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Epidemiological studies have shown that serum triglyceride (TG) levels are linked with risk of development of cancer, including
colorectal and pancreatic cancers, and their precancerous lesions. Thus, it is assumed that serum TG plays an important
role in carcinogenesis, and the key enzyme lipoprotein lipase (LPL), which catalyzes the hydrolysis of plasma TG, may
therefore be involved. Dysregulation of LPL has been reported to contribute to many human diseases, such as atherosclerosis,
chylomicronaemia, obesity, and type 2 diabetes. Recently, it has been reported that LPL gene deficiency, such as due to chromosome
8p22 loss, LPL gene polymorphism, and epigenetic changes in its promoter region gene, increases cancer risk, especially in the
prostate. In animal experiments, high serum TG levels seem to promote sporadic/carcinogen-induced genesis of colorectal and
pancreatic cancers. Interestingly, tumor suppressive effects of LPL inducers, such as PPAR ligands, NO-1886, and indomethacin,
have been demonstrated in animal models. Moreover, recent evidence that LPL plays important roles in inflammation and obesity
implies that it is an appropriate general target for chemopreventive and chemotherapeutic agents.

1. Introduction

A high-calorie diet and low physical activity, part of the
so-called “Westernization” of lifestyle, are associated with
elevated incidences of the breast, colon, liver, pancreas, and
prostate cancers. Moreover, they are also linked with the
risk of obesity, type 2 diabetes, and dyslipidemia. The World
Cancer Research Fund and American Institute for Cancer
Research have evaluated causal relationships between body
fat and cancer and provided strong evidence for roles in such
as colorectum and pancreas cancers [1]. In Japan, overweight
and obesity (body mass index ≥25) are reported to be asso-
ciated with cancers of specific organs, such as the colorectum
(male), postmenopausal breast (female), and the liver in
individuals positive for hepatitis C virus infection [2–4].

Greater body fatness is a major risk factor for the
metabolic syndrome, which presents as a combination of
symptoms, such as dyslipidemia (elevated triglyceride (TG)
levels or low high-density lipoprotein (HDL) cholesterol),
elevated blood pressure, and elevated fasting glucose levels.
Hypertriglyceridemia is associated with the risk of colon
cancer in Japanese men (HR = 1.71) and being overweight

with the risk of breast cancer (HR = 1.75) [5]. In addition,
most epidemiological studies, including our own, have con-
sistently showed that serum TG levels are associated with the
risk of colorectal adenoma, a precursor lesion of colorectal
cancer [6–11]. Thus, it is assumed that serum TG could play
an important role in carcinogenesis and that the key enzyme
lipoprotein lipase (LPL), which catalyzes the hydrolysis of
plasma TG, may also be involved. In this paper, we focus on
the roles of LPL in cancer development and further discussed
possible approaches to cancer prevention/therapy.

2. Function, Structure, and
Gene Regulation of LPL

2.1. Functions and Structure of LPL. LPL plays an important
role in lipid metabolism as an enzyme responsible for
hydrolysis of the TG component in circulating chylomicrons
and very-low-density lipoprotein (VLDL) via binding with
apolipoprotein C2 [12, 13]. Thus, lowering or deficiency of
LPL expression is associated with hyperlipidemia [14, 15].
The LPL enzyme itself is composed of two structurally
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distinct regions. The amino-terminal domain is responsible
for catalysis with a catalytic center formed by three amino
acids (Ser132, Asp156, and His241). The carboxy-terminal
domain of LPL is required for its binding to the lipoprotein
substrate [3, 16–18].

2.2. LPL Gene Expression and Its Regulation. The human LPL
gene is located on chromosome 8p22 and composed of 10
exons [19]. LPL is ubiquitously expressed in the whole body,
but especially in the adipose tissue and the skeletal muscle
[20, 21] and is regulated by hormonal and inflammatory
stimuli, such as insulin [22, 23], glucocorticoid [24, 25],
adrenaline [26], tumor necrosis factor (TNF)-α [27, 28],
transforming growth factor (TGF)-β [29], and interleukin
(IL)-1β [27].

The expression of LPL is controlled transcriptionally
and posttranscriptionally. Basal promoter activity has been
shown to be regulated by Oct-1 and the NF-Y binding motifs
[30, 31], and the 5′-CCTCCCCC-3′ motif, which interacts
with Sp1 and Sp3 [32]. Induction of LPL gene transcription
is mediated by the peroxisome proliferator response element
(PPRE) and the responsible element which binds to sterol
regulatory element-binding protein (SREBP) [33, 34]. The
effect of insulin on LPL expression is an example of
posttranscriptional control, the hormone being suggested to
increase LPL mRNA levels via mRNA stabilization [23, 35].

3. Relationship between LPL and Cancer:
Human Studies

3.1. Loss of LPL and Resultant Common Disease. LPL has
been reported to play key roles in many human diseases,
such as atherosclerosis, obesity, type 2 diabetes, chylomicron-
aemia, Alzheimer’s disease, and cachexia [15]. Especially, LPL
gene deficiency is the cause of type I hyperlipoproteine-
mia (familial hyperchylomicronemia) [36]. Homozygous
deficiency of LPL in humans is rare, but heterozygous
deficiency is observed in around 3% of people with various
ethnic backgrounds [37, 38]. Although these individuals have
elevated serum levels of TG and decreased HDL cholesterol
[39], it is not clear whether they are at increased risk of
atherosclerosis, ischemic heart disease, type 2 diabetes, and
cancer. There is a report that the LPL S447X mutation is
associated with a higher risk of pancreatic calcification and
steatorrhea in hyperlipidemic pancreatitis [40]. Since LPL
provides fatty acids to the tissues and fatty acids evoke
insulin resistance, LPL gene deficiency could affect glucose
metabolism. However, whether heterozygous LPL deficiency
reduces plasma glucose levels or not is still controversial.
One paper described reduction of plasma glucose levels, but
two others observed no effects as compared with LPL intact
humans [41–43]. On the other hand, it has been reported
that patients with poorly controlled diabetes frequently have
dyslipidemia due to defects in LPL enzyme activity [44].

3.2. Effects of Chromosome 8p22 Loss and LPL Gene Polymor-
phisms on Cancer Risk. Alteration in genomic DNA, such as
point mutations and deletions/amplifications or epigenetic

changes such as CpG island hypermethylation and histone
modification, can induce abnormal gene expression, which
in the case of tumor suppressor genes or oncogenes could
eventually lead to carcinogenesis. The human LPL gene has
been mapped to chromosome 8p22 and previous studies on
loss of heterozygosity (LOH) in colorectal tumors suggested
that a putative tumor suppressor gene may lie within the
short arm of chromosome 8, that is, 8p22-p21.3. Loss of
8p23.1-22 is also reported to be an important stage in initia-
tion or promotion of hepatocellular carcinoma development
and may also be the most frequent chromosomal alteration
in prostate cancer [45]. It has been found that deletion of
LPL is observed in 68% (52/76) of localized prostate cancers
by FISH analysis [46]. It has further been reported that
chromosomal region 8p23.1-8p21.1 may harbor one or more
important prostate-cancer-susceptible loci based on linkage
analyses in 159 hereditary prostate cancer families [47, 48].
To date, several new candidate cancer-susceptible genes have
been cloned to 8p22, such as deleted in breast cancer 2
(DBC2), leucine zipper tumor suppressor 1 (LZTS1), deleted
in liver cancer 1 (DLC1), and mitochondrial tumor suppressor
1 (MTUS1) [49–52]. Thus, cancer-susceptible genes mapped
close to the LPL gene could be affected by LPL gene deletion,
and exert combined effects in promoting carcinogenesis.

Moreover, an LPL Ser447stop polymorphism has been
shown to be associated with prostate cancer risk [53] and the
LPL gene is commonly methylated in prostate tumors [54].
LPL promoter CpG island methylation has been revealed in
45% of LPL-deleted tumors and in 22% of LPL-retaining
tumors [54]. Biallelic inactivation of LPL by chromosomal
deletion and promoter methylation may thus contribute to
prostate tumorigenesis, but information is lacking regarding
pancreatic cancer.

4. Relationship between LPL and Cancer:
Animal Studies

4.1. Dyslipidemia Observed in Cancer-High-Susceptibility
Animal Models. Elevated serum TG has been shown to
promote carcinogen-induced colon carcinogenesis, and rats
with hypertriglyceridemia such as the Zucker obese and
Nagase analbuminemic strains and F344 rats fed a high-
fat diet are all known to be more sensitive to carcinogen
treatments than rats with normal serum lipid levels [55–57].

In the case of mice, the Apc1309 (C57BL/6JApc/ApcΔ1309)
[58] and Min (C57BL/6-ApcMin /+) animal models of human
familial adenomatous polyposis (FAP) feature development
of large numbers of intestinal polyps and hypertriglyc-
eridemia [59, 60]. Although no significant differences
between Apc1309 mice and wild-type mice were observed at
6 weeks of age, the average serum TG value in the for-
mer at 12 weeks was obviously increased almost 10-fold
(∼600 mg/dL) over that at 6 weeks. Similar increase of
TG levels (∼400 mg/dL) was observed in Min mice at 15
weeks compared to 8 weeks of age (Table 1). Along with
TG elevation, mRNA levels of LPL in the liver and small
intestine of Apc1309 and Min mice were suppressed. Of
note, other lipogenic genes, such as FAS and stearoyl-CoA
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Table 1: Summary of animal models with dyslipidemia and cancer high susceptibility.

Animal Strain
Age

(week-old)
Serum TG
(mg/dL)

Treatment Tumor Reference

Mouse
Apc1309

(C57BL/6JApc/ApcΔ1309)
12 ∼600 — Intestinal adenoma [59]

Min
(C57BL/6-ApcMin /+)

15 ∼400 — Intestinal adenoma [59, 60]

KK-Ay 19 481 AOM Colon cancer [61]

ICR 20 159 AOM + DSS Colon cancer [62]

Syrian golden hamster — 6 300 BOP Pancreatic cancer [63]

Table 2: Summary of tumor suppressive effects of LPL inducers in animal models.

Agent Dose Animal model
Value to the untreated

control group
Reference

Pioglitazone 200 ppm Apc1309 67% [59]

1600 ppm Min 9% [60]

800 ppm BOP-treated hamster 40% [63]

NO-1886 800 ppm Min 42% [65]

Indomethacin 10 ppm Min 25% [66]

desaturase-1, β-oxidation genes like acyl-CoA oxidase and
carnitine palmitoyl transferase 1, and gluconeogenesis genes,
exemplified by phosphoenolpyruvate carboxykinase, demon-
strated no variation from wild-type mouse expression.

Obese KK-Ay mice were found to be highly susceptible
to azoxymethane- (AOM-) induced colorectal aberrant crypt
foci (ACF) and colorectal carcinoma development com-
pared to lean C57BL/6J mice [61]. Surprisingly, colorectal
carcinomas developed within a very short-term period, 19
weeks, after AOM injection. The number of total ACF in
KK-Ay mice was around 70/mouse and almost 8 times
higher than that in lean C57BL/6J mice. The incidences
of adenomas and adenocarcinoma were 84% and 88%,
respectively, in KK-Ay mice, far higher than the 8% and
4% in C57BL/6J values. KK-Ay mice exhibit abdominal
obesity, hypertriglyceridemia, and hyperinsulinemia at the
time of ACF and tumor development. At 13 weeks of age,
the average serum levels of TG, total cholesterol, and free
fatty acids of KK-Ay mice undergoing AOM treatment were
484.1 mg/dL, 101.6 mg/dL, and 1,796 mEq/L, respectively
(Table 1). It is interesting that hepatic LPL mRNA levels were
also suppressed in KK-Ay mice compared with C57BL/6J
mice. Moreover, serum proinflammatory adipocytokines,
such as IL-6, leptin, and plasminogen activator inhibitor-
1 (Pai-1), were elevated. Importantly, expression of pro-
inflammatory adipocytokine mRNAs such as for IL-6, leptin,
monocyte chemotactic protein (MCP)-1, Pai-1 and TNF-
α was significantly increased in the visceral fat tissue; in
contrast, that for adiponectin was decreased.

Tanaka et al. have developed a novel colitis-related
colorectal carcinogenesis model, using AOM plus dextran
sodium sulfate (DSS), a colitis-inducing agent [64]. In this
model (AOM + 2% DSS in ICR mice), numerous colorectal
adenocarcinomas occur within a short-term period and the

serum TG levels demonstrate increase to about 134, 175 and
159 mg/dL at 5, 10, and 20 weeks, respectively [62] (Table 1).

Injection of N-nitrosobis(2-oxopropyl)amine (BOP)
into Syrian golden hamsters is known to induce pancreatic
ductal adenocarcinomas, with a histology very similar to typ-
ical human pancreatic ductal adenocarcinomas. Moreover,
associated genetic mutations, that is, K-ras point mutations
and p16 aberrant methylation/homozygous deletions, are
found in common in both hamster and human lesions.
Interestingly, Syrian golden hamsters exhibit a hypertriglyc-
eridemic state, almost 300 mg/dL at 6 weeks of age, even
when not fed a high-fat diet [63] (Table 1). Also, in the case
of this animal model, a low activity of LPL could be one of
the causes of hypertriglyceridemia, activity of this enzyme in
the liver being only 20% and 30%, respectively, of the values
in C57BL mice and F344 rats.

5. Tumor Suppressive Effects of LPL Inducers

Pioglitazone, {(±)-5-[4-[2-(5-ethyl-2-pyridyl)ethoxy]benz-
yl]thiazolidine-2,4-dione monohydrochloride}, is a potent
peroxisome proliferator-activated receptor (PPAR)γ ligand
with a weak binding affinity for PPARα. In the promoter
region of the LPL gene, there exists a PPRE, and pioglitazone
treatment successfully induced LPL expression in the liver
and intestinal epithelial cells in Apc-deficient mice. The total
numbers of polyps in the groups treated with 100 and
200 ppm pioglitazone in the Apc1309 were reduced to 67% of
the value in the untreated control group [59] (Table 2). With
another Apc-deficient model, Min mice given 100–1600 ppm
pioglitazone for 14 weeks showed decrease of intestinal
polyps to 63–9% of the control number [60] (Table 2 and
Figure 1).



4 Biochemistry Research International

Intestinal
polyps

TG

β-catenin

accumulation

LPLPioglitazone (PPAR-γ ligand)

NO-1886 (selective LPL inducer)

Indomethacin

Tumor
formation

Insulin resistant

Dysregulated
adipocytokine production

Insulin, IGF-1,

IL-6, leptin,

Internal LPL inhibitors (angptl3, 4 and C3)

c-Jun, c-Myc,
cyclin D1, etc.

Pai-1, etc.

Inflammatory factors (TNF-α , IL-6, etc.)

Apc+/− Apc−/−

Obese KK-Ay mice

Apc-deficient mice

Figure 1: Involvement of triglycerides in animal intestinal carcinogenesis models. Angptl-3,4: angiopoietin-like protein-3,4; IGF-1: insulin
like growth factor-1; IL-6: interleukine-6; LPL: lipoprotein lipase; Pai-1: plasminogen activator inhibitor-1; PPAR: peroxisome proliferator-
activated receptor; TG: triglyceride; TNF-α: tumor necrosis factor-α.

Pioglitazone possesses other functions rather than just
simply inducing LPL, such as causing cell growth arrest and
apoptosis. Thus, data regarding LPL selective inducers are
necessary for determining the relationship between hyper-
triglyceridemia and intestinal carcinogenesis. NO-1886, 4-
[(4-bromo-2-cyanophenyl)carbamoyl] benzylphosphonate,
chemically synthesized at Otsuka Pharmaceutical Factory
[67] is one useful tool for clarifying this issue. Using
a reporter gene assay, NO-1886 demonstrated no PPAR
agonistic activity, unlike bezafibrate and pioglitazone [68].

Administration of 400 and 800 ppm NO-1886 also
significantly decreased the total number of intestinal polyps
to 48% and 42% of the untreated control value, respectively,
in Min mice, along with causing marked increase in LPL
mRNA levels in the liver and the small intestine. Moreover,
treatment with NO-1886 also significantly decreased the
numbers of colon polyps [65] (Table 2, Figure 1).

In the case of BOP-treated hamsters, pioglitazone has
been demonstrated to improve hyperlipidemia and suppress
ductal adenocarcinoma development. The incidences of
ductal adenocarcinoma in the BOP plus 800 ppm pioglita-
zone and BOP alone groups were 38% and 80%, and the
multiplicities were 0.55 and 1.37, respectively [63] (Table 2).
Expression levels of hepatic LPL mRNA were elevated by
treatment with 800 ppm pioglitazone. Moreover, quanti-
tative real-time RT-PCR assays demonstrated almost 1.7-
fold higher mRNA levels of LPL than that of pioglitazone-
nontreated hamsters.

Indomethacin is a conventional nonsteroidal anti-
inflammatory drug which has long been clinically employed
to improve inflammation. It has demonstrated potent
chemopreventive activity against intestinal tumor develop-
ment in animal models, and a clinical trial in FAP patients
also showed reduction in intestinal polyp development
[69, 70]. We earlier reported that indomethacin suppresses
intestinal polyp formation in Min mice together with
ameliorating the hyperlipidemic state by regulating LPL,

other lipid metabolic factors and inflammatory pathways
[66]. Reduction of serum TG levels was 90% in Min mice
with 10 ppm indomethacin treatment and higher than that
with 400 ppm pioglitazone (83%) observed in our other
previous study [59, 60]. The PPARγ agonistic activity of
indomethacin is reported to be 50 times weaker than that
of troglitazone, a well-established PPARγ agonist [71]. These
results indicate that functions other than agonistic activity
of indomethacin are responsible for its strong lipid-lowering
effects (Figure 1).

6. Involvement of LPL in Inflammation,
Obesity, and Others

6.1. LPL and Inflammation and Apoptosis. In addition to the
lipid modifying function of LPL, two different mechanisms
might be involved in LPL influence on carcinogenesis.
The first involves anti-inflammatory action of LPL. It has
been reported that LPL suppresses TNF-α- and interferon
(IFN)-γ-evoked inflammation-related gene expression in
endothelial cells through inactivation of transcription factor
nuclear factor kappa B (NF-κB) [72]. Conversely, TNF-α,
IFN-γ, IL-1β, IL-6, and leukemia inhibitory factor (LIF)
decrease LPL activity.

It is well known that cyclooxygenase-2 (COX-2) is
markedly elevated in human colon cancers, in AOM-treated
rats, and in intestinal polyps of Apc-deficient mice. COX-
2 is in fact thought to play important roles in both cancer
cell proliferation and angiogenesis. Experiments conducted
to clarify the mechanisms of NO-1886 effects on colon
carcinogenesis revealed that the expression levels of mRNA
for COX-2, in DLD-1 human colon cancer cells, were
reduced under conditions of TGFα stimulation. On the other
hand, there was no obvious change in the mRNA levels
for COX-1 and inducible nitric oxide synthase (iNOS). The
results obtained by RT-PCR analysis were also confirmed by
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β-gal reporter gene assay in DLD-1 cells [65]. Consistent with
the in vitro data, administration of 400 and 800 ppm NO-
1886 reduced COX-2 mRNA levels in normal parts of small
intestine of Min mice at 20 weeks of age [65]. In addition,
NO-1886 ameliorates and induces regression of experimen-
tal steatohepatitis through increasing LPL activation and
suppression of proinflammatory agents, such as TNF-α, IL-
6, and COX-2 [73]. Recently, mice lacking angiopoietin-
like protein family 4 (Angptl4), which is the inhibitor of
LPL, showed a severe and lethal phenotype characterized
by fibrinopurulent peritonitis, ascites, intestinal fibrosis, and
cachexia in response to a saturated fat diet [74].

The second mechanism is modification of the apoptosis
pathway by LPL activation. Phosphatase type 2Cβ activation
by unsaturated fatty acids has been demonstrated to induce
apoptosis [75]. Unlike ester bodies of fatty acids, free
fatty acids have cytotoxic effects in vitro and the products
produced by hydrolysis of plasma TG may be implicated in
such an apoptotic effect.

6.2. LPL and Obesity. Given the importance of LPL for lipid
metabolism, its activity would be expected to be intimately
involved in obesity effects and development of the metabolic
syndrome. A large number of studies in rodents and humans
have revealed that obesity results in increased LPL activity
in adipose tissue [15, 35, 76–78]. Interestingly, LPL is
regulated in opposite directions in adipose tissue and muscle.
Feeding increases adipose LPL activity with a corresponding
decrease in muscle LPL activity [35, 79]. Exercise stimulates
LPL activity in the muscle and leads to increase fatty acid
oxidation [80]. In an animal study, NO-1886 suppressed
high-fat diet-induced fat accumulation in rats due to the
increase of muscle LPL activity [81].

7. Conclusion

Targeting LPL activity or expression levels for development
of reagents against cancer seems particularly challenging,
because LPL is expressed ubiquitously and plays essential
roles in maintaining homeostasis in the body. Data from
LPL homozygous knockout mice, which die within one day
of birth, underline its importance. However, appropriate
suppression of serum TG levels could be achieved by
using drugs, even if the number of selective inducers of
LPL is limited. Thus, it might be important to develop
selective LPL inducers or search for agents focusing on
the aspect of “drug repositioning” to obtain the tools for
investigating correlation between LPL and cancer. It should
be borne in mind that LPL is inhibited by intrinsic factors,
such as angptl3, angptl4, and C3 (Figure 1). These could
clearly be candidate target molecules for development of
LPL inducers. Considering that LPL activity has impact on
obesity and metabolic syndrome, its targeting may also affect
the regulation of adipocytokines, which may also be involved
in carcinogenesis. Further investigations are warranted to
clarify the importance of LPL and to accumulate evidence as
to the worthiness as a target for cancer chemopreventive and
chemotherapeutic agents.
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