].
Mosaic LOY manifests as a fraction of an individual’s leukocytes
lacking the Y chromosome. In longitudinal studies, LOY typically
increases in frequency over time, comparably to the process of
clonal hematopoiesis [6]. Remarkably, recent single-cell analyses
of leukocytes from men diagnosed with Alzheimer's disease
(median age 80 years) identified leukocytes with LOY in every
studied subject [7]. This has established LOY as the most common
post-zygotic mutation in the hematopoietic lineages of aging
men. Risk factors for LOY in leukocytes include age, smoking, and
germline genetic predisposition [5, 8, 9]. Leukocytes with LOY in
peripheral blood are associated with increased risk for all-cause
mortality [4, 9], hematological and non-hematological cancers
[4, 10, 11] and other age-related disorders such as Alzheimer's
disease, diabetes, and cardiovascular events [9, 12, 13].

Hence, carriers of leukocytes with post-zygotic mutations—
including LOY and CHIP—display an increased risk for diseases
both inside and outside of the hematopoietic system. The

mechanisms behind these associations, however, remain to be
established, as does the relative contribution of these abnormal-
ities to disease etiology [14]. Recent studies suggest that LOY in
leukocytes could confer direct physiological effects through LOY-
associated transcriptional effects affecting global gene expression,
and acting as a biomarker of genomic instability in somatic tissue
[5, 7]. Considering the similarities in age-related prevalence and
disease risks conferred by LOY and CHIP, it is of considerable
interest to determine whether the two phenomena co-exist or
might occur in a mutually exclusive manner [15]. Of note, a recent
study revealed a co-occurrence of LOY and CHIP in bone-marrow
cells derived from patients referred for clinical bone-marrow
evaluation [11].

To investigate whether LOY and CHIP may co-exist in peripheral
blood of healthy individuals, we investigated the co-occurrence of
LOY and CHIP in monocytes derived from 24 healthy men. Details
on the studied cohort is provided in Supplementary Table 1. The
men had no evidence of hematological disease, and the LOY-status
in each sample had previously been established by SNP-array
analyses of FACS isolated monocytes [7]. We sequenced monocyte-
derived DNA collected from men with high or undetectable levels
of LOY, using a TruSight sequencing panel targeting 54 genes often
mutated in myeloid neoplasms (Supplementary Table 2). Two
samples (one with LOY and one without) were excluded from final
analysis after standard QC filtering of the sequencing data. The level
of LOY mosaicism and CHIP mutations detected in the 22 age-
matched samples are illustrated in Fig. 1 (e.g. 12 samples with LOY;
median age = 83, range = 65-94 and 10 without evidence of LOY;
median age = 83, range = 68-94). Pathogenic CHIP variants were
detected in the following genes: TET2 (n=15), DNMT3A (n=4),
SF3B1 (n=2), ASXLT (n=1), TP53 (n=1), with a median variant
allele frequency (VAF) of 20.74% (range 4.3-55.4%). The gene panel
also detected a set of CHIP variants classified as variants
of uncertain significance, which consisted of: BCOR (n =5), ZRSR2
(n=3), BCORLT (n=1), FBXW7 (n=1), FLT3 (n=1), GATA2 (n=1),
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Fig. 1 Co-occurrence of LOY and CHIP in monocytes of ageing men. A Shows the level of LOY (%) in each monocyte sample (y-axis) plotted

against the age in years of the sampled men. The color (red/gray) of each dot indicates whether a pathogenic CHIP mutation was detected in
the sample, while shape (triangle/circle) denotes if the sample was classified as having LOY or not. The gene names and variant allele
frequency (VAF) of the CHIP mutations are labeled next to the sample in which CHIP was present. The boxplot in B displays the relationship
between different levels of LOY (%, y-axis) and the number of genes in which CHIP was detected (x-axis).

KDM6A (n=1), KIT (n=1). However, only known pathogenic
variants were included in the final analysis and Fig. 1. Further
details on identified CHIP variants are provided in Supplementary
Table 3.

Pathogenic CHIP variants were detected in 10 of the 22 (45%)
men with the striking observation that 9 of 12 (75%) of men with
LOY also carried mutations in genes known to be associated with
CHIP. This compared with CHIP being detected in only 1 of 10 men
(10%) of men without LOY. A Fisher’s exact test demonstrated a
significant overrepresentation of CHIP mutations in samples with
LOY (p = 0.0037). Further ANOVA testing compared the number of
genes with pathogenic CHIP mutations with the level of LOY, and
showed larger number of genes were affected with CHIP
mutations in samples with higher levels of LOY (F=259, p<
0.0001, Fig. 1B). A closer investigation of the nine cases with
simultaneous occurrence of LOY and CHIP suggested that the two
types of post-zygotic genetic abnormalities often co-existed in the
same or closely related hematopoietic lineages. Hence, in samples
with evidence of LOY in 225% of the cells and detected CHIP
mutations, 5/6 (83%) also displayed a high VAFs (mean 44.9%,
range 19.0-55.4%). In contrast, in three samples with CHIP and
LOY in <25% of cells, the range of VAFs were lower (4.3%, 6.4%,
and 7.1%). These results suggest a frequent co-existence of LOY
and CHIP in the studied monocytes, indicative of clonal expansion
of hematopoietic stem cells carrying both lesions. However, we
also observed cases with LOY without CHIP mutations, and vice
versa (Fig. 1). Therefore, larger studies are needed to further
describe and validate the inter-relationship between different
types of post-zygotic mutations in monocytes, as well as other
hematopoietic lineages.

The relationship between advanced age and cancer is well
established. Findings of cancer-related aberrations in elderly
individuals without known malignancy would therefore further
corroborate the hypothesis that cancer stems from a step-wise
accumulation of mutations leading to a malignant phenotype. CHIP
and LOY are two such examples. Although they have previously
been studied individually, the relationship between the two
phenomena is not fully elucidated, but may have important clinical
implications. Our results are in line with a recently published study,
which revealed that a large proportion of cases with =75% LOY
estimated by karyotyping also carried CHIP-associated mutations
[11]. Interestingly, the latter analysis was performed on samples
from patients referred for bone-marrow evaluation, indicating some
evidence of one or more hematological lineages being affected
in peripheral blood, skewing the material towards the overt
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pre-malignant or malignant spectrum. Our study serves as a
validation that the association between LOY and CHIP is not
restricted to the bone-marrow of patients with potential hemato-
logical disease. A limitation of our study is the targeted sequencing
approach covering 54 recurrently mutated genes in MNs as well as
the application of a 4% VAF cut-off, and a relatively small sample
size. Our approach may have led to the underestimation of CHIP
due to the higher VAF threshold used compared with previous
studies, and the possibility of rare CHIP mutations being missed by
targeted sequencing. However, the parameters for variant filtration
used in our study closely resemble those used in a clinical setting,
thus likely accurately reflecting the definition of CHIP used in
clinical practice. Moreover, the most commonly reported CHIP
genes are included in the panel that was used in our study.

Considering the growing list of diseases associated with
leukocytes carrying post-zygotic LOY and CHIP mutations, it has
become evident that pre-malignant lesions in immune cells are risk
factors not only for development of subsequent hematological
neoplasms, but also for other more common diseases in other organ
systems. Understanding the complex and varied relationships
that may exist between different classes of age-related somatic
aberrations, as well as their effects on leukocyte function and clinical
outcome, needs further evaluation [14, 15]. Our findings are the first,
to our knowledge, to demonstrate a co-occurrence of LOY and
pathogenic CHIP variants in individuals without any evidence of
hematological disease. We also show that men with higher level of
LOY mosaicism tend to have higher CHIP VAFs, which suggests that
these lesions may co-exist within the same clone. Taken together,
our results suggests that CHIP and LOY often occur concurrently in
ageing bone-marrow, and therefore could be viewed as two sides of
the same coin.
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