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Abstract: Alcohol-associated liver disease (ALD) is an intricate disease that results in a broad spec-
trum of liver damage. The presentation of ALD can include simple steatosis, steatohepatitis, liver
fibrosis, cirrhosis, and even hepatocellular carcinoma (HCC). Effective prevention and treatment
strategies are urgently required for ALD patients. In previous decades, numerous rodent models were
established to investigate the mechanisms of alcohol-associated liver disease and explore therapeutic
targets. This review provides a summary of the latest developments in rodent models, including
those that involve EtOH administration, which will help us to understand the characteristics and
causes of ALD at different stages. In addition, we discuss the pathogenesis of ALD and summarize
the existing in vitro models. We analyse the pros and cons of these models and their translational
relevance and summarize the insights that have been gained regarding the mechanisms of alcoholic
liver injury.

Keywords: alcohol; alcohol-associated liver disease; pathological processes; in vitro model; in vivo model

1. Introduction

Alcohol-associated liver disease (ALD) is a major cause of chronic liver disease world-
wide [1]. According to the degree of liver injury, ALD usually first manifests as steatosis
and then develops into alcoholic hepatitis (AH) or even more severe fibrosis, cirrhosis, and
superimposed hepatocellular carcinoma (HCC) [2]. Alcoholic fatty liver (AFL) is usually
considered the initial pathological process. It is now recognized as a risk factor for the de-
velopment of liver fibrosis and cirrhosis [3,4]. Fatty liver, fibrosis, and hepatitis can occur in
the same patient separately, simultaneously, or successively [5]. In alcoholic steatohepatitis
(ASH), steatosis is frequently accompanied by hepatocyte necrosis, apoptosis, and mild
inflammation. In contrast to ASH, alcoholic hepatitis is characterized by severe necrosis,
apoptosis, and the inflammation of liver cells in the absence of steatosis [6]. However,
chronic alcoholic steatohepatitis and liver fibrosis usually coexist [7]. Among alcoholics,
approximately 30–50% of AH patients will develop fibrosis and cirrhosis when there is
severe ethanol-induced liver damage, which may lead to HCC in some cases, while patients
without alcoholic hepatitis have a lower risk of cirrhosis [8–10].

Alcohol consumption and diet are the key triggers that affect the progress of ALD.
Therefore, the application of animal models to mimic human drinking patterns is helpful
for studying the pathogenesis and treatment strategies of ALD. Animal models that are
currently in use include the Lieber–DeCarli diet feeding model, the Tsukamoto–French
model, the chronic plus binge model, and the EtOH combined high-fat diet (HFD), as well
as lipopolysaccharide (LPS) and other second hit models (Figure 1) [11]. The Lieber–DeCarli
model usually only induces mild steatosis and elevated serum alanine aminotransferase
(ALT) and aspartate transaminase (AST) levels, with very little or no inflammation of the
liver [12]. The Tsukamoto–French model can lead to severe liver steatosis and fibrosis, liver
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cirrhosis with focal necrosis and immune cell infiltration, and significantly increased ALT
and AST serum levels [13]. The chronic plus binge model simulates the drinking patterns of
heavy drinkers. It can induce neutrophil aggregation and activation, which can then induce
severe liver injury [14]. Common second hits include a high-fat diet, CCl4, and LPS, and
when most of these “second hits” are combined with alcohol, they can induce the occurrence
of alcoholic hepatitis and liver fibrosis in experimental animals [15–18]. However, the
existing animal models of ALD fail to summarize all of the damage characteristics of
human ALD. Therefore, it is necessary to study the correlation between various animal
models and the progress of human ALD.
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We have summarized various models according to the different stages of ALD. This
includes the advantages, limitations, and translational relevance of the pure alcohol model,
which is currently the most commonly used ALD animal model, as well as the research
progress of the second hit model, which has shown great potential. In addition, we also
discuss the pathogenesis of ALD and summarize the results of liver injury (including
changes in intestinal microbes) and common in vitro models of ALD (Figure 2). This will
aid in our understanding of the alcohol-associated liver disease model and its mechanisms
to better treat alcohol-associated liver disease.
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2. Pathogenesis of ALD

The pathophysiology of ALD is complex, and the direct effects of ethanol and its
metabolites (e.g., acetaldehyde) on the liver and other organs, as well as immune cell
activation and inflammation triggered by alcohol intake, are drivers of the ALD course [5,8].
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2.1. Programmed Cell Death (PCD) in ALD

Programmed cell death (PCD) in ALD is thought to play a central role in the progres-
sion of liver injury. The pathways involved in PCD include the apoptosis, necroptosis,
pyroptosis, autophagy, and ferroptosis pathways [19]. Apoptosis is a cystein-dependent
cell death, and chronic alcohol intake induces oxidative stress, hypoxic stress, and endo-
plasmic reticulum stress in cells, leading to the activation of endogenous and exogenous
apoptosis [20,21]. Cellular stress induces apoptosis in the liver by activating caspase-12/4,
the interferon regulatory factor signalling pathway, and the C-Jun N-terminal kinase [22].
In addition, ethanol promotes inflammatory-factor-mediated liver cell death by activating
proinflammatory responses in immune cells [23]. Ethanol exposure increases intestinal
permeability and subsequent entry of LPS into the portal vein circulation, which stimulates
resident hepatic macrophages, and infiltrates monocytes to produce inflammatory factors
such as tumour necrosis factor -α(TNFα) through the activation of Toll-like receptor 4
(TLR4), thereby activating the exogenous pathway of apoptosis [22]. Necrosis is a novel
form of PCD mediated by receptor-interacting protein kinase 1 (RIPK1), RIPK3, and mixed-
lineage kinase domain-like pseudokinase (MLKL) [21]. Necrosis has been shown to play a
key role in oxidative stress, steatosis, and inflammatory response in ALD [24–27]. Following
ethanol ingestion, ROS production promotes RIPK1 activation, leading to RIPK3 recruit-
ment and necroptosis, while RIPK1 and RIPK3 can mediate the reactivation of necrosis by
ROS production, forming a positive feedback loop [28]. There is increasing evidence that
RIPK3 and MLKL have been shown to be regulators of lipid metabolism, controlling hepatic
steatosis to varying degrees [29,30]. With alcohol exposure, necrotic cells release danger
signals called damage-associated molecular patterns (DAMPs) that trigger and promote
inflammatory responses [21]. Pyroptosis is a newly discovered form of PCD mediated by
gasdermin protein and is accompanied by inflammatory and immune responses [31]. No-
tably, chronic ethanol intake activates pyroptosis in both hepatocytes and hepatic immune
cells, exacerbating hepatic inflammation through crosstalk between different cell types [20].
Both gut-derived sociated molecular patterns and metabolite-derived endogenous danger-
associated molecular patterns (uric acid and ATP) are induced in ALD, causing the immune
cells to release inflammasome-dependent cytokines to trigger pyroptosis [32]. Ethanol
exposure can also overexpress thioredoxin-interacting protein (TXNIP) by stimulating
liver cells, which, in turn, activates NLRP3 inflammasomes and caspase-1-mediated cell
typical pyroptosis [33]. Autophagy, a mechanism of cell survival under conditions of
nutritional stress, has also been implicated in the progression of ALD [34]. It is noteworthy
that autophagy regulation is different between acute and chronic ethanol exposure [35].
Autophagy protects the liver from alcohol-induced acute ethanol attack and reduces lipid
accumulation through phagocytosis [35]. However, chronic alcohol exposure inhibits
mTOR activation, thereby inhibiting the initiation of autophagy [35]. In addition, chronic
alcohol exposure increases lysosomal pH and inhibits the expression of the transcription
factor TFEB, which is required for lysosomal fusion and autophagy, and these changes re-
sult in the inhibition of autophagy and lysosomal fusion in hepatocytes [36–39]. In addition,
long-term alcohol consumption increases the serum ferritin concentration and transporter
saturation, thereby increasing hepatic iron storage and the production of reactive oxygen
species and causing local inflammation [19,40]. Firstly, oxidative stress mediated by ethanol
exposure can inhibit hepcidin transcription by suppressing C/EBPα [41]. Secondly, ethanol
exposure induces the expression of hypoxia-inducible factors and promotes elevated ery-
thropoietin, which in turn inhibits hepcidin expression [42]. In addition, ethanol may also
induce iron accumulation in the liver by acting on the transferrin receptor [43]. Notably,
the DAMPs released from ferroptotic hepatocytes activate the NOD-like receptor family
containing the NLRP3 inflammasome in KCs, and the release of proinflammatory cytokines
and chemokines is concomitantly increased [44,45].
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2.2. Adipose Tissue Damage

Adipose tissue is primarily considered a major storage organ, and alcohol intake can
stimulate liver fat decomposition and promote liver fat regeneration, causing more lipids
to enter the liver, resulting in steatosis, inflammation, and even adipocyte death [46–49].
Adipose tissue dysfunction such as adipocyte death and the inflammatory release of free
fatty acids (FFA) may affect hepatic metabolism [50]. The process by which other tissues
hydrolyse triglycerides to produce FFA during inflammation is called lipolysis [51]. A
possible mechanism to increase lipolysis in adipose tissue after chronic ethanol ingestion
is by affecting fibroblast growth factor 21 [52]. In addition to this, alcohol also alters the
adipogenic pathway by upregulating sterol regulatory element-binding proteins (SREBPs)
and inactivating peroxisome proliferator-activated receptor-alpha (PPARα) [53]. White
adipose tissue (WAT) releases adipokines such as adiponectin leptin and other adiponectin,
and therefore WAT has recently been regarded as a major secretory organ [52]. These
secretions are negatively regulated in ALD and activate KCs and hepatic stellate cells
(HSCs), leading to hepatitis and fibrosis [54–57]. In addition, the negative regulators of
uncoupling protein 1 (Ucp1) and insulin signalling (PTEN and SOC3) can be upregulated
after chronic alcohol consumption, causing WAT metabolism disorder and the activation
of adipose triglyceride lipase and hormone-sensitive lipase [48]. Apart from this, chronic
ethanol exposure affects the differentiation of liver adipose-tissue-derived stromal cells
and the secretion of important regulators of lipid metabolism, such as TNF-α, interleukin-6
(IL-6), and monocyte chemotaxis protein-1 (McP-1) [47,50,58]. Finally, the proinflammatory
state formed in WAT leads to lipodystrophy, which leads to fat deposition in the peripheral
organs, thereby enhancing the pathological state of ALD [52].

2.3. Intestinal Dysbiosis

Recent evidence indicates that the gut is a key site for ALD [59]. Drinking can change
the composition of the microbiota and its metabolites, causing an imbalance in the intestinal
microflora and impairing intestinal integrity and barrier function [19,60,61]. Alcohol intake
can modulate the glycosylation of mucins, thereby altering the protective mucus layer and
potentially altering the bacterial species that adhere [62]. In addition, alcohol can reduce
the expression of zonula occludens-1, increase the expression of Clock and recombinant
period circadian protein 2 in Caco-2 cells, and upregulate cytochrome P450 2E1(CyP2E1)
through reactive oxygen species (ROS), leading to excessive intestinal permeability [63,64].
Intestinal bacteria are significantly altered in patients with ALD, with alcoholics having
significantly reduced numbers of Enterococci, Bifidobacteria, Eubacterium g23, Oscillibacter,
and Clostridiales [65,66]. Bacillus and Veillonella were increased in the faeces of patients
with severe alcoholic hepatitis relative to healthy subjects [66]. Enterobacteriaceae were
27 times more abundant in the faeces of patients with alcoholic cirrhosis than in healthy
volunteers, and Enterobacteriaceae were the most common hepatic translocating bacteria
in patients with cirrhosis [67]. Long-term alcohol intake can reduce the expression of
recombinant regenerating islet-derived protein 3b, regenerating islet-derived protein 3g,
and the secretion of c-type lectin, which is conducive to bacterial translocation and leads
to the instability of the intestinal environment [68,69]. When the intestinal barrier is
dysfunctional, high levels of TNF-α are produced by monocytes and macrophages within
the intestinal lamina propria, a process that leads to the disruption of tight junctions
between intestinal cells and increased intestinal permeability [70]. In the presence of
increased intestinal permeability, the dysbiosis of the intestinal flora may impair hepatic
homeostasis by increasing the levels of bacterial products or by the translocation of bacteria
into the blood and lymph nodes or through the portal vein into the liver [69,71–73]. Bacterial
translocation is a key pathological event in the transition from alcoholic steatosis to ASH and
can also cause inflammation and hemodynamic disorders in patients with liver cirrhosis,
leading to serious infections [19,74,75]. Studies have shown that the increased translocation
of microorganisms such as Streptococcus, Shuttleworthia, Rothia, and Nubsella in the duodenal
mucosa is associated with the early stages of progressive ALD [76]. In addition, the
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translocation of the components of intestinal bacteria (e.g., peptidoglycan, LPS, or flagellin)
plays an important role in the progression of ALD, with changes in LPS being extensively
studied [77,78]. LPS causes endotoxaemia through translocation and interacts with TLR4
in the liver, and the activation of the LPS-TLR4 signalling pathway promotes the release
of proinflammatory factors (e.g., TNF-α and IL-6) and exacerbates alcohol-induced liver
inflammation [70,78].

2.4. Changes in Immune Cells

The infiltration of inflammatory cells such as macrophages and neutrophils is a promi-
nent feature of the early staging of ALD and ASH [79,80]. Hepatic macrophages from ALD
patients have been documented to accumulate within the portal tract and function as reg-
ulatory signals in the immune microenvironment of the liver [19]. Kupffer cells (KCs) are
inherent macrophages that are distributed in liver tissues [81]. The sensitization of por-
tal vein LPS by hepatic macrophages is believed to be a key mechanism of steatosis, liver
injury, inflammation, and fibrosis in ALD [82]. Mechanistic studies have shown that the
triggering of the CD14/TLR4 receptor complex on KCs by LPS triggers the downstream
IL-1 receptor-associated kinase (IRAK) to produce IL-1β, which subsequently recruits and
activates liver iNKT cells (invariant natural killer T cells) and triggers the inhibitor of the
nuclear factor-κ kinase (IKK) pathway, leading to the release of inflammatory cytokines as well
as chemokines [83–85]. These inflammatory cytokines and chemokines enhance ALD inflam-
mation and alcohol-induced liver injury. KCs activation often leads to oxidative stress, which
leads to ALD organelle stress-sensitive liver cell damage, and a macrophage-induced increase
in granulocyte colony-stimulating factor mediates neutrophil production/release [86,87]. Fur-
thermore, macrophages activate T helper cells to release IL-17 by producing IL-23, which,
in turn, mediates neutrophil production/release through an increase in granulocyte colony-
stimulating factor [88]. Neutrophils are the most abundant innate immune cells in the human
body, and their functions in ALD are complex and diverse [19]. Neutrophils can directly
contribute to the development of inflammation and hepatocyte injury in ALD, while the
cytokines released by neutrophils are important mediators regulating inflammation and tissue
repair [89–91]. Additionally, neutrophils regulate the gut microbiota and bacterial infection in
ALD by killing and phagocytosing pathogenic microorganisms [92]. T cells and NKT cells are
also involved in the pathogenesis of ALD. T cells not only promote disease progression by re-
leasing inflammatory mediators such as TNF-α, IL-1, and IL-17 but also directly damage liver
cells through cytotoxic CD8+T lymphocytes and play a beneficial role in ALD by reducing
inflammation and promoting liver regeneration [10,93–95]. NKT cells in the liver can directly
recognize lipid antigens through surface receptors and TCRs or indirectly activate APCs (such
as KCs, hepatocytes, and myeloid DCs) to secrete TLR ligands and cytokines (such as IL-12,
IL-4, and IFN-γ) [94,96,97]. In addition, type I NKT cells induce inflammation and neutrophil
recruitment, leading to liver tissue damage, while type II NKT cells have a protective effect
against ALD damage [98]. In future studies, targeted interventions and treatment strategies
should be developed based on the complexity and diversity of immune cells function.

2.5. Oxidative Stress

In addition to the aforementioned mediators, several other factors have also been shown
to play important roles in the pathogenesis of alcohol-associated liver disease. Notably, oxida-
tive stress in the liver has been recognised as a hallmark feature of ALD, with highly reactive
free radicals produced by ethanol and its metabolites promoting liver tissue damage [99].
After being absorbed through the gastrointestinal tract, only 2–10% of the total intake of
alcohol is directly excreted through sweat, etc., in the form of ethanol [100]. Most alcohol is
metabolized in the liver, and the major oxidative pathways involve ethanol dehydrogenase
(ADH) and aldehyde dehydrogenase (ALDH) and cytochrome P450 in the microsomal ethanol
oxidation system [5,100,101]. First, ethanol is oxidized to acetaldehyde by ADH in hepatocytes,
a reaction that requires a reduction in nicotinamide adenine dinucleotide (NAD+) to NADH
as an intermediate carrier [102]. After oxidation, most acetaldehyde is catalysed to acetate
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by NAD+/NADH via ALDH in mitochondria [103]. With the production in acetaldehyde
and in the NAD+: NADH REDOX ratio, the glutathione (GSH) transport through the inner
mitochondrial membrane is impaired, thus reducing the antioxidant reserve of cells [104]. Cy-
tochrome P450, including CYP2E1, generates reactive oxygen species (ROS) through alcohol
metabolism, such as hydrogen peroxide (H2O2), superoxide anion (O2−), and hydroxyethyl
(·OH), and can react with acetaldehyde, leading to the formation of acetaldehyde protein
adducts [105–107]. All of these changes increase the risk of tissue damage [107]. Acetaldehyde,
on the other hand, is also responsible for the production of reactive oxygen species, which
cause oxidative stress, endoplasmic reticulum stress (ER stress), and steatosis [108]. Hepatic
oxidative stress also stimulates the development of hepatic inflammatory responses, creating
a pathological cycle that promotes the progression of ALD [99]. Additionally, alcohol intake
induces ER stress followed by the production of proinflammatory mediators and DAMPs that
activate the nuclear translocation of cyclic AMP response element-binding protein H (CREBH)
and nCREBH [10]. Another consequence of ER stress is the activation of lipogenic pathways in
hepatocytes, particularly through SREBPs, followed by the upregulation of the predominant
form of FSP27-β [109,110]. The interaction of FSP27 with lipid droplet membrane proteins
promotes lipid droplet formation and steatosis. Furthermore, ethanol intake promotes the
translocation of FSP27 to mitochondria and leads to mitochondrial damage and hepatocyte
death [10]. All of these factors lead to hepatic neutrophil infiltration and liver inflammation.

3. Current In Vivo Models of ALD

Animal models can provide profound experimental strategies that are difficult to
complete in clinical studies and can help to reveal the pathogenesis of human diseases.
Rodent models have become the preferred experimental models for the preclinical studies
of human diseases in many fields, including in ALD, due to their relatively low cost, shorter
gestation time, shorter fecundity, and, perhaps most importantly, ease of handling of gene
manipulation.

3.1. Lieber–DeCarli Model

The Lieber–DeCarli model is one of the most frequently used rodent experimental models
in the study of early ALD (Table 1). The control liquid diet consists of a mixture of protein (15%
of total calories), fats (36% of total calories), carbohydrates (49% of total calories), vitamins, and
salts, with alcohol replacing 35.5 percent of the total calories allocated for carbohydrates in the
ethanol-containing formula diet (LDE diet) [111,112]. The Lieber–DeCarli model consists of an
initial domestication phase of approximately 7 days, with ethanol gradually increasing from 0
to the final concentration (5% ethanol w/v). After the acclimatization feeding is completed,
feeding with the LDE diet is continued for 4–12 weeks [111]. When animals were freely
fed the Lieber–DeCarli diet (5% ethanol w/v) for a long period of time, the blood alcohol
concentration (BAC) of rodents reached 100~150 mg/dL and the plasma ALT and AST levels
of the animals were significantly increased, which was accompanied by a six-fold increase
in liver triglyceride levels, causing mild liver damage [13,113]. In this model, rodents can
overcome their aversion to alcohol when they are given only a liquid diet containing ethanol
without any edible food or drink. At this point, the rodents consume approximately 15 g/kg
of ethanol per day [111,114]. The advantages of this model are that it is economical, is simple
to operate, does not require special surgical skills or expensive equipment, and has a very low
mortality rate [112]. As a mild long-term feeding mode, it is often used in the early stages of
ALD research [13].

It is worth noting that the drinking pattern of this model is different from human
drinking habits because the rodents are forced to drink alcohol when they are hungry and
thirsty and they switch from eating solid food and water regularly to a liquid diet, thus
inducing some changes in physiological phenomena [13,115]. In addition, this model can
only induce mild steatosis in rodents but rarely causes liver inflammation and fibrosis and
fails to induce advanced ALD (cirrhosis and HCC), which has obvious limitations in the
reproduction of ALD progression [12,115,116].
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Table 1. Comparison of rodent models of alcohol-associated liver disease.

Rodent Models Feeding Mode Pathological Features Advantages and Disadvantages References

Model Using Alcohol Alone

Lieber–DeCarli model Chronic ethanol feeding
(4–12 weeks)

ALT and AST levels were elevated, and it
caused a certain degree of liver damage but

rarely caused liver inflammation.

Easy to perform mild steatosis
Short-term feeding with no

mortality rate
[12,13,111,114]

Tsukamoto–French model Intragastric infusion (2–3 months)
ALT levels were significantly elevated, and it
led to severe steatosis, fibrosis, and cirrhosis

with focal necrosis and immune cell infiltration.

Difficult to perform the requirement
for intensive medical care

Long-term feeding with a high
mortality rate

[117–124]

The chronic plus binge model
LDE diet plus

a single
binge or multiple binges

ALT and AST levels were significantly elevated,
it caused fatty liver and inflammation as well
as neutrophil infiltration, and aged mice were

more susceptible to liver damage and
inflammation.

Easy to perform
Short-term (10 d) feeding with no

mortality rate
Long-term feeding plus multiple
binges with a high mortality rate

[11,101,115,125–128]

Second Hit Models

HFD plus ethanol
3dHFD plus

ethanol
or 3mHFD plus ethanol

ALT and AST levels increased obviously, it
induced acute hepatitis and injury, and it

increased the infiltration of liver neutrophils
and reduced liver macrophages.

This model needs a longer
modelling period

Simulates acute steatohepatitis in
obese alcoholics

[18,129,130]

Iron carbonyl plus ethanol

Ethanol plus iron carbonyl (0.12%
w/v for the first week, 0.25% w/v

for the second week and beyond, for
16 weeks)

ALT and AST levels increased obviously, and it
resulted in moderate to severe fatty liver as

well as central necrosis and inflammation of the
liver lobules, liver fibrosis, and even cirrhosis.

Time-consuming and costly
Overcomes the animals’ natural

aversion to ethanol
Showed most of the disease course

and liver pathology of ALD

[118]

LPS plus ethanol

Alcohol gavage (6 g/kg bw) plus
LPS (10 mg/kg bw)

The levels of ALT and AST were significantly
increased, increasing the degree of necrosis and

hepatic neutrophil infiltration.
Easy to perform severe steatosis and

inflammation

[16,131,132]

LDE diet for 4 weeks, 5% ethanol
w/v gavage plus intraperitoneal

injection of LPS (2 mg/kg)

Liver sections also showed lipid droplet
accumulation and enhanced liver damage, with
distinct areas of necrosis and inflammatory cell
infiltration. Moreover, the levels of ALT were

significantly increased.
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Table 1. Cont.

Rodent Models Feeding Mode Pathological Features Advantages and Disadvantages References

CCl4 plus ethanol

LDE diet plus CCl4 injection
(0.5 µL/kg, once every 3 days for

8 weeks)

This resulted in an exacerbation of hepatic
fibrosis, characterized by increased activation

of HSC. Easy to perform liver fibrosis
Toxic components

Long-term model showed most of
the disease course and liver

pathology of ALD, but it was
time-consuming

[17,133–137]

Inhaling CCl4 plus ethanol for 7 wk
(4% in the first week, 8% in the

second week, and 16% afterwards)

It caused significant fibrosis within 4 weeks
and strong proinflammatory reaction.

Intraperitoneal injection of CCl4
(0.2% mL/kg for 28 weeks)

combined with LDE diet (containing
5% v/v ethanol for 10 weeks)

It caused hepatic steatosis, inflammation,
fibrosis, hepatocyte swelling, and tumour

nodules in mice.

APAP plus ethanol
APAP (300 mg/kg bw) plus ethanol
4 g/kg every 12 h × 5 doses or three

weekly ethanol binges

Significantly elevated ALT and AST levels,
causing infiltration of erythrocytes in the space

of Disse at 2 h after APAP treatment.

Displayed severe hepatotoxicity and
early ALD features in the short term [138]

DEN plus ethanol

LDE diet plus DEN (75 mg/kg for
first three weeks and 100 mg/kg for

the next three weeks)

Liver damage continued to increase and
eventually showed increased recruitment of
precancerous liver macrophages with mixed

M1/M2 phenotype.

Reflected alcohol-induced HCC in
terms of histology and genetics

[139,140]DEN10 (mg/kg) was injected
intraperitoneally in 2-week-old mice

and LDE diet (4.8% alcohol for
3–7 weeks) was given at 3 months

of age

Alcohol intake significantly increased the
number of surface tumours in mice.

Visible superficial tumours were
induced and serum

alpha-fetoprotein levels increased to
3 times the normal level
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3.2. Tsukamoto–French Model (TF Model)

The Tsukamoto–French model overcomes the rodents’ natural aversion to alcohol
and allows for the better control of alcohol consumption in animals, resulting in more
severe liver damage [13]. In this model, an implanted gastric tube and fluid pump are
used to infuse the animals with a liquid diet containing ethanol daily, with the ethanol
accounting for 49% of total calories [117,119]. After 1 month of infusion (22–35 g/kg/d),
the animals developed severe hepatic steatosis and focal necrosis, with a mean BAC of
about 300 mg/dL, accompanied by a significant increase in their ALT and AST levels [123].
Notably, the TF model also allows for the easy manipulation of nutrient content to create
the desired liver injury model. Dietary ethanol (32–47% of total calories) combined with
polyunsaturated fats (25% of total calories) led to the further development of steatohepatitis
in rodents, with fibrosis beginning to be observed within 30 days and liver fibrosis in all
animals after four months [120]. In 2015, the Tsukamoto–French team developed a new
hybrid model based on the original alcohol gavage model. After the animals had been fed
a Western diet (high in cholesterol and saturated fat) for 2 weeks, a gavage catheter was
implanted for ethanol infusion. During the 8-week model period, the ethanol intake was
gradually increased to 27 g/kg per day, and from the second week onwards, alcohol binge
(4–5 g/kg) was carried out once a week [7]. Among them, the repeated administration of
the ethanol to the animals triggered a transition from chronic ASH to acute AH. This model
shows the clinical features of alcoholic hepatitis, such as splenomegaly, hypoalbuminemia,
and hyperbilirubinemia, for the first time [7].

In conclusion, the TF model induces a liver injury process similar to human ALD in
rodents, including progressive steatosis, fibrosis, and liver cirrhosis characterized by focal
necrosis and immune cell infiltration [13,120]. While the TF model did cause more severe
liver damage compared to other models, there are several potential drawbacks. The surgical
insertion of gastric tubes into the animals and the subsequent months of care require a high
level of technical and maintenance [13]. Its technical difficulties and the large amount of
equipment required make the TF model expensive and unable to be implemented in all
laboratories [121,124].

3.3. The Chronic Plus Binge Model

The original chronic plus binge model (known as “Gao-Binge” or the NIAAA model)
was developed by Gao Bin’s team [141]. The pattern includes single or multiple binge
drinking, similar to the drinking pattern of many alcoholic hepatitis patients who have a
background of long-term (chronic) drinking and a recent history of excessive drinking [125].
In 2010, a short-term plus binge ethanol feeding model was applied to mice for the first
time [141]. In this model, the mice were fed the Lieber–DeCarli control diet for 5 days
followed by the LDE diet (containing 5% ethanol) for 10 days, while the BAC was approxi-
mately 180 mg/dL. On the 16th day, the mice were administered a single dose of ethanol
(5 g/kg, 20% v/v) by gavage [115,141]. The highest BAC level was 400 mg/dL after a single
binge. The mice were euthanized after 9 h of alcohol binge drinking, and the peak levels
of ALT and AST were approximately 250 IU/L and 420 IU/L, respectively, accompanied
by obvious liver injury [11,141]. In 2013, the model was incrementally increased with
ethanol (1–5% of liquid diet) over 5 days of adaptive feeding, and the concentration of the
ethanol solution was adjusted to exceed 31.5% (v/v) by in-gastric administration [115]. In
2015, the team improved the ethanol chronic plus binge feeding model. During chronic
feeding, the mice were fed with the LDE liquid diet from 10 days to 12 weeks combined
with a single insufflation (5 or 6 g/kg) or LDE diet for 8 weeks plus multiple binges of
ethanol (5 or 6 g/kg, twice a week for 8 weeks) [110]. Compared to the previous 10-day
LDE plus one alcohol binge feeding model, increasing the duration of chronic feeding and
the frequency of binge drinking periods caused more severe ASH and mimicked some
aspects of early steatohepatitis in AH patients, including serum ALT and elevated AST
levels, steatosis, neutrophil infiltration, and mild barbed wire fibrosis [110]. In recent years,
the NIAAA model was improved. After chronically feeding mice with the LDE diet for
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4–7 weeks, combined with a single binge (5 g/kg) or multiple binges (5 g/kg, 31.5% v/v,
3 doses, 12 h apart), the improved model increased the animals’ BAC levels, ALT and
AST levels, inflammation, and neutrophil infiltration [112]. In addition, it was found that
when mice of different ages were used for the NIAAA model, the aged mice (>16 months)
were more susceptible to liver damage, inflammation, and even fibrosis caused by alcohol
overdose, which may be related to the fact that aging can aggravate the process of ALD by
downregulating the SIRT1 in hepatic stellate cells, hepatocytes, and neutrophils [128,142].
In a rat model of chronic plus binge drinking, ethanol concentrations were increased from
1.25% to 5% during acclimation feeding, followed by 4 weeks of the LDE diet, in combi-
nation with repeated binge drinking (32% v/v, 3 gavages, 12 h apart) [141]. This model
induces hepatic steatosis in rats, significantly increases BAC levels, and increases hepatic
oxidative stress and proinflammatory cytokine production, leading to hepatic steatosis and
inflammation [11,125,142]. This model significantly elevates BAC levels and increases liver
oxidative stress and the production of proinflammatory cytokines, leading to liver steatosis
and inflammation [11,126].

In the chronic plus binge model, alcohol binge can accelerate the metabolism of alcohol
and the development of its metabolite acetaldehyde in the liver within 2–3 h [127]. Earlier
studies have found that when compared to long-term or binge drinking alone, the chronic
plus binge model can significantly upregulate the expression of IL-1β and TNF-α in the
liver and induce the accumulation of liver neutrophils, but it does not induce macrophage
infiltration [14]. It is worth noting that recent studies have shown that this model can also
increase the number of iNKT cells in the liver and induce their activation [83,143].

The chronic plus binge drinking model reproduces the drinking behaviour and
acute/chronic liver injury of ALD patients and has been widely used to study the pathogen-
esis of ASH and mild AH [10,115]. In the chronic plus binge drinking model, the short-term
model is simple to manipulate and inexpensive and reproduces ASH well but does not
induce fibrosis. In the long-term model of 8–12 weeks, significant steatosis, inflammation,
and mild fibrosis can be induced, but the economic and care costs of the model increase
due to the relative effort involved in long-term feeding.

3.4. Second Hit Models

If the pathology of human ALD is to be reproduced more accurately, it is necessary
to provide a second hit in an animal model. In current research, well-known second hits
include nutritional modification, an agonistic/xenobiotic second hit, viral infection, and a
genetic second hit [15].

3.4.1. Nutritional Second Hit

Nutritional modification is one of the most common environmental secondary attack
methods. Both a high-fat diet and excessive alcohol consumption initially contribute to
the development of hepatic steatosis, and combining a high-fat diet (HFD) with alcohol
consumption is one of the most basic nutritional regulation approaches [15,130]. In the
model developed by Chang, mice were fed an HFD for 3 days or 3 months followed by a
single dose of ethanol gavage on the last day (5 g/kg, 3d-HFD+ 31.25% ethanol or 3m-HFD+
53% ethanol) [129]. Studies have shown that short-term and long-term HFD plus acute
ethanol binge can lead to significant liver neutrophil infiltration, reduced liver macrophages,
and increased ALT and AST levels in mice. The trend for the long-term models is more
obvious [11,129]. In addition to this, this study suggests that obese alcoholics may be more
likely to advance from steatosis to advanced ASH [18]. The model successfully simulates
acute steatohepatitis in obese alcoholics but requires a longer modelling period.

In addition, the liver plays an important role in maintaining iron homeostasis in the
body [144]. In the iron plus alcohol intake model, the carbonyl iron method mainly imple-
ments iron loading in hepatocytes, in which iron catalyses and promotes liver oxidative
stress and damage [15,118]. Accordingly, hepatic iron overload is prone to the development
of ALD [145]. In the rodent ALD model, the second hit of iron significantly aggravated
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alcoholic liver damage and promoted the formation of alcoholic liver fibrosis [15]. Giving
rats a long-term implanted gastric catheter and adding iron carbonyl (0.12% w/v in the
first week and 0.25% w/v after the second week) to a high-fat diet (25% of total calories)
combined with an ethanol (49% of total calories) diet, after 16 weeks of feeding, the serum
levels of ALT and AST in rats rose to 2–3 times those of rats fed a normal diet, resulting in
moderate to severe fatty liver as well as focal lobular central necrosis and inflammation,
with some animals developing liver fibrosis and even cirrhosis [118]. As this model uses a
gastric catheter to ingest the diet, the cost of care and the required equipment is high [13].
However, it has the advantage of overcoming the animals’ natural aversion to ethanol and
inducing ASH, AH, liver fibrosis, and even cirrhosis within 16 weeks.

3.4.2. Agonistic/Xenobiotic Second Hit

Common exogenous stimuli for the second hit include LPS, CCl4, acetaldehyde com-
pounds, acetaminophen (APAP), and N-Nitrosodiethylamine (DEN). The original LPS
plus ethanol model was developed by Bhagwandeen et al. Rats were fed an LDE diet for
10 weeks and then injected intravenously with LPS (10 mg/kg). Chronic ethanol combined
with low-dose LPS can cause hepatocyte necrosis and neutrophil infiltration in rats with
severe steatosis. The final BAC level of rats was approximately 90 mg/dL [16]. In recent
years, a variety of alcohol binge drinking models combined with LPS have been estab-
lished. When mice were administered alcohol (6 g/kg) by gavage for three consecutive
days and the intraperitoneal injection of LPS (10 mg/kg) was performed 24 h after the last
alcohol gavage, the degree of liver necrosis and hepatic neutrophil infiltration as well as
the levels of ALT and AST were significantly increased (~400 U/L) [131]. In another model,
ALT levels were also significantly increased after the mice were administered an LDE
diet for 4 weeks, followed by one intragastric administration of ethanol (5% v/v) and an
intraperitoneal injection of LPS (2 mg/kg). Mouse liver sections also showed lipid droplet
accumulation and enhanced liver damage, with distinct areas of necrosis and inflammatory
cell infiltration [132]. In conclusion, the LPS plus ethanol model can induce significant lipid
accumulation, inflammation, and liver damage in rodents in a short period of time [146].
Moreover, this model has the advantage of being inexpensive and easy to implement in
most laboratories.

The ethanol plus CCl4 model for alcoholic liver fibrosis is considered to be a classic
model. The mice are injected with CCl4 (0.5 µL/kg, once every 3 days) in the intraperitoneal
cavity within eight weeks, and this is combined with an LDE diet [17,133]. This model
shows a correlation pattern similar to that of human alcoholic cirrhosis while showing
the accompanying process [133,134]. In a recently developed ethanol plus CCl4 model,
liver damage was caused in mice through the inhalation of CCl4 (once a week for the
first 4 weeks and twice a week for the following 3 weeks), and ethanol was added to the
drinking water (4% during the first week, 8% during the second week, and 16% until the
final week).

The inhalation of CCl4 can cause significant fibrosis within 4 weeks and a strong
proinflammatory reaction within 7 weeks [135]. The model-induced fibrosis, inflammation,
and steatosis in the mice was similar to human alcoholic liver fibrosis [136]. In addition,
Wonhyo Seo et al. successfully induced HCC using an alcohol diet plus CCl4. Severe liver
fibrosis was first induced in mice by the intraperitoneal injection of CCl4 (0.2 mL/kg olive
oil, twice weekly) for 18 weeks, followed by a combination of an LDE diet (4% v/v) and
CCl4 injection for a further 10 weeks. After 28 weeks of alcohol plus CCl4 administration,
liver histopathology in mice showed steatosis, inflammation, fibrosis, the ballooning of hep-
atocytes, and tumour nodules [137]. The ethanol plus CCl4 model successfully reproduces
most of the disease course and liver pathology of ALD, and although it is time-consuming,
it is simple to operate and inexpensive to care for and is a common model for alcoholic
liver fibrosis.

In addition, in the ethanol plus APAP model, mice were gavaged with ethanol (4 g/kg
of ethanol every 12 h for 2.5 d), and 12 h after the last binge, they were injected with APAP
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(150 and 300 mg/kg) by oral gavage [138]. In another study, mice were fed an LDE diet
containing 5% EtOH (5% v/v) for 15 days (including 5 days of acclimatization feeding) and
on the last day were given the corresponding EtOH gavage (5 g/kg, 31.5% v/v) and an
intraperitoneal injection of APAP (200 mg/kg). The study showed that this model increased
inflammatory secretion, lipid accumulation, and oxidative stress in mice, accompanied
by a significant increase in ALT and AST levels [147]. This ethanol plus APAP model can
reproduce the characteristics of early ALD in a short period of time and is commonly used
in studies of drug hepatotoxicity.

DEN is an alkylating agent of DNA bases that induces gene expression patterns in
mouse tumours that resemble the poor prognosis subclass of human liver cancer [148,149].
Therefore, DEN combined with an LDE diet is often used to feed mice to reproduce
the HCC model. The specific protocol is to inject 75 mg/kg of DEN intraperitoneally
every week for the first three weeks and then to adjust the DEN dose to 100 mg/kg for
the next three weeks followed by 7 weeks of the LDE diet. During this process, liver
damage continued to increase in mice and eventually showed an increased recruitment of
precancerous liver macrophages with a mixed M1/M2 phenotype [150]. Another relevant
model was an intraperitoneal injection of DEN (10 mg/kg) in 2-week-old mice. Mice were
then administered an LDE diet (4.8% alcohol) at 3 months of age for 3–7 weeks. In this
model, ethanol plus DEN induced visible superficial tumours in mice, and the serum alpha-
fetoprotein levels increased to three times those of normal mice [140]. The ethanol plus
DEN model is simple to operate, inexpensive, and histologically and genetically reflective
of alcohol-induced HCC, making it one of the commonly used models for HCC.

3.4.3. Viral and Genetic Second Hit

The genetic second hit includes two aspects: enhancing the function of suspected
pathogenic genes to promote the damage mechanism and the reduction in or loss of
the function of protective genes that make the liver sensitive to the harmful effects of
alcohol [15]. At present, hepatitis B virus (HBV) and hepatitis C virus (HCV) are still
the most important risk factors for HCC worldwide [151,152]. According to the research,
HCV-positive patients who drink alcohol will develop from liver fibrosis and cirrhosis to
HCC faster than those who do not drink alcohol [153,154]. These two factors synergistically
affect the immune response, cytotoxicity, and oxidative stress to accelerate a series of events
leading to liver cirrhosis and hepatocellular carcinoma [155,156]. Ethanol was added to
the drinking water of 2-month-old HCV core transgenic mice at an initial concentration of
5%, which was increased by 5% to 20% every two weeks until the mice were 10 months
old. The 10-month-old mice were administered water and a 25% ethanol solution (ethanol
intake was 2.5 g/kg) through gastric intubation for 24 h. The results showed that alcohol
consumption increases hepatic lipid peroxidation and synergizes with the HCV core protein
to increase hepatic TGF-β and TNF-α gene expression, indicating that the model simulates
the accelerated development of fibrosis observed in HCV-infected alcoholics [154].

Correspondingly, HBV infection is also a risk factor for hepatocellular carcinoma and
liver-related death in patients with ALD [157]. HBV-Tg mice containing the intact HBV
genome were fed a Lieber–DeCarli liquid diet containing ethanol (5% v/v) for 4 weeks.
The ethanol content of the liquid diet was then adjusted to 7% v/v for the next 4 weeks.
Eight weeks of feeding resulted in increased lipid droplets in the liver tissue of the mice,
accompanied by increased triglyceride and cholesterol levels. It was shown that HBV and
alcohol diet synergistically induced abnormal hepatic lipid metabolism in mice, leading to
alcoholic fatty liver [158].

Although second-hit models are well suited to induce early- and late-stage ALD in
animals, there are differences in the pathogenesis of liver injury caused by the combination
of ethanol and a second liver-damaging substance, compared to liver injury caused by
ethanol alone [9]. It is preferable for the second hit to be “natural”, as a model that knocks
out a gene or includes excessive drug treatment will not fully reproduce the characteristics
of human ALD. Future research requires more second-hit models that are similar to the
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human natural living environment to help understand the pathogenesis of ALD and
discover new therapeutic targets.

3.5. Other Animal Models of ALD

Nonhuman primates (monkeys and apes) have long been regarded as important labo-
ratory animals for the study of biomedical disease processes [159]. Because they are similar
to humans in genetics, anatomy, behaviour, and physiology, they can be used to bridge the
translational gap between rodent and human research [160,161]. In an initial study, baboons
were given ethanol (36% of total calories) as part of their drinking water and maintained on an
adequate diet by being fed special high-protein biscuits, but even after 3 years only steatosis
could be observed and no alcoholic hepatitis or cirrhosis was detected [162]. The researchers
therefore adjusted the alcohol intake in the liquid diet to 50% of total calories, combined with
protein (18% of total calories), fat (21% of total calories), carbohydrate (11% of total calories),
and a moderate amount of vitamin supplements [162]. Baboons consumed an average daily
diet of 81 ± 3 mL/kg and developed alcoholic hepatitis after 9–12 months on an oral liquid
diet, with marked hepatic steatosis, hepatitis, and extensive fibrosis accompanied by TC levels
up to 205 mg/kg at 20–21 months and complete cirrhosis after 24 months on an alcoholic
diet and BAC up to 260–367 mg/dL [163]. Additionally, the study showed that the baboons
in this model did develop severe liver lipid deposition under self-feeding conditions. This
suggests that differences in alcohol-induced hepatic lipid deposition thresholds appear to
be alcohol intake in the form of a liquid diet (lower incidence) or self-administration (higher
incidence) [161,164]. In a recent study, a model of ethanol self-administration in nonhuman
primates was used [165,166]. The animals were first induced to self-administer EtOH by
increasing the dose of EtOH in the drinking water by 0.5 g/kg every 30 days for three months,
from 0 g/kg/d to 1.5 g/kg/d. In this way, all rhesus monkeys had a BAC of over 50 mg/dL.
After a 3-month ethanol induction period, the animals were given “open access“ to ethanol
(4% w/v) and water for 22 h per day for 24 months [165]. In this model, animals developed
ALD at 18 months into the diet, exhibiting steatosis and liver inflammation accompanied by
elevated liver enzymes (including ALT, AST, and alkaline phosphatase) and significant oxida-
tive stress [165,167,168]. Nonhuman primate models can show pathophysiological processes
similar to those in humans and can show ASH, AH, and liver fibrosis and even complete
cirrhosis in long-term models [163,167]. However, these animals are somewhat aggressive
after alcohol consumption and the models are too time-consuming and expensive to use in
many laboratories, both economically and in terms of care [161].

In addition, the zebrafish has emerged as a powerful vertebrate model for studying
liver-related diseases. Although the structure of the zebrafish liver is different from that
of mammals, it is functionally similar to 70% of human disease genes and exhibits very
similar basic physiological processes, genetic mutations, and pathogenic responses to
environmental damage consistent with humans [169]. Zhou et al. used transgenic zebrafish
larvae (Tg (lfabp10α: eGFP)) at 96–98 h post-fertilisation, exposed to a 2% ethanol solution
and incubated for 32 h at 28 ◦C in an incubator. Zebrafish larvae showed hepatomegaly
lordosis and emaciation, accompanied by severe lipid accumulation and oxidative stress
in the liver tissue [170]. In addition, the transcription levels of genes related to fatty acid
metabolism and balance in the liver tissue of zebrafish larvae were altered and alcohol
metabolism was accelerated, resulting in liver damage and reduced toxic metabolism [169].
In another study, 8-month-old adult male zebrafish were treated with water containing 0.2%
ethanol (v/v), replacing the ethanol-containing water in the incubator every morning. After
4 weeks, histological analysis revealed ballooned hepatocytes and mild fibrosis in low-dose
ethanol-treated zebrafish, accompanied by high ALT levels (200 IU/L) and high triglyceride
levels (300 mg/dL) and elevated BAC levels to 0.175% [169,171]. Compared to rodent and
nonhuman primate models, zebrafish have a different liver anatomy and framework,
and their less conservative physiology and morphogenesis are major drawbacks to their
use in biomedical research [169,172]. However, because of its high reproductive rate,
affordability, and ease of maintenance, and the convenience it offers in terms of genome
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editing, with fewer ethical constraints, zebrafish have a great advantage in the study of
ALD models [173,174].

4. In Vitro Model

Most of what we currently know about liver disease in humans comes from animal
models. However, animal models are not able to fully reproduce human ALD process,
highlighting an area where appropriate in vitro models can complement ALD models to
further understand key developmental and pathological mechanisms.

4.1. Two-Dimensional (2D) Monolayer Cell Cultures Model

In the past 50 years, two-dimensional (2D) monolayer cell cultures have commonly
been used in in vitro models to study cell biology [175]. The composition of the liver can be
divided into two main types of cells: epithelial-derived parenchymal cells, namely hepatocytes
and bile duct cells, and nonparenchymal cells, which are mainly composed of KCs, hepatic
endothelial cells, and hepatic stellate cells [176,177]. Ethanol, LPS, and palmitic acid (PA)
are commonly used stimuli when culturing these cells to construct an in vitro ALD model
(Table 2). When EtOH was used as a stimulus, lipid accumulation was induced in AML-12
cells and HepG2 cells after incubation with 100 mM ethanol for 24 h, resulting in an increase
in cellular TG levels, fatty acid synthase (FASN), and sterol regulatory element-binding
protein-lc (SREBP-1c) mRNA expression [178–180]. In addition, ethanol can also induce severe
oxidative stress by inducing CYP2E1 overexpression in HepG2 cells, which is manifested as
a decrease in glutathione (GSH), an increase in ROS in whole-cell lysates, and superoxide
in the mitochondria [179,181]. In previous studies, hepatocytes and liver macrophages were
exposed to 100 mM ethanol and 50 mM ethanol for 48 h and then treated with 500 ng/mL LPS
for 6 h. This model can cause cellular apoptosis, mitochondrial damage, and the autophagy
response [146,182,183]. EtOH (1 or 5 µg/mL) and PA (400 µmol·L−1) are added to the culture
medium to treat the cells and are left for 24 h in vitro to imitate the HFD plus EtOH model. In
this model, EtOH promotes PA-induced hepatic lipid accumulation and inflammation in rat
primary hepatocytes by activating the ER stress response [74].

With the increasing demand for in vitro models, cell culture methods are developing
towards more realistic imitation. A 2D sandwich structure is a major innovation of 2D culture
technology. Embedding primary human hepatocytes (PHH) into two layers of extracellular
matrix (ECM) proteins provides a stable scaffold that allows hepatocytes to improve cell-
to-cell contact by interacting with two layers of ECM proteins [184]. However, the scarcity
and logistically difficult nature of PHH has prompted researchers to explore alternative
cell sources. In recent years, continuous advances in the stem cell field have offered hope
for the generation of hiPSC-derived hepatocytes as a potential alternative source of PHH,
but great efforts are required to develop standardized protocols [185,186]. hiPSCs have
great potentials as sources of mature hepatocytes. Woo et al. showed that lithium-treated
embryonic stem cells (ESCs) differentiated into cells with hepatocyte-like morphology and
expressed albumin and keratin in response to a combination of hepatocyte growth factor,
tumour suppressor M, and dexamethasones [187]. Furthermore, Takebe et al. reported that
hiPSC-derived hepatic endoderm cells were cultured with human umbilical vein endothelial
cells and human mesenchymal stem cells to form a three-dimensional spherical tissue mass
(induced pluripotent stem-cell-derived liver buds) that expressed the early liver markers
gene [188].

The 2D monolayer cell culture is inexpensive and easy to maintain and is the most
widely used method for the in vitro modelling of the liver as an alternative to animal
models for drug safety and screening for early drug candidates [189]. Nevertheless, current
2D cell models are limited to the short-term analysis of hepatotoxicity. This is because even
when cultured in an improved 2D sandwich, the 3D environment of the ALD liver cannot
be accurately reproduced due to the short lifespan and dedifferentiation process of the
cells [190].
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Table 2. Comparison of models of alcohol-associated liver disease in vitro.

Models Stimuli Cell Strain Related Indicators Characteristic References

2D monolayer cell culture
model

Ethanol (100 mM, for 24 h) HepG2
AML-12

Increased cellular TG levels
as well as FASN and
SREBP-1C expression

Elevated CYP2E1 expression
in HepG2 cells, resulting in

increased GSH, ROS and
superoxide in mitochondria

Easy to execute
Can cause lipid accumulation
and oxidative stress in cells

[178–180]

Ethanol (100 mM, for 48 h)
plus LPS (500 ng/mL, for 6 h)

RAW264.7 cells
Peripheral blood monocytes

(PBMCs)

TLR4 protein concentration
Marked elevation in ROS

production
Increased release of

inflammatory factors

Easy to perform
Can cause cellular apoptosis
and mitochondrial damage

and autophagy response

[146,182,183]

1 or 5 µg·mL−1 ethanol plus
PA (400 µM, for 24 h)

Primary rat hepatocytes

Significantly increased
expression of CHOP, ATF4,

and XBP-1 in the nucleus and
increased caspase-3
fragmentation in the

cytoplasm

Increased lipid accumulation,
endoplasmic reticulum stress,

and caspase activation
[74]

3D cell culture model
Add ethanol (100 Mm) to the
culture medium and culture

for 7 days

Integrate hFLMCs into
hEHOs

Increased activity of CYP2E1
and CYP3A4

Extracellular matrix
deposition and apoptosis and

oxidative stress
[191,192]

Liver-on-chip

Sterile filtered ethanol
(60 mM, for 48 h)

HepG2, LX-2, EAhy926, and
U937 cells

Measured biomarkers
including Ve-cadherin, eNOS,

VEGF, and α-SMA to
understand the cell-to-cell
communication between

different types of hepatocytes
during ALD

Increased the activity of liver
cancer cells and maintained

high liver function
[193,194]

Perfuse the chip with ethanol
plus LPS (133 mM for 48 h)

Primary hepatocytes, LSECs,
and Kupffer cells

Significantly increased
expression of

proinflammatory cytokines
interleukin-6 (IL-6) and

TNF-α, and expression of
MRP2 in large plaques

Intracellular accumulation of
lipids, development of
oxidative stress, and
cholesterol synthesis

dysregulation

[195,196]
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4.2. Three-Dimensional Cell Culture and Liver-on-Chip Model

The complex structure of the liver cannot be completely simulated by monolayer cell
culture systems. Therefore, combining different cell types in a functional three-dimensional
(3D) structure can overcome the shortcomings observed when liver cells are cultured in
2D structures [197]. This is crucial for coordinating the liver’s specific response to injury
and toxic compounds. In recent years, organoid technology has emerged as an in vitro
3D system to reproduce tissues in petri dishes, and liver organoids have been successfully
established from primary liver tissues [198,199]. Recently, Wang et al. developed an
in vitro organoid model system that can reproduce the typical characteristics of ALD
pathophysiology by integrating human foetal liver mesenchymal cells (hFLMCs) into
expandable hepatic organoids (hEHOs). The team used hFLMCs/hEHOs to prepare
an in vitro ALD model, and ethanol (100 mM) was added to the culture medium and
cultured for 7 days. Compared to the untreated control group, the ethanol-treated organoid
group showed several characteristics of alcohol-induced liver injury, such as obvious
increases in CYP2E1 and CYP3A4 activity, extracellular matrix deposition, apoptosis,
and oxidative stress [191,192]. The 3D cell culture system is simple to operate, provides
a microenvironment that is more similar to the living conditions in vivo for cells, and
displays cell activities such as differentiation and intercellular reactions. Therefore, it can
realize the real cell biology and function, accurately establish the target tissue model, and
effectively predict the course of disease and drug response [190].

In a recent study, a new in vitro ALD model was successfully constructed on a chip.
The chip contained cocultured spheres of primary rat hepatocytes and hematopoietic stem
cells. The spheroids were exposed to a medium containing ethanol (60 mM) for 48 h to
demonstrate the damage caused by alcohol [193]. In recent years, a team has developed
a detachable on-chip liver device. The composition of this novel model included HepG2,
LX-2, EAhy926, and U937 cells. It is worth noting that this model can improve the activity
of HepG2 cells and reproduce the process of alcohol damage to hepatic nonparenchymal
cell lines, which is conducive to understanding intercellular communication among various
types of hepatic cells during the progression of ALD [194]. In order to simulate human
ALD, Jang et al. used a liver chip of primary human cells. The composition of this liver
chip included primary hepatocytes, primary hepatic sinusoidal endothelial cells (LSECs),
and Kupffer cells. The ethanol concentrations of 0.08% to 0.16% were selected to simulate
the BAC of human patients after drinking alcohol. Multimodal phenotype and function
analysis was performed on the chip [195]. Based on this study, Janna C. Nawroth et al.
found an increased release of hepatic lipid droplets, mitochondrial reactive oxygen species,
and proinflammatory factors after perfusing the chip with 0.08% ethanol + LPS for 48 h [196].
Liver-on-chip models can be used to reconstruct 3D structures on a microscale to achieve
physiological fluid flow and hepatocellular crosstalk, which can reproduce key features of
the hepatocellular environment and achieve basic liver functions. Therefore, it has been
widely used to study drug-induced hepatotoxicity and liver function and is currently an
effective preclinical tool for tissue engineering and drug screening applications.

5. Discussion

In previous decades, the development of ALD animal models allowed for significant
progress to be made in ALD research [13]. Different ALD models can be used to study the
pathogenesis of ALD at different stages [135,140,200,201]. However, by comparing different
ALD models, we found that in models only using an LDE diet, the main changes in animals
were limited to early ALD (hepatic steatosis and inflammation), while those of more severe
ALD (such as hepatitis and fibrosis) were rarely able to be observed [112]. Alcohol, as a
susceptibility factor for many diseases, can affect the progression of the disease, and in
many cases, this effect is only clinically relevant after secondary injury [13,202]. When the
liver is damaged, alcohol drinkers are more likely to develop fibrosis and cirrhosis [203,204].
Correspondingly, when rodents receive a second hit other than alcohol, liver fibrosis and
cirrhosis will also appear in the liver [15,129,132,133,138,139]. This is also why patients with
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end-stage ALD usually have end-stage viral hepatitis, diabetes, and other comorbidities [15].
However, because of the nonalcoholic effect in the second hit model, the results of the
modelling may be different from the mechanism and pathological changes caused by
alcohol alone [9,205].

Furthermore, although most alcohol-associated liver disease can be achieved in an-
imals by altering stimulating factors and experimental animals, it is currently difficult
to establish animal models of alcohol-triggered HCC that can reproduce pathophysio-
logical processes similar to those of human HCC [206,207]. As a precarcinogen, alcohol-
induced liver inflammation and the related oxidative stress can cause DNA damage in liver
cells [208]. Long-term heavy drinking will support the occurrence and development of tu-
mours through the production of carcinogenic aldehydes and reactive oxygen species [209].
Chronic drinking is an important contributing factor to HCC and coexists with chronic
hepatitis virus infection as the main risk factor of HCC, and furthermore, they can also each
promote the development of the other [152,210]. Thus, more attention should be paid to
comorbidities and the development of animal models with synergistic pathological results
caused by these comorbidities to better study the new mechanisms and therapeutic targets
of ALD [15,206]. In addition, it is also possible to search for mouse models combined with
human HCC genomic data to provide information about the different aspects of the onset
and prognosis of HCC [137,211].

Another point worth noting is that the development of AFL into inflammation is a
prerequisite for early ALD to develop into intermediate and late ALD (fibrosis, cirrhosis,
and HCC) [212]. After it develops into fibrosis, reducing the alcohol supply or other
treatments will not reverse the course of the disease [139]. However, for all stages of ALD,
achieving abstinence is the best treatment strategy [213]. The use of drugs (e.g., disulfiram,
naltrexone, and acamprosate) to reduce alcohol intake and treat alcohol dependence is
an important strategy in the treatment of ALD [214]. In addition, ALD is associated
with hepatocellular damage and liver regeneration disorders [212]. The application of
many hepatoprotectants against oxidative stress and ROS production is also emerging to
protect hepatocytes from damage and to promote liver regeneration [215]. Inflammation
is also a key factor in promoting AH liver injury [216]. Treatment guidelines for EASL
recommend the use of corticosteroids to reduce liver inflammation in patients with severe
AH [217]. Currently, other anti-inflammatory drugs for the treatment of AH are also
in clinical trials, including IL-1 inhibitors (such as anakinra), apoptosis signal-regulated
kinase 1 inhibitors, probiotics, etc. [213,218,219]. In addition to this, epigenetic therapies are
rapidly emerging as promising approaches for the treatment of ALD, including two histone-
modifying enzyme inhibitors (HDAC inhibitors and DNMT inhibitors) and ncRNA-based
therapies [220].

Furthermore, the species, gender, age, and environment of the animals may have
an impact on the construction of the model [10,142,221]. More obvious damage can be
obtained using the same conditions via choosing animals that are more sensitive to alcohol
(such as elderly and female rats) to build a model [221,222]. Interestingly, some changes,
such as increased room temperature, can significantly reduce mortality as well as the extent
of liver damage in the rodents being greatly reduced [10,112]. Therefore, further rigorous
research is needed to clarify the differences in the susceptibility of rodents to ALD in
different environments [10]. At present, rodent ALD models are still ideal and effective
tools for improving our understanding of ALD [205]. Although there are differences in the
degree and stage of ALD between rodents and humans, with continuous improvements
and development in ALD animal models, future models could gradually simulate each
stage and the pathological characteristics of human ALD [9]. A better understanding of
pathological damage by constructing ALD models at different stages could also better help
to prevent and treat disease.
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