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Central obesity associates with renal
hyperfiltration in the non-diabetic general
population: a cross-sectional study
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Abstract

Background: Obesity is a risk factor for end-stage renal disease. Renal hyperfiltration, defined as an abnormally
high glomerular filtration rate (GFR), is a link in the causal chain between diabetes and chronic kidney disease.
Whether obesity is associated with hyperfiltration in the non-diabetic general population, remains unresolved due
to a lack of consensus regarding the definition of hyperfiltration and the limited precision of high-range GFR
estimations with creatinine and/or cystatin C.

Methods: 1555 middle-aged participants without diabetes, renal or cardiovascular disease were enrolled from the
general population in the Renal Iohexol Clearance Survey from the 6th Tromsø Study (RENIS-T6) between 2007 and
2009. Obesity was assessed using the body mass index (BMI), waist circumference (WC) and the waist-hip ratio (WHR).
GFR was measured by iohexol clearance. Dichotomous variables for hyperfiltration were based on two alternative
definitions using unadjusted GFR (mL/min) above the 90th percentile. The 90th percentile was age-, sex- and height-
specific in one definition and age-, sex-, height- and weight-specific in the other.

Results: In multivariable adjusted logistic regression models, only WHR was consistently associated with hyperfiltration
based on both definitions. For the definition based on the age-, sex-, height- and weight-specific 90th percentile,
the association with the WHR (odds ratios (95 % confidence intervals)) for hyperfiltration was 1.48 (1.08–2.02) per 0.10
WHR increase.

Conclusions: Central obesity is associated with hyperfiltration in the general population. The WHR may serve as a
better indicator of the renal effects of obesity than BMI or WC.

Keywords: Body mass index, Chronic kidney disease, Glomerular filtration rate, Glomerular hyperfiltration, Waist
circumference, Waist-hip ratio

Background
The prevalence of obesity, defined as a body mass index
(BMI) ≥ 30 kg/m2, has increased rapidly in high-income
nations over the last few decades and is steadily growing
in many lower-income countries as well [1]. Obesity is a
well-known risk factor for cardiovascular disease, hyper-
tension and diabetes [2, 3]. These diseases are, in turn,
well-established risk factors for chronic kidney disease
(CKD) and end-stage renal disease (ESRD) [4–7]. How-
ever, there is also evidence of a direct causal connection

between obesity and ESRD, independent of hypertension
and diabetes [8, 9].
Renal hyperfiltration (RHF), or an abnormally high

glomerular filtration rate (GFR), has been postulated
to represent an early stage in the development of
CKD [10], most clearly observed in diabetic nephrop-
athy [11]. RHF is also associated with several es-
tablished CKD risk factors, including hypertension
[12, 13] and smoking [14, 15]. A large longitudinal
study by Park et al. of 43,503 Korean health screening
participants found that a RHF definition based on
eGFR was associated with all-cause mortality, even
when adjusted for age, sex, muscle mass, diabetes and
hypertension [16]. Although several studies have been
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conducted on the relationship between obesity and
RHF [17–25], it remains unclear whether these two
conditions are also associated in the general non-
diabetic population. The most important reason has
been that there is currently no consensus on the def-
inition of the term “hyperfiltration”. Most investigators
who defined RHF in their studies used a single GFR cut-
off point and adjusted their definition for no other variable
than body surface area (BSA) [26]. Although there is no
generally accepted way of defining RHF, it has been sug-
gested that the definition should use age and sex-specific
cut-offs and also some measure of correction for body size
[26, 27].
Another methodological problem has been that previ-

ous epidemiological studies used GFR estimates based on
creatinine and cystatin C, rather than GFR measure-
ments [21–25]. Estimated GFR is inaccurate for high-
range GFR [28–30] and can be confounded by associa-
tions with non-GFR-related factors [31, 32]. Studies on
obesity and RHF using measured GFR (mGFR) have
been limited by small sample sizes [17–19] and the lack
of adjustment for confounding variables [20].
In the Renal Iohexol Clearance Survey in Tromsø 6

(RENIS-T6), we measured GFR with iohexol clearance
in 1627 middle-aged subjects from the general popula-
tion. The aim of the present study was to examine the
relationship between obesity and two alternative defini-
tions of RHF.

Methods
Subjects
RENIS-T6 was conducted from 2007 to 2009 as a sub-
study of the sixth Tromsø Study (Tromsø 6). The RENIS-
T6 cohort consisted of a representative sample of 1627
persons from the general population of Tromsø who were
between 50 to 62 years of age and without self-reported
diabetes mellitus, cardiovascular or kidney disease (Fig. 1);
the cohort has previously been described in detail [28].
Subjects were excluded from the present study if they

had previously undiagnosed diabetes mellitus (hemoglobin
A1c ≥ 6.5 % and/or fasting plasma glucose ≥ 7.0 mmol/L)
or if they lacked waist or hip circumference measurements.
Smoking status was ascertained as part of a detailed

questionnaire in the Tromsø 6 study. Previous smokers
were grouped with non-smokers for the purposes of this
study. Medication use was ascertained separately in the
RENIS-T6 study. Antihypertensive medication use was
categorized into six categories: beta-blockers, calcium
channel blockers, diuretics, angiotensin converting
enzyme-inhibitors, angiotensin-II receptor blockers, and
other antihypertensive medications.

Iohexol-clearance measurements
Examination of the subjects started between 08:00 and
10:00 AM. All subjects had fasted and abstained from
smoking since midnight, and they were instructed not to
use non-steroid anti-inflammatory drugs or eat large

Fig. 1 Inclusion of subjects in the RENIS-T6 cohort and the present study population
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quantities of meat during the preceding 48 h. Subjects
were instructed to drink two to three glasses of water
before arrival. A Teflon catheter was placed in an antecu-
bital vein and was flushed with 30 mL of isotonic saline.
Five milliliters of iohexol (Omnipaque, 300 mg/mL; Amer-
sham Health) was injected, and the syringe was weighed
before and after injection. GFR was measured as the
single-sample plasma clearance of iohexol, a method that
has been validated against gold standard methods [33],
and analyzed using high-precision liquid chromatography
as described by Nilsson-Ehle [34]. The analytical variation
coefficient for the study period was 3.0 %. Jacobsson’s
method was used to calculate the GFR [35]. Further pro-
cedural details have been described previously [28].

Laboratory measurements
Glucose, low-density and high-density lipoprotein choles-
terol, and triglycerides were measured on a Modular P800
(Roche Diagnostics, Basel, Switzerland). The insulin con-
centration was measured with an enzyme-linked immuno-
sorbent assay kit (DRG Instruments, Marburg, Germany),
with intra- and interassay coefficients of variation of 4.7 %
and 6.3 %, respectively. Insulin resistance was expressed
by the homeostasis model assessment (HOMA-IR), calcu-
lated by multiplying fasting glucose (mmol/L) by fasting
insulin (mU/L) and dividing the result by 22.5 [36].

Blood pressure measurement
Office blood pressure (BP) was measured at the study
site using an automated device (model UA799; A&D,
Tokyo, Japan) after 2 min of rest. Daytime ambulatory
BP was measured using weighted daytime (10:00–
22:00) averages of BP measured at 20-min intervals.
Further details of the BP measurements have been de-
scribed previously [37].

Body measurements
Waist and hip circumferences, along with height, were
measured as part of the main Tromsø 6 study at a me-
dian (interquartile range) of 5.2 (3.0–6.2) months before
the RENIS-T6 investigations. Body weight was measured
in the RENIS-T6 study to the nearest 0.1 kg on a SECA
digital scale (SECA, Hamburg, Germany). The same
weight scale was used for all subjects and was calibrated
just before the study began. Height was measured to the
nearest centimeter with a wall-mounted measuring tape.

BMI was defined as height in meters divided by weight
in kilograms squared. Waist and hip circumferences
were measured horizontally over the umbilicus after ex-
halation and at the greatest protrusion of the buttocks,
respectively. The WHR was calculated as the waist cir-
cumference divided by the hip circumference.
Subjects were classified into overweight and obesity cat-

egories based on cut-off values used by the World Health
Organization and the International Diabetes Federation for
European populations. BMI classes of 18.5–24.9, 25.0–29.9
and ≥ 30.0 define normal weight, overweight and obesity, re-
spectively. WC categories of > 94 cm for men and > 80 cm
for women represent “increased risk of metabolic compli-
cations”, while a WC of > 102 cm for men or > 88 cm for
women, or a WHR of ≥ 0.90 for men or ≥ 0.85 for women
represents “substantially increased risk” [38].
There were only four subjects with BMI <18.5, these

were grouped with the normal BMI (18.5–24.9) group for
the purposes of this study. Fifty-seven subjects had BMI
between 35.0 and 39.9, and 5 subjects had BMI ≥ 40.0,
these were included in the BMI ≥ 30.0 group.

Definitions of hyperfiltration
The dichotomous variables for hyperfiltration were de-
fined as unadjusted (absolute) GFR (mL/min) above the
90th percentile. We used two alternative definitions
where the 90th percentile was either age-/sex- and
height-specific (RHFHeight) or age-/sex-/height and
weight-specific (RHFWeight/height) (Table 1).
In both cases, the respective 90th percentiles were cal-

culated from multiple linear regression models, with the
natural logarithm (ln) of unadjusted GFR (mL/min) as
the dependent variable. For RHFHeight, sex, ln(age) and
ln(height) were used as independent variables, and for
RHFWeight/height ln(body weight) was added (Additional
file 1: Table S1). A subject was defined as having
RHFHeight or RHFWeight/height if her regression residual
was greater than the 90th percentile in the distribution
of residuals in the regression analyses for the respective
RHF definition (Table 1). This implies that the GFR cut-
off for RHF for each individual depended on sex, age
and height (RHFHeight) or sex, age, height and body
weight (RHFWeight/height). As an illustration, the GFR cut-
off points for RHF in a male and female study partici-
pant with average measurements of age, height and
weight are shown in Additional file 1: Table S2.

Table 1 Alternative definitions of renal hyperfiltration based on different adjustment variables in multiple linear regression

RHF definition Dependent variable Independent variables Definition of dichotomous RHF variable

RHFHeight Logarithm of absolute GFR (in mL/min) Sex and logarithms of height and age Residual > 90th percentile

RHFWeight/height Logarithm of absolute GFR (in mL/min) Sex and logarithms of weight, height and age Residual > 90th percentile

In both definitions, renal hyperfiltration was defined as residual > 90th percentile in multiple linear regression analysis with the independent variables
listed above
RHF Renal hyperfiltration, GFR Glomerular filtration rate
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Statistical analysis
The characteristics of the study population were tabu-
lated as the mean (standard deviation) or median (inter-
quartile range) for variables with skewed distributions.
Pearson’s χ2 test, Welch’s t-test and the Mann-Whitney

U test were used to calculate p-values for differences be-
tween the WHR groups, classified by the World Health
Organization cut-off for WHR.
Separate multiple logistic regression analyses were per-

formed with each of the two alternative RHF variables

Table 2 Characteristics of the study population classified by World Health Organization waist-hip ratio cut-off point

Normal waist-hip ratioa Increased waist-hip ratiob P-value

Subjects 432 27.8 % 1123 72.2 %

Male gender 142 32.9 % 618 55.0 % <0.001

Age 58.1 54.1–61.2 58.8 55.0–61.6 0.01

Waist-hip-ratio 0.824 0.046 0.941 0.055

Waist circumference (cm) 83.5 7.6 99.3 9.7 <0.001

Body Mass Index (kg/m2) 24.6 3.0 28.3 3.8 <0.001

Height (cm) 168.9 8.5 171.3 8.8 <0.001

Weight (kg) 70.2 10.8 83.1 13.8 <0.001

Daily smokers 89 20.6 % 222 19.8 % 0.71

Daytime ambulatory systolic BP (mmHg) 126.1 12.6 131.5 13.0 <0.001

Daytime ambulatory diastolic BP (mmHg) 79.9 8.6 82.9 8.6 <0.001

Nighttime ambulatory systolic BP (mmHg) 108.5 12.2 111.9 12.2 <0.001

Nighttime ambulatory diastolic BP (mmHg) 64.9 8.6 67.0 8.4 <0.001

Office systolic BP (mmHg) 123.3 17.1 131.8 17.1 <0.001

Office diastolic BP (mmHg) 79.9 10.0 84.7 9.3 <0.001

Hypertensionc 95 22.0 % 437 38.9 % <0.001

ACE-inhibitor use 6 1.3 % 22 2.0 % 0.45

Angiotensin II-receptor blocker use 13 3.0 % 116 10.3 % <0.001

Calcium-channel blocker use 7 1.6 % 71 6.3 % <0.001

Beta-blocker use 7 1.6 % 60 5.3 % 0.001

Diuretica use 17 3.9 % 119 10.6 % <0.001

Other anti-hypertensive medicine use 0 - 1 <0.1 % 0.54

Fasting glucose (mmol/L) 5.13 0.44 5.39 0.48 <0.001

Fasting insulin (mIU/L) 6.50 4.37–8.69 9.47 6.90–13.65 <0.001

HOMA-IR 1.47 0.98–2.01 2.30 1.60–3.37 <0.001

HbA1c (%) 5.46 0.30 5.57 0.34 <0.001

Cholesterol (mmol/L) 5.53 0.89 5.67 0.96 0.008

LDL cholesterol (mmol/L) 3.45 0.83 3.73 0.86 <0.001

HDL cholesterol (mmol/L) 1.75 0.44 1.45 0.39 <0.001

Triglycerides (mmol/L) 0.8 0.6–1.1 1.1 0.8–1.6 <0.001

Cholesterol-lowering drug use 21 4.9 % 79 7.0 % 0.12

Absolute GFR (ml/min) 93.8 16.0 104.0 20.4 <0.001

GFR (ml/min/1.73 m2) 90.1 13.0 92.0 14.8 0.02

RHFHeight 19 4.4 % 137 12.2 % <0.001

RHFWeight/height 30 6.9 % 123 11.0 % 0.02

Data represented as number of subjects (percentage), median (interquartile range) or mean (standard deviation)
BP Blood pressure, ACE Angiotensin converting enzyme, HOMA-IR Homeostatic model assessment of insulin resistance, LDL Low density lipoprotein, HDL High
density lipoprotein, HbA1c Hemoglobin A1c, GFR Glomerular filtration rate
aFemale < 0.85, male < 0.90
bFemale ≥ 0.85, male ≥ 0.90
cOffice systolic BP ≥140 mmHg, office diastolic BP ≥90 mmHg and/or use of antihypertensive medication
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(Table 1) as the dependent dichotomous variable and
categorical or continuous indices of obesity as the inde-
pendent variable. Adjustments were made for age, sex,
number of cigarettes smoked daily, ambulatory daytime
systolic and diastolic BP and their interaction, and individ-
ual categories of antihypertensive medication (Model 1).
Mathisen et al. found a statistically significant interaction
between these BP variables and GFR in the same study
population as the present study [37], which is why this
interaction model was included. Model 2 included Model
1 and a dichotomous variable for a metabolically un-
healthy lipid profile, defined as high-density lipoprotein
cholesterol levels < 1.03 mmol/L in men or < 1.29 mmol/L
in women, elevated triglyceride levels of ≥ 1.7 mmol/L,
and/or use of lipid-lowering medication. The variables in
Model 2 constitute two of the five established criteria used
to define metabolic syndrome [39]. Model 3 included
Model 1, fasting plasma glucose and insulin levels, and
HOMA-IR. Model 4 included all models. Additionally, lin-
ear regression analyses using absolute and BSA-adjusted
GFR as dependent variables and the same independent
variables as above were performed.
Fractional polynomial regression analyses [40] were

performed to see whether any obesity variables had non-
linear relationships with either RHF variable or with
mGFR as a continuous variable, adjusting for the same
variables as in Model 4.
Statistical significance was set at p < 0.05. Statistical

analysis was performed using STATA MP 14.0 software
(www.stata.com).

Results
Study population
Thirty-three of the 1627 study subjects in the RENIS-T6
cohort were excluded due to undiagnosed diabetes melli-
tus. Another 39 subjects were excluded because of miss-
ing WC measurements, leaving 1555 subjects eligible for
the current study (Fig. 1).
The analysis of the study population showed several

statistically significant associations between study vari-
ables and WHR categories (Table 2). A substantially
higher percentage of males than females were obese ac-
cording to the cut-off values. Subjects with a high WHR
were, on average, older, had a higher absolute and BSA-
adjusted GFR, higher BP, worse lipid and glucose pro-
files, and were more likely to use lipid- or BP-reducing
drugs. There was a clear relationship between a greater
WHR and higher GFR (Fig. 2). The vast majority of the
population was overweight or obese (Fig. 3).

Hyperfiltration and obesity
The RHF definitions (Table 1) resulted in overlap, with
115 hyperfiltrating subjects having RHF by both

definitions. Forty-one subjects had only RHFHeight, while
38 had only RHFWeight/height.
In the logistic regression analyses, there was a statisti-

cally significant association between RHFHeight and all
obesity variables, categorical and continuous, except for
the intermediate WC category, even in the fully adjusted
Model 4 (Table 3). This relationship remained significant
when body weight was added to the regression analyses
as an independent variable (Additional file 1: Table S3).
With RHFWeight/height, these relationships changed. Only

the WHR as a continuous variable was consistently associ-
ated with RHFWeight/height across all the models (p < 0.05).
In Model 1, the odds ratio (confidence interval) for
RHFWeight/height was 1.66 (1.24–2.21) for each 0.10 increase
in the WHR. The association was attenuated, but remained
significant, when metabolic risk factors were added as in-
dependent variables in Models 2, 3 and 4 (Table 3).
Linear regression analyses with absolute and BSA-

adjusted GFR as dependent variables and the same inde-
pendent variables as above showed significant positive
relationships between body size variables and absolute
GFR, but no statistically significant relationship with
BSA-adjusted GFR (Additional file 1: Table S4).
Interaction analyses were performed on the obesity

variables and sex as well as the obesity variables and the
dichotomous variable for an unhealthy lipid profile (de-
fined in Model 2); but no statistically significant interac-
tions were found. No statistically significant non-linear
relationship was found between any obesity variables
and the RHF variables or mGFR when analyzed in frac-
tional polynomial regression models.

Discussion
In this study of non-diabetic, middle-aged subjects from
the general population, higher WHR, but not BMI or

Fig. 2 Scatterplot with locally weighted scatterplot smoothing
(LOWESS) showing the relationship between the waist-hip ratio and
glomerular filtration rate
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WC, was consistently associated with RHF, regardless of
the RHF definition used. This finding suggests that ex-
cessive abdominal fat stores, as opposed to excess body
weight distributed more evenly in the body, may poten-
tially be more harmful to kidney function.
Most previous RHF studies with mGFR have found a

positive relationship between BMI and RHF that disap-
pears upon the adjustment of GFR to BSA [17–20].
The indexing of GFR to 1.73 m2 of BSA may be prob-
lematic in itself, particularly in the abnormal body
sizes encountered when studying obese subjects [41].
Kwakernaak et al. found that the WHR predicted a
lower BSA-adjusted mGFR when adjusted for BMI,
age, sex and BP [18]. However, the sample size was
small and consisted of kidney donors and volunteers,

who may not be representative of the general popula-
tion. Pinto-Sietsma et al. made a similar finding of
higher WHR associated with lower GFR in a larger
population, but the result was based on GFR estimated
by creatinine clearance [22].
The hypothesis of hyperfiltration as a precursor to

overt CKD, originally proposed by Brenner, is based on
hyperfiltration in individual glomeruli [10]. Because it is
not possible to measure single-nephron GFR directly in
living humans, an indirect measure of hyperfiltration
based on whole-kidney GFR must be used in epidemio-
logical studies. Whole-kidney GFR is a function of
single-nephron GFR and the total number of nephrons.
Nephron numbers vary by gender and birth weight and
decrease with age [42], and adult height has been shown

Fig. 3 Distribution of obesity in the RENIS-T6 cohort, by WHO categories for body mass index (BMI), waist circumference (WC) and the waist-hip
ratio (WHR)
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to correlate with birth weight [43]. Thus, gender, height
and age were included in both the RHF definitions
(Table 1). RHFHeight used the age-, sex- and height-
specific 90th percentile, and because an individual’s nor-
mal body weight is correlated with height, it provides an
indirect adjustment for a theoretical “normal” body size.
RHFHeight is thus defined as excessive GFR relative to
the mean GFR for a person with “normal” body weight.
Because GFR increases with increasing body weight and
increasing metabolic needs [44], it follows that RHFHeight

is associated with measures of obesity, as shown in
Table 3. However, when body weight was added as an in-
dependent variable to the same RHFHeight logistic regres-
sion models as in Table 3, the results were attenuated but
remained essentially similar (Additional file 1: Table S3),

indicating that an obese figure is associated with hyperfil-
tration independently of the effect of weight itself.
Another way to correct for interindividual variation in

weight is to include weight in the definition of hyperfiltra-
tion, as in RHFWeight/height. RHFWeight/height accordingly de-
fines hyperfiltration as excessive GFR relative to the mean
GFR for persons with a given height and weight, whether
obese or not. This definition may underestimate hyperfil-
tration in obese subjects, and RHFWeight/height can be
viewed as more conservative than RHFHeight. The associ-
ation of WHR with hyperfiltration even when using
RHFWeight/height is a strong indicator that central obesity
also entails hyperfiltration at the glomerular level.
The merits of different body size measurement methods

in the context of epidemiological research and risk

Table 3 Odds ratios for renal hyperfiltration using alternative renal hyperfiltration definitions and variable models

Model 1 Model 2 Model 3 Model 4

OR CI P OR CI P OR CI P OR CI P

RHFHeight

BMI < 25 kg/m2 1.00 (ref) 1.00 (ref) 1.00 (ref) 1.00 (ref)

BMI 25–30 kg/m2 2.54 (1.45–4.47) 0.001 2.40 (1.36–4.24) 0.002 2.27 (1.28–4.05) 0.005 2.22 (1.24–3.95) 0.007

BMI > 30 kg/m2 8.03 (4.50–14.33) <0.001 7.19 (3.99–12.94) <0.001 6.11 (3.27–11.44) <0.001 5.85 (3.12–10.99) <0.001

BMI per 5 kg/m2a 2.66 (2.13–3.32) <0.001 2.54 (2.02–3.19) <0.001 2.40 (1.87–3.09) <0.001 2.35 (1.83–3.03) <0.001

WC < 80/94 cm 1.00 (ref) 1.00 (ref) 1.00 (ref) 1.00 (ref)

WC 80–88/94–102 cm 1.89 (0.93–3.85) 0.08 1.82 (0.89–3.72) 0.10 1.63 (0.79–3.35) 0.18 1.62 (0.79–3.32) 0.19

WC > 88/102 cm 4.96 (2.59–9.49) <0.001 4.48 (2.32–8.62) <0.001 3.64 (1.86–7.14) <0.001 3.52 (1.79–6.91) <0.001

WC per 10 cma 1.99 (1.68–2.35) <0.001 1.92 (1.62–2.27) <0.001 1.80 (1.50–2.17) <0.001 1.78 (1.47–2.14) <0.001

WHR < 0,85/0,90 1.00 (ref) 1.00 (ref) 1.00 (ref) 1.00 (ref)

WHR > 0,85/0,90 2.91 (1.75–4.83) <0.001 2.66 (1.59–4.43) <0.001 2.24 (1.33–3.78) 0.002 2.17 (1.28–3.66) 0.004

WHR per 0.10a 2.67 (1.98–3.60) <0.001 2.49 (1.84–3.37) <0.001 2.20 (1.60–3.02) <0.001 2.14 (1.55–2.94) <0.001

RHFWeight/height

BMI < 25 kg/m2 1.00 (ref) 1.00 (ref) 1.00 (ref) 1.00 (ref)

BMI 25–30 kg/m2 0.84 (0.55–1.28) 0.42 0.79 (0.52–1.21) 0.28 0.72 (0.47–1.12) 0.14 0.70 (0.45–1.09) 0.11

BMI > 30 kg/m2 1.17 (0.72–1.90) 0.53 1.04 (0.63–1.71) 0.88 0.84 (0.49–1.45) 0.53 0.80 (0.46–1.39) 0.43

BMI per 5 kg/m2a 1.14 (0.92–1.42) 0.24 1.08 (0.86–1.36) 0.50 0.97 (0.75–1.26) 0.82 0.95 (0.73–1.23) 0.70

WC < 80/94 cm 1.00 (ref) 1.00 (ref) 1.00 (ref) 1.00 (ref)

WC 80–88/94–102 cm 1.23 (0.72–2.10) 0.44 1.20 (0.70–2.04) 0.50 1.12 (0.65–1.92) 0.69 1.11 (0.65–1.91) 0.70

WC > 88/102 cm 1.56 (0.95–2.56) 0.08 1.44 (0.87–2.38) 0.16 1.29 (0.76–2.19) 0.35 1.25 (0.73–2.13) 0.41

WC per 10 cma 1.21 (1.03–1.42) 0.02 1.17 (0.99–1.38) 0.07 1.11 (0.92–1.33) 0.28 1.09 (0.91–1.31) 0.35

WHR < 0,85/0,90 1.00 (ref) 1.00 (ref) 1.00 (ref) 1.00 (ref)

WHR > 0,85/0,90 1.66 (1.07–2.55) 0.02 1.57 (1.01–2.42) 0.04 1.45 (0.93–2.27) 0.10 1.42 (0.90–2.22) 0.13

WHR per 0.10a 1.66 (1.24–2.21) <0.001 1.59 (1.18–2.13) 0.002 1.51 (1.11–2.06) 0.009 1.48 (1.08–2.02) 0.01

RHF Renal hyperfiltration, OR Odds ratio, CI Confidence interval, BMI Body mass index, WC Waist circumference, WHR Waist-hip ratio
Model 1: Adjustment for age, sex, number of cigarettes smoked daily, ambulatory daytime systolic and diastolic BP (and their interaction), and individual
categories of antihypertensive medication
Model 2: Model 1 and a dichotomous variable for a metabolically unhealthy lipid profile, defined as HDL-cholesterol levels < 1.03 mmol/L in men or < 1.29 mmol/L
in women, elevated triglyceride levels of ≥ 1.7 mmol/L, and/or use of lipid-lowering medication
Model 3: Model 1 plus fasting plasma glucose and insulin levels, and HOMA-IR
Model 4: All models combined
acontinuous variable
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estimates for disease have been debated, as have the
merits of various cut-off points [38]. BMI has become the
dominant measure of obesity, partly due to its well-
established association with several obesity-related dis-
eases and partly due to the near-universal availability of
height and weight as variables in both large population
studies and general clinical practice. WHR, which mea-
sures body fat distribution rather than absolute body size,
has been shown to be at least equal to, and often better
than, BMI as a predictor for obesity-related disease includ-
ing CKD [22, 45–47].
The mechanisms of the adverse renal effect of abdom-

inal adiposity are not fully understood, but some effects
are known. The most severe and well-established media-
tors are increased risks of diabetes mellitus, hyperten-
sion and dyslipidemia [48–50]. The effects of metabolic
risk factors can be observed in our results, with a grad-
ual attenuation of the odds ratio for RHF when variables
for an unhealthy lipid profile and insulin resistance were
included in the regression analyses.
Additionally, some other mechanisms are known,

including dysfunction in the renin-angiotensin-aldosterone
system, increased tubular sodium reabsorption, and the
effects of obesity-related hormones and cytokines such as
leptin, adiponectin and Tumor Necrosis Factor-α [48–50].
Weight loss interventions, especially bariatric surgery,

have been shown to reduce GFR in hyperfiltrating obese
subjects [51]. However, most studies of such interven-
tions have been small, and few studies have been pub-
lished on long-term effects beyond the first 2 years after
the interventions. A recent study by Zingerman et al.
suggested a possible reversal of RHF in obese patients
using acetazolamide, although the study did not include
a placebo arm [52].
The strength of the present study lies in the measure-

ment of GFR with a gold-standard method in a large,
representative, mostly healthy cohort in an age group
susceptible to early stages of chronic diseases. To our
knowledge, this is the largest cohort from the general
population that has been studied using precise GFR
measurements. The exclusion of subjects with diabetes,
cardiovascular disease and renal disease from the study
population allowed us to focus on the preliminary stages
of potential future CKD with less confounding from
these high-risk patient groups. These groups would have
been more likely to have passed the transient stage of
hyperfiltration into a state of normal-range GFR, per-
haps accompanied by slight albuminuria.
There are several limitations to this study. First, it was

a cross-sectional study and thus could not prove caus-
ation, only correlation. Second, the study population was
exclusively Caucasian and middle-aged, which may limit
the transferability of findings to other population groups.
Furthermore, while GFR was measured with a gold

standard method, obesity was measured indirectly with
anthropometric data, and not directly with gold standard
dual energy X-ray absorptiometry, computed tomog-
raphy or magnetic resonance imaging methods. Glucose
and HbA1c were only measured once to exclude dia-
betes, while regular clinical practice requires two mea-
surements for the diagnosis.

Conclusions
We conclude that the WHR is associated with RHF, in-
dependently of other risk factors and even using
RHFWeight/height, a conservative, body size-adjusted RHF
definition. Longitudinal studies are needed to explore
whether RHF predicts future non-diabetic CKD. Further
studies on whether the WHR predicts CKD better than
other obesity measurements are also warranted.
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Additional file 1: Table S1. Regression models for the alternative renal
hyperfiltration definitions. Table S2. mGFR cut-off points for renal
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RHFheight, with body weight added as an independent variable.
Table S4. Multiple linear regression with measured GFR and continuous
obesity variables. (XLSX 22 kb)
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