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a b s t r a c t

Although computational methods for driver gene identification have progressed rapidly, it is far from the 
goal of obtaining widely recognized driver genes for all cancer types. The driver gene lists predicted by these 
methods often lack consistency and stability across different studies or datasets. In addition to analytical 
performance, some tools may require further improvement regarding operability and system compatibility. 
Here, we developed a user-friendly R package (DriverGenePathway) integrating MutSigCV and statistical 
methods to identify cancer driver genes and pathways. The theoretical basis of the MutSigCV program is 
elaborated and integrated into DriverGenePathway, such as mutation categories discovery based on in-
formation entropy. Five methods of hypothesis testing, including the beta-binomial test, Fisher combined p- 
value test, likelihood ratio test, convolution test, and projection test, are used to identify the minimal core 
driver genes. Moreover, de novo methods, which can effectively overcome mutational heterogeneity, are 
introduced to identify driver pathways. Herein, we describe the computational structure and statistical 
fundamentals of the DriverGenePathway pipeline and demonstrate its performance using eight types of 
cancer from TCGA. DriverGenePathway correctly confirms many expected driver genes with high overlap 
with the Cancer Gene Census list and driver pathways associated with cancer development. The 
DriverGenePathway R package is freely available on GitHub: https://github.com/bioinformatics-xu/ 
DriverGenePathway.

© 2023 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and 
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Cancer is a severe and global disease. Specifically, accumulated 
genetic mutations inducing an imbalance between cell differentia-
tion and apoptosis deregulation is the leading cause of cancer. 
During this process, genes are classified into two categories. Genes 
with mutations responsible for cancer development and progression 
are defined as driver genes [1]. Conversely, passenger genes are 
defined as those with mutations that are coincidentally or subse-
quently acquired from the driver genes. Adequate identification of 

driver genes is the key to gene-targeted therapy for cancers. 
Nevertheless, identifying driver genes directly from the randomly 
mutated genes is a significant challenge since individuals with the 
same cancer type often have different diver genes, i.e. mutational 
heterogeneity. With reliable sequencing genomic data provided by 
projects such as TCGA (http://cancergenome.nih.gov) and ICGC 
(http://www.icgc.org), these observed mutational heterogeneities in 
cancer have motivated the development of driver gene identification 
tools.

MutSigCV[2] and MuSiC[3] are two classical and well-known 
frequency methods that have been cited thousands of times and 
used for performance comparisons by almost all driver gene iden-
tification tools[4–7,8,9]. MutSigCV proposed an effective method to 
overcome the mutational heterogeneity by estimating the back-
ground mutation rate (BMR) for each gene-patient-category 
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combination based on the observed silent mutations in the gene and 
non-coding mutations in the surrounding genes. MuSiC separated 
the drivers from the passenger mutations using various statistical 
methods based on the mapped reads in BAM format, mutation an-
notation format (MAF), a set of regions of interest, and relevant 
clinical data. Such recently published methods for driver gene 
identification also include DriverML[10], PanCancer and PanSoftware 
analysis[11], and nucleotide context-based method[12]. On the other 
hand, since driver mutations typically target genes in a few key 
pathways, several methods examining the combination of mutations 
have been proposed to overcome the mutational heterogeneity. A 
class of de novo methods exploited two combination properties, 
coverage and mutual exclusivity, to effectively distinguish gene sets 
containing driver mutations (driver pathway)[13–16]. The advantage 
of de novo methods is that the input data are easily accessible and 
are not limited by the incompleteness and inaccuracy of the prior 
knowledge database. However, while most tools for identifying 
driver genes have their source codes publicly available, many are not 
user-friendly, and some are only compatible with Linux systems. 
Moreover, the complexity of the input data poses limitations to the 
practical application of these tools. Table 1 shows the details of some 
well-known identification methods in terms of language, supported 
system, availability of code, availability of package and whether 
single data input is supported (Single input data).

To popularize and improve the above identification methods, 
especially MutSigCV, we developed a user-friendly R software 
package (DriverGenePathway) which includes two main functions, 
DriverGene and DriverPathway, to identify driver genes and path-
ways, respectively. Identification of driver genes consists of (i) pre-
processing the MAF file, (ii) BMR calculation, and (iii) identifying 
driver genes based on five methods of hypothesis testing. 
Identification of driver pathways consists of (i) preprocessing mu-
tation data into (0−1)-mutation matrix(if MAF is input), (ii) identi-
fying driver gene sets using (0,1)-mutation matrix based on 
adaptively weighted and robust mathematical programming, which 
is a de novo method, and (iii) evaluating the significance of mutual 
exclusivity for the identified driver gene sets using a permutation 
test. The usage of DriverGenePathway is straightforward. With a 
single command, users can (1) apply MutsigCV more effectively to 
identify driver genes; (2) identify driver genes using the BMR for 
each gene-patient-category and other four methods of hypothesis 
testing including beta-binomial test, Fisher combined p-value test, 
likelihood ratio test, and convolution test; (3) identify significantly 
driver gene sets (pathways). DriverGenePathway has been shown to 
be highly effective and advantageous in analyzing mutation data 
obtained from the TCGA project (Section 3.2).

2. Methods

The statistical methods of DriverGenePathway workflow (Fig. 1) 
are introduced in the following sections. Additionally, users can 
easily access a detailed guide by referring to the vignette file.

2.1. Identification of driver genes

2.1.1. Input Data
The input data of the DriverGene function for identifying driver 

genes include mutation data (mandatory), coverage data, covariates, 
mutation dictionary, and the reference genome. Specifically, muta-
tion data should be MAF, including columns of the gene, chromo-
some, start position, end position, variant classification, 
Tumor_Seq_Allele, and mutation category. It is recommended that 
users download and input coverage, covariates, mutation dictionary 
and reference genome applicable to the mutation data for pre-
processing. Besides, the default four inputs (if NULL) can be auto-
matically downloaded from MutSigCV, which may take some time. 
The default covariate (gene expression level, DNA replication time, 
and HiC compartment) and coverage data can be applied to all 
cancer types. Reference genome sequence defaulted to hg19 should 
be chosen according to the DNA sequencing from MAF.

2.1.2. Preprocessing
Preprocessing is an essential step for identifying driver genes. 

Gene, patient, mutation effect, mutation category, and covariates 
will be processed to generate a uniform format. Columns “gene” and 
“Hugo_Symbol” in MAF are unified as “gene”. Columns “patient” and 
“Tumor_Sample_Barcode” are unified as “patient”. In preprocessing 
the mutation effect, variant classifications (frameshift insertion, 
missense mutation, intron silent, nonsense mutation, etc.) are pro-
jected to the corresponding mutation effects (silent, nonsilent, 
noncoding, null) for future mutation category discovery. Missing 
data in covariates may lead to inaccurate estimates of mutation rates 
and false positives in the list of identified driver genes. To this end, 
we employed a cluster-based approach that begins by clustering 
genes according to their mutation counts across the above four ef-
fects. Once genes are clustered based on this criterion, any missing 
covariate values for a given gene are then estimated by taking the 
mean covariate value of other genes within the same cluster. Fig. 2
illustrates the preprocessing workflow utilized by DriverGen-
ePathway for analyzing mutation data.

Mutation category discovery is a complicated and crucial step of 
preprocessing. We performed the mutation category discovery pro-
cess based on a detailed analysis and summary of the “CATEGORY 
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Table 1 
Summary of well-known methods to identify driver genes and pathways. 

Methods Languages Supported systems Availability of code Availability of package Single input data

AWRMP[15] - - ✓
Dendrix[13] Python Windows & Linux & IOS ✓ ✓
DiSCaGe[17] - -
DriverML[10] R & Perl & Shell & C+ + Linux ✓ ✓
GeNWeMME[18] Python Windows & Linux & IOS ✓
Hier. HotNet[19] Python Linux ✓
LOTUS[20] R Windows & Linux & IOS ✓
MoPRO[21] Python Windows & Linux & IOS ✓
MutSigCV[2] Matlab Windows & Linux & IOS ✓ ✓
MuSiC[3] R & Perl & Python Linux ✓ ✓
OMEN[16] Prolog Linux ✓
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DISCOVERY” in the MutSigCV program(refer to lines 266 ∼ 636 in 
Matlab code). For each mutation, there are four possible base types 
(A, T, G, C) in the mutation site (where the mutation occurs), the left 
site (the left adjacent site to the mutation site), and the right site 
(the right adjacent site to mutation site). Due to the principle of 
complementary base pairing, mutations that occur at a given site can 
be converted to either A or C. the mutation site can be converted to 
either A or C. Mutation types can be (i) transitions in A’s or C’s; (ii) 
transversions in A’s or C’s; (iii) small insertions/deletions, nonsense 
and splice site mutations. In other words, there are thousands of 
possible mutation categories. Only the most valuable mutation ca-
tegories can help to identify the core driver genes. Methods for se-
lecting mutation categories are determined by mutation data, 
coverage data, and the usability of the reference genome sequence. 
Mutation categories discovery for different category numbers (ca-
teg_flag) and methods are as follows. 

1. categ_flag: there are four cases for the number of mutation ca-
tegories as follows:  
(1) categ_flag = 0: If the mutation categories in the mutation 

data and coverage data correspond one-to-one, then 
Method1 will be applied; otherwise, the program stops.

(2) categ_flag = 1: Method2 will be applied.
(3) categ_flag = 2 ∼ 6: If the reference genome file is available, 

then Method3 will be applied; otherwise, program stops.
(4) categ_flag  >  6: Set categ_flag = 6 and Method3 will be applied.
(5) categ_flag = NaN (default value): If the reference genome file 

is available, then set categ_flag = 4 and Method3 will be 
applied; else, if the reference genome file is not available 
and mutation categories in mutation data and coverage data 

correspond one-to-one, then Method1 will be used; other-
wise, Method2 will be applied.

2. Methods: three Methods corresponding to the number of muta-
tion categories (categ_flag) are as follows:  
(1) Method1: mutation category in the mutation data is directly 

used for identifying driver genes.
(2) Method2: mutation categories are classified into only 

“missense” and “null+indel”. In this method, the coverage 
count of “missense” and “null+indel” equals the total mu-
tation count of all 192 categories of the four effects in the 
coverage data. For the mutation data, mutations with the 
effect of “null” are set to the “null+indel” category, and the 
rest are set to the “missense” category.

(3) Method3: steps of Method3 to select mutation categories 
are as follows:  

1. The mutation counts that 64 (4 *4 *4) triplet bases in the 
coding regions mutate to four bases in the coverage data 
is calculated. The triplet bases are the mutation site, the 
left neighbour, and the right neighbour. For example, A 
in C_G means the mutation site is A with left neighbour 
C and right neighbour G. Then, the count of non-coding 
mutations in each gene is calculated and divided by 
three since the mutation site in the middle of each tri-
plet base may mutate to three other bases.

2. The mutation counts that 64 types of triplet bases mu-
tate to four bases in the mutation data is calculated. The 
mutation count is set to 0 for the identical base before 
and after the mutation. For point mutations, the left and 
right of each mutation site are typically determined by 
the reference genome being used for comparison.

X. Xu, Z. Qi, D. Zhang et al. Computational and Structural Biotechnology Journal 21 (2023) 3124–3135

Fig. 1. Workflow of DriverGenePathway package. 
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Fig. 2. Workflow of preprocessing. 

X. Xu, Z. Qi, D. Zhang et al. Computational and Structural Biotechnology Journal 21 (2023) 3124–3135

3127



3. The optimized mutation categories are selected by 
maximizing the entropy (negative-entropy) calculated 
based on the coverage count and the mutation count 
from Step 1 and Step 2. The mutation information en-
tropy of a set of mutation categories with a category 
number of ncat is calculated by

= +
=
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n
N

n
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n
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i

ncat i

tot

i

i

i

i

i

i

i

i
1

2 2
(1) 

where Ntot is the coverage count of all categories; Ni is the 
coverage count of ith category; and ni is the mutation 
count of ith category. Multiple sets of mutation categories 
are randomly initialized, and the corresponding informa-
tion entropy is calculated. The optimized category set is the 
one with the highest information entropy.
4. Mutations in mutation data are projected into the se-

lected categories in Step 3. Then, the “null+indel” cate-
gory is added to the mutation category matrix where the 
coverage count of “null+indel” is the sum of the muta-
tion count in all categories selected in Step 3. The actual 
mutation count of “null+indel” is the count with the 
“null” effect in mutation data.

5. Mutations in coverage data are projected into the se-
lected categories, including “null+indel”.

2.1.3. Background mutation rate calculation
The calculation of background mutation rate (BMR) is based on 

the process used in MutSigCV, which involves obtaining both the 
observed count (xg,c,p) and coverage count (Xg,c,p) of mutations per 
gene, mutation category, and patient, using the preprocessed mu-
tation data, coverage data, and covariate data. The BMR of each gene 
is estimated from the gene’s silent and noncoding mutations and 
those of its neighbour genes in the covariate space called the bagel 
method. For each gene, a bagel of the closest neighbouring genes in 
the covariate space is built so that all genes in the bagel do not 
disagree with BMR estimated for the gene. The nB

max genes within the 
bagel of gene g were similar to gene g in terms of covariates, ob-
served mutation counts, and coverage counts by hypothesis testing. 
Thus, the total background counts for gene g can be estimated by the 
background counts in the gene and its bagel.

To improve computational efficiency, we first conducted the bi-
nomial test, binomial(ng

nonsilent , Ng
nonsilent , bmr), to calculate p-values for 

all genes. Therein, ng
nonsilent is the observed count of nonsilent muta-

tion of gene g, Ng
nonsilent is the count of covered nonsilent sequenced 

bases in gene g, bmr is the background mutation rate which is a user- 
defined parameter. Then, q-values are calculated using the Benjamini- 
Hochberg procedure [22]. Subsequently, genes with q-value≤ 0.05 are 
selected as candidate genes for the future identification.

2.1.4. Identifying driver genes based on five methods of hypothesis 
testing

Based on the BMR of each gene, driver genes are identified 
through five methods of hypothesis testing, including Beta Binomial 
Test (BBT), Fisher Combined p-value Test (FCPT), Likelihood Ratio 
Test (LRT), Convolution Test (CT), and Projection Test (PT).

1. Beta Binomial Test
BBT supposes that mutation parameters Ng, xg, and Xg of gene g 
follow the beta-binomial distribution. Then, the p-value of gene g 
is calculated by

= + +
=
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obs is the observed count of nonsilent mutation in gene g, Ng is 

the count of covered sequenced bases in gene g, xg is the back-
ground mutation count of g, and Xg is the background coverage 
count of g. f(k∣Ng, xg + 1, Xg + 1) is the normalized probability 
density function of the beta-binomial distribution such that 

+ + == f k N x X( , 1, 1) 1k
N

g g g0
g , and Γ( ⋅ ) is the gamma function.

2. Fisher Combined p-value Test
3. FCPT performs binomial hypothesis testing for different mutation 

categories to obtain p-values. According to Fisher’s method [23],
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where pg
i is the p-value from hypothesis testing on the ith mu-

tation category of gene g, nc is the number of mutation categories. 
The final p-value for the entire gene is calculated as the prob-
ability of observing a value no less than χg, based on a χ2 dis-
tribution with 2nc degrees of freedom.

4. Likelihood Ratio Test
5. LRT constructs a likelihood ratio-based statistic (χg) for a gene, 

denoted as follows:

=
=

L n N

L n N
2 log

,

,
g

i

n g i
obs

g i
x

X

g i
obs

g i
b

B
1

, ,

, ,

c
g i

g i

g i

g i

,

,

,

, (4) 

where ng i
obs

, and Ng,i are the observed count and coverage count of 
mutations in gene g and category i, respectively; xg,i and Xg,i are the 
background mutation count and background coverage count in gene 
g and category i, respectively; bg,i and Bg,i are the sum of the observed 
count and sum of the coverage count in gene g and category i for 
nonsilent, noncoding, and silent. L( ⋅ ) is the likelihood of observed 
mutation count for the i-th mutation category, defined as the point 
probability of observing ng i

obs
, mutations given a coverage count of Ng,i 

and a mutation rate of 
x

X
g i
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,
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,
. The final p-value for the entire gene 

is calculated as the probability of observing a value no less than χg, 
based on an approximate χ2 distribution with nc degrees of freedom.

6. Convolution Test
7. Similar to FCPT and LRT, CT calculates the logarithm (with base 10) of 

the sum of the single-point binomial probability density of gene g,
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hist is the histogram constructed based on convolution [3].
8. Projection Test
9. Projection Test (refer to Section 2.5 on page 27 in the ‘SUPPLEME-

NTARY INFORMATION’ of MutSigCV) compares the mutational 

signal from the observed nonsilent count with the mutational 
background count estimated above for each gene. The probability 
that in gene g, category c, and patient p, has zero mutations (Pg c p, ,

(0) ), 
one mutation (Pg c p, ,

(1) ), two or more mutations ( +Pg c p, ,
(2 )) are first cal-

Fig. 3. DriverGenePathway webserver including DriverGene and DriverPathway functions. 
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culated by beta-binomial probability mass function. Only the first 
two mutation categories with the highest priority (d1,d2) are con-
sidered according to the order of P(1). Each patient is then projected 
to a two-dimensional space of degrees Dg,p = (d1, d2), taking into 
account up to two of its mutations, with the mutations prioritized 
by two categories with the highest priorities (d1 ≥d2). In order to 
compute the distribution of patient degrees expected under the 
estimated model of background mutation, the probability for each 
patient to be of each degree by chance (Pg p

d d
,

( , )1 2 ) is calculated based 
on Pg c p, ,

(0) , Pg c p, ,
(1) , and ( +Pg c p, ,

(2 )). Furthermore, each degree is also asso-
ciated with a score S (Sg p

d d
,

( , )1 2 ). By summing the scores associated 
with each patient’s observed degree D, gene g is assigned a total 
overall score for the observed configuration of patient degrees Sg

obs. 
To determine the probability of obtaining a given score by chance, 
i.e., from background mutation alone, a null distribution of scores 

=Pg
S x( ) is calculated by convolution. Hence, the p-value of gene g is 

calculated by

= =p P dx1g

S
g
S x

0
( )g

obs

(7) 

We further applied the Benjamini-Hochberg procedure to the re-
sults of the above five methods of hypothesis testing to calculate the 
false discovery rate, i.e., the q-value. Finally, genes with q≤ sigThreshold 
will be identified as driver genes. Therein, sigThreshold is a parameter of 
DriverGene function to determine the significance level.

2.2. Identification of driver pathway

2.2.1. Adaptively weighted and robust mathematical programming 
(AWRMP) for identifying driver pathways

High coverage and mutual exclusivity are two critical biological 
properties of driver mutations in pathways, which are widely used in 
driver gene set (pathway) identification[13]. We developed the 
DriverPathway function based on our previous research AWRMP that 
adaptively balances the coverage and mutual exclusivity of gene sets 
using mutation frequencies [15].

The input data for DriverPathway is (0−1)-mutation matrix 
where rows represent patients and columns represent genes or MAF. 
For mutation matrix A, if gene j of patient i is mutated, then Aij = 0, 
otherwise Aij = 1. The mutation matrix A is defined as the following:

Fig. 4. Output figures of DriverGene function in cancer BRCA. (a) gene number distribution of the selected important categories; (b) gene number distribution of effects including 
noncoding, nonsilient, null, and silent; (c) heat map on q-values of each identified driver gene; (d) Bubble chart for the beta-binomial test; (e) Venn diagram of the overlapping 
driver genes from five methods of hypothesis testing.
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Table 2 
Summary of cancer mutation datasets. 

Datasets Project names in cBioPortal Reference Number of samples Number of genes

BLCA Bladder Urothelial Carcinoma (TCGA, Nature 2014) [25] 130 13,421
BRCA Breast Invasive Carcinoma (TCGA, Nature 2012) [26] 507 13,415
COADREAD Colorectal Adenocarcinoma (TCGA, Nature 2012) [24] 224 15,998
COLON Colorectal Adenocarcinoma (TCGA, Nature 2012) [24] 155 15,038
LAML Acute Myeloid Leukemia (TCGA, Firehose Legacy) – 150 1887
PAAD Pancreatic Adenocarcinoma (TCGA, Firehose Legacy) – 186 11,618
RECTUM Colorectal Adenocarcinoma (TCGA, Nature 2012) [24] 69 10,092
UCS Uterine Carcinosarcoma (TCGA, Firehose Legacy) – 57 7084

Table 3 
Genes identified by DriverGene. 

Cancer Genes identified by DriverGene Accuracy

BLCA ARID1A, KDM6A, TP53, CDKN1A, RB1, ELF3, STAG2, TXNIP, FBXW7, CDKN2A, FOXQ1, PIK3CA, ERCC2, FGFR3 85.71%
BRCA GATA3, MAP2K4, PTEN, TBX3, TP53, PIK3CA, CDH1, RUNX1, MAP3K1, CBFB, AKT1 100%
COADREAD ACVR2A, AIM2, APC, FBXW7, KRAS, NRAS, TP53, SEC63, TGFBR2, SMAD2, ACVR1B, MIER3, ARL2BP, B2M 71.43%
COLON ACVR2A, KRAS, TGFBR2, TP53, APC, FBXW7, SMAD4, AIM2, NRAS, SEC63, SMAD2, PSG8, CASP8 76.92%
LAML CEBPA, NRAS, DNMT3A, WT1, IDH1, KRAS 100%
PAAD KRAS, SMAD4, CDKN2A, TP53, RNF43 100%
RECTUM APC, KRAS, TP53, TCF7L2, PIK3CA, FBXW7 100%
UCS TP53, FBXW7, PIK3CA, PTEN, PPP2R1A, PIK3R1, KRAS, RB1, CHD4, ARID1A, ZNF814, TPTE 83.33%

The bolded genes are the genes that are also in the CGC list

Fig. 5. The proportion of identified driver genes that are included in CGC to all identified driver genes. 
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=A
j i1 if gene mutated for patient

0 otherwise
ij

(8) 

If MAF is input, DriverPathway function will preprocess MAF and gen-
erate a (0−1)-mutation matrix using coverage data, covariates, mutation 
dictionary, and the reference genome, which will be downloaded au-
tomatically if NULL. Specifically, binomial hypothesis, binomial 
(n N bmr, ,g

nonsilent
g
nonsilent ), and Benjamini-Hochberg procedure (refer to 

Section 2.1.3) will be conducted to select candidate genes in mutation 
matrix. To ensure efficiency, the number of genes included in the pre-
processed mutation matrix is controlled to between 50 and 500 genes, 
using the significance level (0.001 ∼ 0.1) as a guide wherever possible.

2.2.2. Permutation Test
We further utilized the permutation test from Dendrix [13] to 

test the statistical significance of the identified driver gene set with 
the following three steps.

1. Obtain the permutation matrices
2. Apply Pn times permutation on the mutation matrix A to get Pn 

matrices { = …A t P1, 2, ,t n}. Permutation only replaces the sub- 
matrix containing the identified driver gene set. Specifically, 
patient IDs with mutations are randomly replaced while ensuring 
that the number of mutations in each gene of the sub-matrix 
remains the same.

3. Calculate the weighted scores for permutation matrices
4. Pn weighted scores { = …W t P1, 2, ,t n} of coverage and mutual 

exclusivity corresponding to Pn permutation matrices are then 
calculated by

=W G G M G g( ) ( ) ( ) 2 ( ) ( )M M M
g GM (9) 

5. Calculate p-value of the identified gene set
6. Denote the score for coverage and mutual exclusivity of the ori-

ginal mutation matrix as W, then p-value of the identified gene 
set in the permutation test is

= =P Pr W W
W

P
( is greater than )

( )
t

t
P

t

n

1
n

(10) 

where Wt is the score for coverage and mutual exclusivity of the 
permutation mutation matrix t, and W( )t is defined as

=W W W( ) 1 if is greater than

0 otherwise
t

t

2.3. Implementation and Installation

DriverGenePathway R package is ready and published on Github 
(https://github.com/bioinformatics-xu/DriverGenePathway). Users can 
install the package using devtools::install_github(“bioinformatics-xu/ 
DriverGenePathway”), and identify driver genes with a single line code 
DriverGene(…) and driver pathway with DriverPathway(…). To enhance 
the accessibility of DriverGenePathway for users without expertise in R 
programming, we have also developed the DriverGenePathway web 
server (see GitHub page for address, Fig. 3). This web server provides a 
user-friendly interface that enables users to easily upload their data and 
input parameters and perform analyses using the same algorithms as 
those used in the R package.

The unique mandatory input of the DriverGene function is 
Mutation, i.e., mutation data which is a MAF format. Besides, other 
default parameters are Coverage = NULL, Covariate =  
NULL, MutationDict = NULL, chr_files_directory = NULL, categ_flag =  
NaN (categ_flag = 4 and Method3 are adopted in Section 2.1.2), 
bmr = 1.2e − 6, p_class = allTest, and sigThreshold = 0.05. Coverage, 
Covariate, MutationDict, and chr_files_directory can be downloaded 
automatically if NULL. The unique mandatory parameter of the 
DriverPathway function is mutation_data which is a (0−1)-mutation 
matrix or MAF data. The other default parameters are driver_size = 3, 
pop_size = 200, iters = 1000, permut_time = 1000. The specific options 
and configurations for the parameters can be found in the vignette 
file. During the analysis, DriverGenePathway saves the preprocessed 
data and result files in the current working directory for further 
reference and downstream analysis. DriverGenePathway has been 
rigorously tested on Windows, iOS, and Linux operating systems, 
using input data from various types of cancer.
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3. Results

3.1. The description for result files

The preprocessing of the DriverGene function outputs preprocessed 
mutation information about coverage and categories, including five 
text files (“MutationCategories.txt” and four other files in the format of 
the input parameter output_filestem + “_covaraite.txt”; output_filestem + 
“_coverage.txt”; output_filestem + “_mutations.txt”; output_filestem + 
“_mutcateg_discovery.txt”), and visualization files. These text files in-
clude the preprocessed mutation categories, covariate, mutation data, 
and coverage data corresponding to the selected categories. 
Visualization files “CategoryPlot.pdf” and “EffectPlot.pdf” in Fig. 4(a)(b) 
show the mutation number for different categories and effects, re-
spectively. BMR calculation of DriverGene outputs observed mutation 
count and covered sequence count of each mutation effect as matrices 

in the console plan. DriverGene function finally outputs the driver gene 
list file corresponding to the specified hypothesis testing method 
(named output_filestem + p_class + “_sigGenes.csv”) in output_filestem 
+ “_sigGenes” directory. Driver gene list file includes columns of gene 
name, p-value, and q_value from the Benjamini-Hochberg procedure. 
Bubble chart (Fig. 4(c)) shows the identified significant driver genes, 
where the size of the gene bubble is inversely proportional to q-value. 
For the case of p_class = “allTest”, q-value heatmap (Fig. 4(d)) and Venn 
diagram (Fig. 4(e)) are generated to show the degree of overlap be-
tween the identified driver genes.

DriverPathway function returns a list of the identified driver gene 
set along with the statistical significance of the permutation test and 
preprocessed mutation matrix of MAF input. Users can choose to 
save the preprocessed mutation matrix for further analysis, which 
can be of great assistance when identifying driver pathways with 
other driver_size.

Fig. 7. Waterfall of LAML for dirver_size is 2, 5, and 8. 
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3.2. Performance evaluation of DriverGenePathway

3.2.1. Datasets
We used the MAF files from TCGA (available at http://www. 

cbioportal.org) to evaluate the performance of DriverGenePathway, 
including bladder cancer (BLCA), breast cancer (BRCA), colorectal 
adenocarcinoma (COADREAD), Colorectal cancer (COLON), acute 
myeloid leukemia (LAML), Pancreatic adenocarcinoma (PAAD), 
Rectal cancer (RECTUM), and Uterine carcinosarcoma (UCS). Details 
of datasets, including project names in cBioPortal, reference, the 
number of samples, and the number of genes, are shown in Table 2. 
Therein, COLON, RECTUM, and COADREAD are from the same project 
[24]. COADREAD is the combined dataset of COLON and RECTUM, 
comprising 155 colon and 69 rectum samples.

3.2.2. Identification of driver genes
For the performance analysis of DriverGene, parameters categ_-

flag, bmr, output_filestem, p_class, and sigThreshold were set as 
defaults.The minimal core driver genes are defined as the genes that 
are statistically significant in all five methods of hypothesis testing 
(q≤ sigThreshold). According to the previous studies[27,28], the va-
lidity of DriverGene was evaluated by the overlap rate between the 
identified driver genes and the Cancer Gene Census (CGC, https:// 
cancer.sanger.ac.uk/census/) gene list downloaded on Jan 1, 2023. 
Therefore, the accuracy of DriverGene is defined as the proportion of 
genes in the CGC list to all identified genes as follows

=Acc
C
A

i
i

i

where Acci is the accuracy of cancer i, Ci is the set of genes identified 
by DriverGene in cancer i and also in CGC, Ai is the set of all genes 
that identified by DriverGene in cancer i, ∣ ⋅ ∣ is the cardinality of 
gene set.

As shown in Table 3 and Fig. 5, the number of driver genes 
identified by DriverGene in eight types of cancer range from 5 
(LAML) to 14 (BLCA and COADREAD), which is in a reasonable range. 
Accuracy range from 71.43%(COADREAD) to 100% (BRCA, LAML, 
PAAD, and RECTUM) with a mean value of 89.67%. Furthermore, 
through a combination of hypothesis testing methods, DriverGene 
has been successful in identifying critical genes that play an im-
portant role in cancer development and progression, including well- 
known oncogenes and tumor suppressor genes such as TP53, KRAS, 
RB1, and APC [29].

3.2.3. Identification of driver pathways
As described in Section 2.2.1, the mutation matrices used for 

evaluating the performance of the DriverPathway were derived from 
preprocessing the input MAF files. Previous epidemiological studies 
and sequencing data analysis have indicated that a typical tumour 
generally contains 2–8 driver mutations [30]. In light of this, dri-
ver_size was set to range from 2 to 8. Besides, parameters pop_size, 
iters, and permut_time were set as defaults.

Experimental results show that the identified gene sets exhibit a 
nested nature with increasing values of driver_size. The magnitude of 
p-values in the permutation test decrease with the increasing of 
driver_size for the same cancer type (Fig. 6). Specifically, the mutual 
exclusivity of gene sets with driver_size = 2 is less significant in BLCA, 
LAML, RECTUM (p-values ≥ 0.05). (MUC16, TP53), (DNMT3A, FLT3), 
and (APC, PZP) were identified in the above three cancer types. Since 
the requirement of AWRMP for mutual exclusivity is inversely pro-
portional to coverage, the coverage of the above three gene sets (88/ 
130, 87/173, 61/69) dominates the optimization process. As dri-
ver_size increases from 2 to 8, the significance of mutual exclusivity 
in the driver sets gradually increases, and the p-values decrease to 
below 0.05. For example (Fig. 7), driver gene sets on LAML (driver 

size = 2, 5, 8) showcases such a relation. As the driver size increases, 
the coverage of genes gradually increases, and the mutual exclusivity 
becomes more and more apparent. For driver_size = 8, p-values for all 
cancer types are less than 0.05.

Furthermore, DriverPathway has also been successful in identi-
fying gene sets that are enriched in many important signaling 
pathways. For BRCA, gene set (AKT1, BRCA2, CDH1, GATA3, MAP2K4, 
MAP3K1, PIK3CA, TP53) was identified for driver_size = 8. Through 
annotation using DAVID[31], these eight genes were found to be 
involved in breast cancer(q-value = 2.8e-3), pathway in cancer(5.7e- 
3), and Human T-cell leukemia virus 1 infection(7.4e-4) pathways, 
which are known to be critical in breast cancer. Therein, (AKT1, 
BRCA2, PIK3CA, TP53), (AKT1, BRCA2, CDH1, PIK3CA, TP53), and (AKT1, 
MAP2K4, MAP3K1, PIK3CA, TP53) act in breast cancer, pathway in 
cancer and Human T-cell leukemia virus 1 infection respectively.

4. Conclusions

In summary, DriverGenePathway is a user-friendly R package that 
integrates and improves upon several well-known driver gene identi-
fication tools, including MutSigCV (the primary reference), MuSiC, and 
de novo methods. As demonstrated, the initial filtering of genes that we 
implemented significantly improves the efficiency of basic MutSigCV. 
The combined utilization of five methods of hypothesis testing, namely 
BBT, FCPT, LRT, CT, and PJ, allows the proposed algorithm to identify 
genes that are critical to cancer development. Through the simulta-
neous analysis of mutation rate, coverage, mutual exclusivity, and 
pathway enrichment for identified genes and gene sets, users can gain 
a comprehensive understanding of the similarities and differences 
between the two types of methods. DriverGenePathway, featured by 
multi-system compatibility and accessibility of input data, is expected 
to highly drive the development of driver gene identification tools and 
precision medicine for cancer.
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