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Abstract

Persistent cellular migration requires efficient protrusion of the front of the cell, the leading edge where the actin
cytoskeleton and cell-substrate adhesions undergo constant rearrangement. Rho family GTPases are essential regulators of
the actin cytoskeleton and cell adhesion dynamics. Here, we examined the role of the RhoGEF TEM4, an activator of Rho
family GTPases, in regulating cellular migration of endothelial cells. We found that TEM4 promotes the persistence of cellular
migration by regulating the architecture of actin stress fibers and cell-substrate adhesions in protruding membranes.
Furthermore, we determined that TEM4 regulates cellular migration by signaling to RhoC as suppression of RhoC expression
recapitulated the loss-of-TEM4 phenotypes, and RhoC activation was impaired in TEM4-depleted cells. Finally, we showed
that TEM4 and RhoC antagonize myosin II-dependent cellular contractility and the suppression of myosin II activity rescued
the persistence of cellular migration of TEM4-depleted cells. Our data implicate TEM4 as an essential regulator of the actin
cytoskeleton that ensures proper membrane protrusion at the leading edge of migrating cells and efficient cellular
migration via suppression of actomyosin contractility.
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Introduction

Cellular migration plays a critical role in many physiological

and pathological processes including normal cell embryogenesis,

wound healing, and tumor cell metastasis. Migrating cells

advance by extending their front and retracting their rear [1].

Protrusion of the cell front (leading edge) is regulated by

continuous remodeling of the actin cytoskeleton and formation

of F-actin filaments crosslinked with myosin II [2,3,4,5]. The

assembly of actin filaments into an actomyosin-crosslinked

contractile network is essential for membrane protrusion and

whole cell migration [2,5,6]. However, myosin II-driven

contractility at the cell front is tightly regulated during cell

migration to ensure leading edge advance, as inhibition of

myosin II activity promotes leading edge protrusion [5,7,8,9].

Rho family GTPases are key regulators of actin cytoskeleton

dynamics [1,10]. Biochemically, Rho GTPases are molecular

switches that cycle dynamically between inactive, GDP-bound

and active, GTP-bound states [11]. Guanine nucleotide

exchange factors for Rho GTPases (RhoGEFs) catalyze the

exchange of bound GDP for GTP to favor formation of Rho-

GTP and activation of downstream effector functions [12,13].

The largest family of RhoGEFs in humans is the Dbl family of

proteins [12]. Dbl family proteins are characterized by a

tandem catalytic Dbl homology (DH) and regulatory pleckstrin

homology (PH) domain cassette responsible for accelerating the

intrinsic nucleotide exchange activity of Rho GTPases.

TEM4 (tumor endothelial marker 4) was identified originally

as a gene whose expression was upregulated in endothelial cells

during tumor cell-induced angiogenesis [14]. Recently, we have

shown that TEM4 is a Rho-specific guanine nucleotide

exchange factor (GEF) and a member of Dbl family of

RhoGEFs [12,15]. However, the role of TEM4 in endothelial

cell biology remains to be determined.

Here, we show that TEM4 regulates endothelial cell

migration. Specifically, TEM4 signaling is essential to maintain

the organization of the actin cytoskeleton and focal adhesions in

protrusive areas of the cell. We show that TEM4 mediates its

function, at least in part, by suppressing actomyosin contractil-

ity. Our data implicate TEM4 as an essential regulator of the

actin cytoskeleton to ensure proper membrane protrusion of the

leading edge and efficient endothelial cell migration.
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Results

TEM4 is a Regulator of Angiogenesis
The identification of TEM4 in a screen for regulators of

angiogenesis in vivo [14], where TEM4 expression was found to be

upregulated in tumor vasculature of colorectal cancer patients,

suggested that this RhoGEF may serve an important role during

angiogenesis. To determine whether TEM4 is involved in

angiogenesis, we utilized a mouse embryonic stem (ES) cell

differentiation model of vascular development. Mouse ES cells,

derived from the inner cell mass of blastocyst stage embryos,

undergo programmed differentiation in vitro to form a primitive

vasculature that closely resembles early vascular development

in vivo [16,17,18,19,20]. In this assay, aggregated ES cells are

partially differentiated in suspension to form embryoid bodies

(EBs) (Fig. 1A, day 1–3) which are then replated for attachment

(day 3). During the next several days, EBs differentiate into

multiple cell types, including endothelial cells that proliferate and

migrate to form primitive vessels, giving rise to a highly branched

vascular network [19,21,22]. Using RT-PCR analysis, we found

that Tem4 expression increased during development of ES cell–

derived vessels (Fig. 1B; Days 5–7). As expected, expression of

VEGFR-1 appeared at day 4 and persisted throughout ES cell

differentiation [23]. These data indicate that Tem4 is upregulated

during vascular development in the ES model of angiogenesis,

which is consistent with TEM4 expression during angiogenesis

in vivo [14]. Knockdown of Tem4 during ES cell differentiation did

not impair ES cell growth or formation of EBs (Fig. 1C). However,

the loss of Tem4 severely impaired blood vessel formation,

decreasing total vessel surface area and branching (Fig. 1, E and

F). These results suggest that TEM4 is essential for angiogenesis.

To further examine a possible role of TEM4 in angiogenesis, we

performed Matrigel tubulogenesis assay on human umbilical vein

primary endothelial cells (HUVECs). When plated on Matrigel,

endothelial cells spread on the Matrigel, migrate towards each

other and fuse to form pre-capillary cords closely resembling the

in vivo vasculature [24,25,26]. Monitoring cells undergoing tubu-

logenesis on the Matrigel would allow us to identify distinct steps at

which TEM4 may impact in vivo angiogenesis. As shown in

Figure 1G, within 3–6 h of plating control cells migrated towards

each other and began aligning to form vascular webs. On the

contrary, TEM4-depleted cells lagged behind and failed to form

complex webs seen in control cells even by 24 h (Fig. 1H). Defects

in tubulogenesis of TEM4-depleted cells suggest that TEM4 may

regulate the most fundamental cellular processes such as cellular

adhesion and migration.

TEM4 and RhoC Regulate Persistence of Endothelial Cell
Migration
To determine if TEM4 regulates endothelial cell migration, we

monitored cellular motility of HUVECs depleted of TEM4 by

shRNA. From these analyses, we observed that cells depleted of

TEM4 made frequent 90u turns and consequently, they ineffi-

ciently migrated away from the point of origin when compared to

control cells expressing non-specific (NS) shRNA (Fig. 2A, Movie

S1–S2). As we previously identified RhoC as an in vivo target of

TEM4, we determined if RhoC has a function in endothelial cell

migration. Cells depleted of RhoC exhibited a similar loss of

directionality of migration phenotype as was seen with TEM4

depletion (Fig. 2A, Movie S3). Consistent with our visual

observations, we found that persistence of migration (calculated

as net displacement from origin/total length of migration path)

was significantly decreased in cells with decreased TEM4 or RhoC

expression levels (Fig. 2B–C, Fig. S1), suggesting that TEM4

regulates persistence of endothelial cell migration in part through

RhoC activation.

TEM4 Activates RhoC in Protruding Membranes
We next determined if TEM4-dependent migration was

associated with RhoC activation. A previous study suggested that

RhoC is activated in membrane protrusions at the leading edge

[27]. We therefore determined if activation of RhoC in membrane

protrusions of endothelial cells is impaired in cells depleted of

TEM4. To visualize activation of RhoC in membrane protrusions,

we utilized a bimolecular fluorescence complementation (BiFC)

assay, a widely accepted approach for studying spatial localization

of protein-protein interactions [28,29] and, more recently, utilized

to study activation of the Ras GTPase protein [30]. Using

available structural data [31,32], we designed a BiFC probe for

RhoC activation by fusing wild-type full-length RhoC to the N-

terminus of Venus (VN; residues 1–154), a spectral derivative of

the GFP protein [33], and the Rho-binding domain (RBD) of

ROCKI (residues 947–1015) to a Venus C-terminal fragment

(VC; residues 155–238) (Fig. 3 A and Fig. S2A). Functional

fluorescent Venus protein is then reconstituted from the separate

N- and C-terminal fragments [34] upon the specific binding of

activated GTP-bound RhoC to the RBD (Fig. 3 A). Because wild-

type RhoC protein is used in Venus fusion, it must be GTP-loaded

by a RhoGEF to promote RBD binding. Therefore, the RhoC-

BiFC probe can be used to monitor activation of RhoC in vivo. We

have validated the specificity of RhoC-BiFC probe (see Results S1

and Figs. S2–S3) and concluded that the BiFC-based sensor can be

used to visualize the spatial activation of RhoC in cells.

To determine if TEM4 promotes activation of RhoC in

membrane protrusions, we visualized activation of RhoC in

control NS and TEM4-depleted cells using spinning disk confocal

microscopy. The F-actin marker, Lifeact [35] was used along with

BiFC sensor to ensure that all movies were collected in the same

focal plane towards the bottom of each cell. As we speculated, an

increase in BiFC signal indicating activation of RhoC was detected

in protruding membranes in NS control cells (Fig. 3B, D, F and

Movie S4). More importantly, TEM4 knockdown severely

impaired RhoC activation in protruding membranes (Fig. 3B, E,

F and Movie S5) indicating TEM4-dependent RhoC activation.

Although the role of RhoC in endothelial cell migration has not

been established, in general, Rho GTPases are activated in

membrane protrusions to promote persistent migration in part by

regulating protrusion of the leading edge [36,37]. Taken together,

our data suggest that TEM4 promotes activation of RhoC in

endothelial cells and is likely to signal through RhoC to promote

persistent cellular migration.

TEM4 and RhoC Regulate Actin Network Organization in
Protruding Membranes
Proper organization of the actin cytoskeleton at the leading edge

of migrating cells is essential for membrane protrusion and

persistent cell movement [2,5,6]. Given the essential role of Rho

GTPases in regulating the polymerization and reorganization of

the actin cytoskeleton, we hypothesized that TEM4 and RhoC

regulate membrane protrusion and, therefore, cell migration by

regulating the actin cytoskeleton in protruding membranes. To test

our hypothesis, we examined the F-actin cytoskeleton in cells

depleted of RhoC by time-lapse imaging of cells expressing F-actin

marker, Lifeact. First, we observed membrane protrusions in

whole cells. Time-lapse imaging of NS control cells expressing

GFP-Lifeact revealed directional protrusion of the leading edge

(Fig. 4 A top row, green arrowheads and Movie S6). In contrast,

membrane protrusions in RhoC-depleted cells were prone to

RhoGEF TEM4 Controls Endothelial Cell Migration
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multiple rounds of retraction (Fig. 4 A bottom row, red

arrowheads), each followed by membrane protrusions of the

collapsed areas (Fig. 4 A bottom row, green arrowheads and

Movie S7). Kymography analysis of RhoC- depleted cells revealed

that protrusions of the leading edge had a much shorter

persistence and altered protrusion/retraction rates of the leading

edge as compared to NS control cells. This leading edge behavior

led to frequent turning events observed in whole cell migration

analyses (Fig. 2).

Figure 1. TEM regulates blood vessel formation. (A) Cartoon describing differentiation of ES cells to form blood vessels. EBs, embryoid bodies.
(B) RT-PCR analysis of Tem4, VEGFR-1 and Gapdh expression during differentiation of ES cells. ES, embryonic stem cells prior to dispersion by dispase
treatment. Data are representative of two independent experiments. (C) Knockdown of TEM4 does not inhibit differentiation of ES cells into EBs. (D)
Western blot confirming knockdown of TEM4 in ES cells by lentivirus-based RNAi construct. (E, F) Loss of TEM4 impairs blood vessel formation.
Differentiated ES cell cultures were fixed on day 8 and vessels visualized by staining with PECAM (E). PECAM-positive surface area was measured and
graphed (F) as described in Materials and methods. Scale bar, 200 mm. (G) Loss of TEM4 impairs Matrigel tubule formation in vitro. Phase contrast
images of HUVECs expressing NS control or TEM4 shRNA undergoing in vitro tubulogenesis on Matrigel surface. (H) Quantitation of Matrigel tubule
formation assay (n = 3, 4 fields/well).
doi:10.1371/journal.pone.0066260.g001
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Second, we inspected the actin cytoskeleton in protruding

membranes of the leading edge. As shown in Figure 4 C, F-actin

filaments appeared dramatically different between control and

RhoC-depleted cells. In NS control cells, individual well-spaced

actin filaments that ran parallel to the protruding edge were easily

identifiable (Fig. 4 C top row). In contrast, in RhoC-depleted cells,

actin stress fibers remained parallel to the protruding edge but

were present in thick bundles (Fig. 4 C bottom row and data not

shown). These bundles formed during strong retractions of the

leading edge as the existing individual actin filaments collapsed

onto one another (Fig. 4 C bottom row, asterisk). These thick actin

stress fibers persisted even as the membrane began to protrude

again (Fig. 4 A bottom row, 76 and 89 min time frame) and were

observed in a large majority (80–100%) of TEM4- or RhoC-

depleted cells (Figure 5 A–B). Our data suggested that TEM4 and

RhoC were essential for the regulation of actin cytoskeleton in

protruding membranes. The abnormal actin stress fibers in

TEM4- or RhoC-depleted cells could be an underlying cause for

the membrane protrusion defects and would account for the loss of

persistence in whole cell migration assay.

TEM4 and RhoC Suppress Myosin Contractility
Actomyosin contractility is an essential regulator of actin

cytoskeleton and promotes maintenance of actin filaments in

protruding membranes [5,6]. Given its critical role in maintaining

the actin cytoskeleton, actomyosin contractility needs to be tightly

controlled during membrane protrusion/retraction phases to allow

for efficient cell migration. Therefore, we suspected that excessive

actomyosin contractility in cells depleted of TEM4 or RhoC may

be an underlying cause of protrusive area collapse and the

appearance of abnormal actin filaments. To determine if

actomyosin activity was elevated in cells depleted of TEM4 or

RhoC, we measured the phosphorylation of the regulatory myosin

light chain (MLC2), which is an indicator of myosin II activity. We

did not observe a significant overall difference in the levels of

phospho-MLC2 in cells maintained under steady-state conditions

in growth media (Fig. 6, GM). Therefore, we acutely stimulated

myosin contractility by treatment with nocodazole and allowed

contractility to return to a basal level during nocodazole washout

[38,39,40]. Nocodazole treatment caused a significant increase in

the level of phospho-MLC2 (Fig. 6) that was not altered by the

depletion of TEM4 or RhoC (Fig. 6). However, when compared to

control NS cells, where a rapid decline of phospho-MLC2 levels

following the nocodazole washout was seen, depletion of TEM4 or

RhoC prevented this decline, leading to persistence in phospho-

MLC2 levels (Fig. 6; 10 min GM). Therefore, we concluded that

TEM4 and RhoC act to restrict myosin II activity to allow

protrusion of the leading edge and persistent cellular migration.

The finding that TEM4 suppresses contractility was somewhat

surprising as TEM4 possesses catalytic activity towards RhoA [15],

a well-known activator of actomyosin contractility [41,42,43].

Therefore, we measured activation of RhoA in cells depleted of

TEM4 or RhoC under nocodazole washout conditions used to

measure contractility changes. As shown in Figure S4, RhoA was

hyperactivated in cells depleted of TEM4 or RhoC suggesting that

TEM4 and RhoC antagonize contractility by antagonizing the

activation of RhoA. It should be noted that the observed increase

in RhoA total protein levels in RhoC-depleted cells is consistent

Figure 2. TEM4 regulates persistence of endothelial cell migration. (A) Wind-Rose plots depicting migratory tracks of six individual migrating
cells in each experimental group. Values on x and y scales are arbitrary. (B) Persistence of two-dimensional cellular migration of HUVECs expressing
NS, TEM4, or RhoC shRNAs. Data shown are the mean 6 s.e.m. measured from 18–27 individual cells in 3–5 independent experiments. Cells
expressing plasmid-based shRNA constructs were identified by monitoring GFP or mCherry fluorescence (Fig. S1). (C) Western blot confirming
knockdown of TEM4 and RhoC expression levels by lentivirus-based RNAi constructs. NS; non-specific shRNA.
doi:10.1371/journal.pone.0066260.g002
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with a previous study [44] and a result of stabilization of RhoA

protein by a RhoGDI. Although the mechanism of selective

engagement of RhoC over RhoA by TEM4 remains to be

discovered, the ability of cells to antagonize RhoA activation at the

leading edge is essential for membrane protrusion and cellular

migration [45,46,47,48,49].

TEM4 and RhoC Control Focal Adhesions
We next determined if TEM4 and RhoC regulate cell-

substrate adhesion. Actin stress fibers in protruding membranes

are coupled to focal adhesions (FAs) linking a cell to substrate to

provide a traction network for leading edge advance and whole

cell body translocation. Therefore, an increase in contractility

(Fig. 6), as well as an increase in F-actin stress fibers (Fig. 5) in

TEM4- and RhoC-depleted cells would promote a stronger cell-

substrate attachment through FAs and thus impair effective

membrane protrusion. To determine if TEM4 and RhoC

regulate FAs, we depleted TEM4 or RhoC and calculated the

number of FAs per cell by immunofluorescent detection of

endogenous paxillin [50,51,52]. As expected, control cells

displayed small (less than 0.4 mm [53,54]) paxillin-positive

structures indicative of focal complexes at the cell edge, and

FAs that flanked each actin filament in protruding membranes

(Fig. 7 A, B). However, although TEM4 or RhoC knockdown

cells were still able to assemble focal complexes, there was a

dramatic increase (, 40%) in the total number of FAs and a

number of large FAs (Fig. 7 A–C). Therefore, we suggest that

depletion of TEM4 or RhoC causes an increase in cell-substrate

attachment which would be detrimental to efficient cellular

migration.

Suppression of ROCK Activity Rescues Persistent
Migration of TEM4-depleted Cells
Our data suggest that TEM4 regulates the actin cytoskeleton

and modulates cell-substrate adhesion to promote persistent

cellular migration. In addition, TEM4 may function to suppress

Figure 3. TEM4 activates RhoC in migrating cells. (A) Schematic diagram representing the principle of the BiFC assay. N- and C-terminal
fragments of Venus fluorescent protein were fused to wild type RhoC and ROCKI RBD, respectively. An interaction between active, GTP-loaded RhoC
and ROCK would facilitate association between N and C termini of Venus to produce a bimolecular fluorescent complex. (B–D) Activation of RhoC
seen by BiFC assay in HUVECs expressing NS control (B, D) or TEM4 shRNA (C, E) and Lifeact-tRFP fusion protein to visualize actin. The close-up of the
protrusive region demonstrates activation of RhoC in NS control (D) or TEM4-depleted cells (E). (F) Relative fluorescence intensity of areas at the
leading edge as compared to areas within cell body in NS and TEM4-depleted cells. Measurements were performed as described in Methods for 4–5
protrusions throughout the time-lapse in 5 cells each. Scale bar, 10 mm.
doi:10.1371/journal.pone.0066260.g003
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actomyosin contractility as cells with decreased levels of TEM4

expression had higher levels of active myosin. However, it is not

clear if the ability of TEM4 to suppress myosin contractility is

essential for its role in cellular migration. To assess if suppression

of myosin contractility is essential for the role of TEM4 in cellular

migration, we determined if suppression of Rho-associated kinase

(ROCK) activity, a well-established upstream regulator of myosin

contractility [41,42], would rescue the persistence of cellular

migration of TEM4-depleted cells. Consistent with this possibility,

treatment with the ROCK-selective Y-27632 pharmacologic

inhibitor [55] reversed the accumulation of abnormal actin stress

fibers and FA enlargement observed in TEM4-depleted cells (Fig. 8

A, B) and, more importantly, restored persistence of cellular

migration of HUVECs depleted of TEM4 (Fig. 8 C–E and Movie

S8). Treatment with Y-27632 alone did not impair persistence of

cellular migration (Movie S9). Therefore, we conclude that

TEM4-mediated suppression of myosin contractility is critical for

the regulation of the actin cytoskeleton, cell-substrate adhesion and

cellular migration.

Discussion

In this study, we determined whether TEM4, a RhoGEF

implicated in cancer-associated angiogenesis, regulates cellular

migration. We demonstrated that TEM4 regulates persistence of

endothelial cell migration and regulates the actin cytoskeleton

network and focal adhesions in membrane protrusions at the

leading edge of migrating cells. We also found that TEM4

functions to suppress actomyosin contractility and that an ability to

regulate actomyosin contractility is essential for TEM4 function in

cellular migration.

We found that the RhoGEF TEM4 controls the persistence of

migration of endothelial cells and TEM4-RhoC signaling func-

tions to restrict myosin contractility in migrating cells. Further-

more, suppression of myosin contractility is essential for TEM4

function in migrating cells, as treatment of cells with ROCK

inhibitor, an upstream regulator of myosin II, reverses TEM4-

mediated phenotypes. Even though the mechanism by which

TEM4-RhoC suppress myosin II activity remains to be identified,

localized inhibition of contractile forces at the leading edge of cells

was previously shown to be essential for cell migration [47,49] and

Figure 4. RhoC is required to maintain protrusion dynamics of the leading edge. (A) Frames of a time-lapse movie recording GFP-Lifeact to
demonstrate organization of the actin filaments during migration of NS control (top row) or RhoC-depleted cells (bottom row). Green arrows indicate
leading edge protrusion, with red arrows indicating edge retraction. Scale bar, 10 mm. (B) Kymography analysis of membrane protrusions of NS or
RhoC-depleted cells. Sample kymographs and protrusion parameters of HUVECs depleted of RhoC or NS control. In each experimental group, 5–6
protrusions per cell in each of 4–6 cells were analyzed and data are mean 6 s.e.m. (C) Time lapse montage of an area outlined in panel A showing a
close up of actin filaments in protruding membranes of NS control (top row) or RhoC-depleted cells (bottom row). Asterisk marks an individual F-actin
filament to highlight differential appearance between actin filaments in NS and RhoC-depleted cells.
doi:10.1371/journal.pone.0066260.g004

RhoGEF TEM4 Controls Endothelial Cell Migration
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Figure 5. TEM4 and RhoC are required to maintain proper actin cytoskeleton architecture in lamella. (A) Actin filaments were visualized
by staining with phalloidin and a-actinin 1 in NS control or cells depleted of TEM4 and RhoC. Cells were prepermeabilized with Triton X-100 to
remove cytosolic a-actinin 1. The whole cell and an isolated area of the leading edge are shown. Scale bar, 10 mm. (B) Depletion of TEM4 or RhoC
increases the number of cells with tight actin/a-actinin bundles. Data are mean6 s.e.m. obtained from 42–57 cells in three independent experiments.
doi:10.1371/journal.pone.0066260.g005

Figure 6. TEM4 and RhoC are required to suppress myosin contractility. Knockdown of TEM4 or RhoC impairs cellular ability to down
regulate myosin contractility. Cells depleted of TEM4 or RhoC or NS control were left untreated (GM), treated with nocodazole (Noc) or treated with
nocodazole with subsequent nocodazole washout. Phosphorylation of MLC2 was determined by western blot analysis of whole cell lysates (A),
quantitated using densitometry and graphed (B). Phospho-MLC2 levels in each group were normalized to levels in the untreated NS control cells that
were set to 1. Data are mean 6 s.e.m. measured in three independent experiments.
doi:10.1371/journal.pone.0066260.g006

RhoGEF TEM4 Controls Endothelial Cell Migration
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for endothelial cell sprouting during angiogenesis [56,57]. It has

also been suggested that tumors utilize a contractility-independent

mode of migration [58,59] and it is possible that this occurs via a

TEM4-RhoC signaling pathway. Future studies will focus on an

investigation of the molecular mechanisms that drive TEM4- and

RhoC-dependent endothelial and tumor cell migration and

invasion to regulate tumor progression.

Depletion of either TEM4 or RhoC inhibits persistence of

cellular migration, and alters actin cytoskeleton and FA morphol-

ogy, suggesting that RhoC activation by TEM4 may mediate

TEM4 functions. Consistent with this, we found that RhoC

Figure 7. Depletion of TEM4 and RhoC causes accumulation of enlarged focal adhesions. (A) Focal adhesions in NS control, TEM4- and
RhoC-depleted HUVECs were visualized by staining with paxillin and phalloidin. The whole cell and an isolated area of the leading edge are shown.
Scale bar, 10 mm. (B, C) Depletion of TEM4 or RhoC leads to an increase in a total number of FAs (B) and number of large FAs (C). Data are mean 6
s.e.m. measured in 10 cells in two independent experiments.
doi:10.1371/journal.pone.0066260.g007
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activation in protruding membranes was severely impaired upon

TEM4 depletion. Interestingly, endogenous TEM4 associates with

both microtubular and actin cytoskeletons in protruding mem-

branes (Fig. S5) suggesting that association with either or both

structures may regulate spatial activation of RhoC by TEM4 as

shown for other RhoGEF family [60,61]. We have previously

shown that TEM4 contains an actin-binding domain which is

required for its ability to activate RhoC in vivo [15], whereas the

mechanism of association of TEM4 with microtubules is unknown.

Further studies are required to determine if the association of

TEM4 with cytoskeletal components dictates spatial activation of

Figure 8. Suppression of ROCK activity in TEM4-depleted cells rescues persistence of cellular migration. (A) Inhibition of ROCK activity
with Y-27632 normalized the appearance of actin cytoskeleton in TEM4-depleted cells. HUVECs were stained with phalloidin and antibody against a-
actinin. (B) Enlarged FAs in TEM4-depleted cells disappear upon treatment with Y-27632. HUVECs were stained with paxillin antibody and phalloidin.
Scale bar, 10 mm. (C) Persistence of 2D cellular migration of HUVECs expressing TEM4 shRNA is restored upon treatment with Y-27632. Data are mean
6 s.e.m. measured from 17 (NS), 26 (TEM4 sh +/2 Y-27632) and 14 (NS+Y-27632) individual cells in three independent experiments. (D, E) Wind-Rose
plots depicting migratory tracks of six individual migrating cells in each experimental group. Values on x and y scales are arbitrary. Scale bar, 10 mm.
doi:10.1371/journal.pone.0066260.g008
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RhoC and if this association is essential for TEM4 function in cell

migration.

Our findings that TEM4-RhoC suppresses phosphorylation of

MLC2 are unexpected. In general, Rho family proteins are

thought to activate MLC2 by signaling through Rho-associated

kinase (ROCK) [62,63]. However, several studies suggested that

RhoC functions independently of ROCK signaling [64,65] and a

recent study reported that RhoC suppresses MLC2 phosphoryla-

tion in response to LPA in osteosarcoma and ovarian cancer cells

[66]. Given the essential role of RhoC in tumorigenesis

[67,68,69,70,71], future studies are required to determine the

mechanism by which RhoC mediates suppression of myosin II

activity and, possibly, tumorigenesis.

The ability of TEM4 and RhoC to regulate leading edge

protrusion undoubtedly stems from the regulation of actin stress

fibers, formation and maintenance of which are essential for

membrane protrusion [5,6]. Loss of TEM4 or RhoC promoted the

accumulation of thick actin bundles in protruding areas of the cell

suggesting that TEM4-RhoC signaling regulates actin stress fiber

formation and distribution. The mechanisms by which TEM4-

RhoC regulate the actin cytoskeleton may involve fine tuning

actomyosin contractility which is required for stress fiber

formation and maintenance [4,5]. In addition, failure to

disassemble FAs may also promote the accumulation of actin

stress fibers at the leading edge observed in TEM4- or RhoC-

depleted cells, as stress fibers associate with FAs to maintain

spacing and turnover [5]. Indeed, inhibition of ROCK activity

rescued the over bundled appearance of the actin stress fibers and

the loss of cellular persistence of TEM4-depleted cells.

Whereas suppression of myosin contractility by an unknown

mechanism is undoubtedly important for TEM4 function in

cellular migration, there may be additional mechanisms utilized by

TEM4 to regulate lamellar actin architecture. One possibility is

activation of other Rho effectors, such as formin proteins, by

TEM4-RhoC signaling to regulate actin stress fiber polymeriza-

tion. Loss of the formin mDia1 has been shown to impair actin

polymerization and loss of actin stress fibers was observed in cells

treated with a broad-specificity chemical inhibitor of formin

[4,72]. In addition to its role in actin polymerization, mDia1 has

also been shown to promote FA disassembly at the leading edge by

recruiting active Src kinase to FAs downstream of Rho GTPases

[73] and could therefore promote the stabilization of actin stress

fibers that we observed in cells depleted of TEM4 or RhoC.

Recent studies identified additional members of the formin family

as mediators of RhoC function [65,74]; however, the mechanism

by which these formins promote cellular migration and invasion

remains unknown.

Materials and Methods

Expression Constructs and Antibodies
Lifeact-GFP constructs were made by subcloning sequences

encoding the Lifeact [35] N-terminus to GFP in the pLL 5.0

lentiviral vector [75].Antibodies used in this study were as

following: TEM4 (4367; ProSci Inc), a-tubulin (DM1A; Sigma),

a-actinin (BM-75.2; Sigma), b-actin (AC-15; Sigma), anti-paxillin

and anti-PECAM (MEC13.3) (BD Transduction), anti-RhoA,

anti-RhoC, anti-MLC2 and anti-phospho MLC2 (Cell Signaling).

Alexa 594-conjugated phalloidin and Alexa-conjugated secondary

antibodies for the immunocytochemistry were from Invitrogen.

Nocodazole (Sigma) and Y-27632 (Calbiochem) were used at final

concentration of 10 mg/ml and 10 mM, respectively.

Endothelial Cell Culture, Lentivirus Production and
Transduction
293T cells (ATCC) were maintained in high glucose Dulbecco’s

modified Eagle’s medium (DMEM) supplemented with 10% fetal

bovine serum (FBS). For virus production, 293T cells were

transfected using a standard calcium phosphate DNA precipitation

method with a target vector and the ViraPower lentiviral

packaging system (Invitrogen). Supernatant containing the virus

was collected 48 h post transfection and the titer was determined

by infecting fresh 293T cells.

Human umbilical vein endothelial cells (Lonza) were main-

tained in EGM-2 medium supplemented with 10% FBS

(HyClone) and endothelial cell culture additives on gelatin-coated

dishes (0.01%). For lentiviral transduction, HUVECs were

incubated with the virus (MOI,10) for 4–5 h in EGM-2 medium

in the absence of serum. HUVECs were passaged 24 h after

transduction and used for experiments 24–48 h later. All

experiments were carried out in HUVECs between passages four

and five.

ES Cell Culture and in vitro Differentiation
ES cells [22] were grown in ES medium (66% of 5637

conditioned medium [76], 17% FBS, 82.5 mM monothioglycerol

(MTG), 15% DMEM, and 0.5 mg/ml gentamicin) in dishes coated

with 0.1% gelatin. For lentiviral transduction, ES cell cultures

were incubated with undiluted viral supernatant for 4–5 h and

allowed to recover in ES cell medium overnight. 72h later, ES cells

were passaged and infected again using the same infection

protocol. Infection efficiency was estimated 48 h after the second

infection at 50–70%.

ES cell cultures were differentiated as described previously

[22,77]. Briefly, ES cells were detached (day 0) with 2.4 U/ml

dispase (Grade II stock, Boehringer-Mannheim) and replated in

bacteriologic dishes in differentiation media (DMEM supplement-

ed with 20% FBS and 150 mM MTG). EBs were transferred to a

plate with fresh differentiation media on day 2. The next day (day

3), EBs were transferred into gelatin-coated tissue culture plates in

differentiation media and fed every other day until day 8, when the

cultures were fixed and analyzed. For RNA isolation, EBs were

plated into 100 mm (earlier time points) and 60 mm plates (later

time points). For immunocytochemistry, EBs were plated in 24

well plates.

Antibody Staining and Image Analysis of ES
Differentiation Assay
Day 8 ES cell cultures were fixed with 4% PFA in PBS for

5 min and stained with anti–PECAM antibody. PECAM-stained

cultures were viewed and photographed with an inverted

microscope (IX-50; Olympus) outfitted with epifluorescence using

a 106NA 0.25 CPlan RT objective (Olympus) and a camera

(DP71; Olympus) with the DP Controller version 3.1.1.267

software (Olympus). Minor adjustments (brightness and contrast

to the whole panel) were performed using Photoshop CS3 (Adobe).

To quantify the vascular area labeled with PECAM antibody, four

wells were analyzed for each test group. For each well, six

sequential non-overlapping areas completely covered with cells

were photographed at 10x magnification, so that the total area

photographed per well was more than 60% of the well. Percent

PECAM area was calculated for each image by adjusting threshold

so the entire vessel is filled and measuring vessel area using ImageJ

‘‘Analyze Particles’’ tool. Means for each well were calculated, and

the mean of four wells for each test group was used for statistical

analysis.
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Matrigel in vitro Angiogenesis Assay
Wells of 12-well plates were coated with growth-factor reduced

Matrigel (9 mg/ml; BD BioSciences). HUVECs expressing NS

control or TEM4 shRNA were resuspended in EGM-2 and seeded

on top of solidified Matrigel matrix (66104 cells/well) in triplicate.

Tubule formation was monitored for 24 h where cells were

photographed at various time points. For each well, 4 fields/well

were photographed for each time-point and number of enclosed

spaces was counted manually and averaged.

RT-PCR Analysis
RNA was isolated using the RNeasy Mini Kit (Qiagen)

according to the manufacturer’s protocol. iScript cDNA synthesis

kit (Bio-Rad) was used for reverse transcription and cDNA was

amplified using Taq polymerase for a number of cycles were linear

amplification was observed. Primers used for the PCR- Tem4

forward primer, 59- CTGGAGGACCATGAGCAGT -39; reverse

primer, 59- GGCTGATGGCTTTTTGGAT-39; VEGFR-1/Flt-1

forward primer, 59- TGTGGTCCTATGGCGTGTT-39; reverse

primer, 59- ATCTTCATGGAGGCCTTGG-39; Gapdh forward

primer, 59- AACTTTGGCATTGTGGAAGG -39; reverse prim-

er, 59- TGTGAGGGAGATGCTCAGTG -39). In each case,

primers were designed to flank an intron and no amplification of

genomic DNA was detected.

RNA Interference
Short hairpin (shRNA) oligos were subcloned into pLL 5.0 GFP

[75] or pLL 5.0 mCherry lentivirus vectors or pLL5.0 vector

where fluorescent marker has been deleted. Target sequences were

as following: TEM4 #3 59-GCACCACTCTGAAGCGAA-39;

TEM4 #5 59-GGAAATGACATGAGGAAA-39; RhoC 59-

GGATCAGTGCCTTTGGCT -39; RhoA 59-GGAA-

GAAACTGGTGATTG-39; and mouse TEM4 59- GAACAAG-

GACTATCAGGAA -39. The control shRNA (NS; GATC-

GACTTACGACGTTAT) has no exact match in the human,

mouse or rat genomes [75].

Single Cell Tracking and Kymography Analysis
HUVECs were sparsely plated on a gelatin-coated MatTek dish

in growth medium and allowed to attach overnight. 2060.5 NA

phase time-lapse movies were recorded for 2.5 h with frames taken

every 5 min on a Nikon Biostation IM (Nikon) equipped with DS-

2MBWC camera (Nikon). In each experiment 10–12 fields were

simultaneously recorded using an automated stage. For the

analysis, every cell in each movie that met the tracking criteria

(was completely within the field of view for the entire experiment,

did not divide, and did not touch another cell for more than three

frames) was tracked using MTrackJ plug-in for ImageJ with the

point-click mode. In each case, cell centroid, defined as a half

point along the long axis of the cell, was used for tracking. Data

were exported into Microsoft Excel for analysis. The persistence of

migration was calculated as [net displacement from origin (mm)/

total length of migration paths (mm)].

For GFP-LifeAct kymography, videos were recorded for 1–2 h

with frames taken every 60 sec on an Axio Observer microscope

(Zeiss) with a plan-apochromat 6361.4 NA objective. Kymo-

graphs were assembled from equal-length videos for each

individual cell using ImageJ and lamellipodial parameters were

calculated as described [75]. Five to six lines were drawn

perpendicular to the protrusive areas in each of 4 to 6 cells and

lamellipodial parameters were calculated using custom script [75].

Parameters for each individual protrusive area within a cell were

averaged and means of 4–6 cells were used for statistical analysis.

Bimolecular Fluorescent Complementation Analysis of
Activation of RhoC
For experiments determining the specificity of BiFC reagents,

293T cells were plated in 6-well plates and transfected with VN-

RhoC, VC-RBD and tRFP (200 ng each plasmid) using calcium

phosphate precipitation method. Eighteen h after transfection the

cultures were trypsinized and replated into glass-bottom MatTek

dishes in complete growth medium. The fluorescence derived from

the BiFC and tRFP markers was visualized 24 h after transfection

using spinning disk confocal microscope (Axio Observer; Zeiss)

with a plan-apochromat 6361.4 NA objective. Images were

captured by sequential scanning with the 488 nM argon and the

561 nM HeNe1 laser and the BP 525/50 (for BiFC), BP 598 (for

tRFP) emission filters. To remove bias, tRFP-positive cells were

identified without checking for presence of the BiFC signal and

fluorescent intensities produced by BiFC and the tRFP internal

reference were recorded for each cell. To process images, cell

boundary was identified using tRFP channel and total cell

fluorescence intensity was measured in ImageJ and background

subtracted. Finally, the ratio of BiFC to tRFP fluorescence

intensity was obtained and plotted.

To analyze dynamics of activation of RhoC in HUVEC, cells

were first infected with lentivirus encoding Lifeact-tRFP and

TEM4 shRNA #3 or NS control. In this instance, mCherry

fluorescent marker was deleted from TEM4 shRNA pLL 5.0

vector by restriction digestion. Twenty-four h after the first

infection, cells were infected with lentivirus encoding VN and VC

fusions. Cells were subsequently split into glass-bottom MatTek

dishes and visualized 72 h after the first infection using a Zeiss

Observer and 6361.4 NA objective in microscopy medium

(DMEM/F12 with endothelial growth medium bullet kit (Lonza)

supplemented with 10% FBS (Characterized FBS; HyClone)).

Time-lapse images were collected every min using the following

exposure times: 550 ms for tRFP and 500 ms for BiFC-RhoC.

Image brightness and contrast were adjusted in ImageJ software.

To calculate fluorescence intensity of RhoC-BiFC, a 10 mm-wide

rectangle was drawn at the protrusive edge or inside the cell

(forward of the nucleus) and intensity in each frame of the time

lapse was measured using plot Z-axis profile tool in ImageJ. These

measurements were used to calculated edge/cell body ratio

fluorescence.

Immunocytochemistry and Microscopy
HUVECs were fixed with 4% paraformaldehyde in cytoskeletal

buffer (CS; 5 mM PIPES, pH 6, 137 mM NaCl, 5 mM KCl,

1.1 mM Na2HPO4, 0.4 mM KH2PO4, 0.4 mM MgCl2, 0.4 mM

NaHCO3, 2 mM EGTA, 50 mM glucose) for 15 min. In

experiments described in Figs. 5 and 8, cytosolic a-actinin was

eluted by a simultaneous fixation-prepermeabilization protocol

(5 min in 0.5% Triton X-100, 3% PFA in CS buffer, 15 min in

3% PFA in CS). Cells were permeabilized with 0.2% Triton X-

100 for 5 min, blocked with 5% BSA and stained with antibodies.

FluorSave reagent (EMD Chemicals) was used as the mounting

media. Cells were examined with an inverted laser scanning

confocal microscope LSM 510 (Carl Zeiss, Inc) using an oil

immersion plan-apochromat 6361.4 NA objective. Images were

captured by sequential scanning with the 488 nM argon/633 nM

HeNe2 lasers and the 543 nM HeNe1 laser (488 nM and 543 nM

for 2-color staining), and the BP 505–530 (for Alexa 488), BP 585–

615 (for Alexa 594 and mCherry), or LP 650 (for Alexa 647)

emission filters and recorded by the LSM software (Zeiss). For

scoring, images were captured using plan-apochromat 4061.2 NA

objective and number of cells with tight bundles of actin
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crosslinked by a-actinin was counted manually. Image brightness

and contrast were adjusted using Adobe Photoshop CS3.

Focal Adhesion Analysis
Cells were plated on gelatin-coated 15-mm glass slides and

allowed to attach overnight. Cells were fixed using a simultaneous

permeabilization-fixation protocol and stained with rabbit anti-

paxillin antibodies and phalloidin. Only cells with a single nucleus

were used for the analysis to avoid variations in a total number of

FAs due to cell size. The number of FAs per cell was quantitated

from thresholded images using ImageJ. Raw time-lapse data were

used for measurement of FA dynamics. For presentation purposes,

brightness and contrast were adjusted using Adobe Photoshop

CS3.

Statistical Analysis
Prizm software was used for statistical analysis. In each case, p-

values were calculated using a two-tailed unpaired t-test assuming

unequal variance. Significance for all tests was assumed at p,0.05

(alpha 0.05).

Supporting Information

Figure S1 Lentiviral vector-based shRNA plasmid de-
sign used in the study. (A) Diagram of the modified lentiviral

vector combining shRNA expression from the Pol III U6

promoter with GFP or mCherry fluorescent proteins expression

from the MSCV 59 LTR promoter to identify infected cells for the

analysis. (B) HUVECs were infected with TEM4 shRNA #3 co-

expressing mCherry. Twenty-four h after infection cells were fixed

and stained with nuclear marker. Infection efficiency was

determined by counting cells not expressing mCherry (uninfected

cells; marked with an arrowhead) and is 96% for the field shown.

At the chosen MOI (,10) lentiviral infection efficiency neared

100% in every experiment.

(TIF)

Figure S2 Characterization of BiFC-RhoC probe speci-
ficity. (A) Schematic diagram of lentiviral vector-based shRNA

plasmids used in the study. ORFs are drawn not to scale. (B-D)

The wild-type or mutated RhoC and RBD were co-transfected

into 293T with an internal control (tRFP). (B) Western blot

confirming the expression of BiFC constructs in 293T cells. GFP

antibody was used to detect VN fusions. Antibody against ROCKI

was used to detect VC fusions. (C-D) Fluorescent intensities

produced by BiFC and the internal reference were measured in

individual cells (30–54 cells for each group) and the ratio is

displayed as a distribution between individual cells (D) or a mean

(C).

(TIF)

Figure S3 BiFC-RhoC in endothelial cells. (A) Individual
frames from time-lapse movies show the fluorescent levels of

RhoC-BiFC, GFP-RhoC or GFP alone in HUVECs. Arrows mark

protruding areas of the cell. (B) Western blot analysis of BiFC

constructs in HUVECs. RhoC antibodies were used to compare

expression levels of VN-RhoC fusions to the endogenous RhoC.

Antibody against ROCKI was used to detect the VC fusions. (C)

BiFC requires wild type RhoC and ROCK as mutation of either

RhoC or ROCK abolished BiFC-derived signal. (D–E) Activation

of RhoC in NS control (D) or TEM4-depleted cells (E). BiFC-

RhoC fluorescent signal was recorded in four cells in each

experimental group. Scale bar, 10 mm.

(TIF)

Figure S4 TEM4 and RhoC antagonize activation of
RhoA. (A) Knockdown of TEM4 or RhoC promotes activation of

RhoA. Cells depleted of TEM4 or RhoC or NS control were left

untreated (GM), treated with nocodazole (Noc) or treated with

nocodazole with subsequent nocodazole washout. Active RhoA

was pulled down in GTPase pull-down assay and levels of active

and total RhoA were determined by western blot analysis. (B)

Western blot confirming knockdown of RhoA and RhoC

expression levels by lentivirus-based RNAi constructs in cells used

for single cell tracking. NS; non-specific shRNA. (C) Persistence of

two-dimensional cellular migration of HUVECs expressing NS,

RhoC or RhoA shRNAs or treated with Y-27632. (D) Wind-Rose

plots depicting migratory tracks of six individual migrating cells in

each experimental group. Values on x and y scales are arbitrary.

(TIF)

Figure S5 Localization of endogenous TEM4 to actin
filaments and microtubules in protrusive areas of the
cell. (A) HUVECs were stained with antibodies against TEM4

and a-tubulin and Alexa-594 phalloidin. The close-up of cell

periphery (B) or cell body (C) is shown. Specificity of TEM4

staining was confirmed by preincubating the TEM4 antibody with

TEM4 immunizing peptide (E) or control peptide (D) of similar

length. Scale bar 10 mm.

(TIF)

Movie S1 Migration of NS control HUVECs. HUVECs

were infected with lentivirus encoding NS control shRNA and

plated on gelatin-coated plates. Cellular migration was recorded

using a bright field microscope (Nikon Biostation IM) for 2.5 h

with an acquisition rate of 5 min/frame. Movies played at a speed

of 5 frames-per-second. Scale, 10 mm.

(MOV)

Movie S2 Migration of HUVECs with decreased expres-
sion of TEM4. HUVECs were infected with lentivirus encoding

TEM4 shRNA #3 and plated on gelatin-coated plates. Cellular

migration was recorded using a bright field microscope (Nikon

Biostation IM) for 2.5 h with an acquisition rate of 5 min/frame.

Movies played at a speed of 5 frames-per-second. Scale, 10 mm.

(MOV)

Movie S3 Migration of HUVECs with decreased expres-
sion of RhoC. HUVECs were infected with lentivirus encoding

RhoC shRNA and plated on gelatin-coated plates. Cellular

migration was recorded using a bright field microscope (Nikon

Biostation IM) for 2.5 h with an acquisition rate of 5 min/frame.

Movies played at a speed of 5 frames-per-second. Scale, 10 mm.

(MOV)

Movie S4 RhoC activation in NS control HUVECs.
HUVECs were infected with lentiviruses encoding Lifeact-tRFP

and NS control. Twenty-four h after the first infection, cells were

infected with RhoC-BiFC biosensor components. Time-lapse

images of RhoC-BiFC (left panel) and Lifeact-tRFP (right panel)

were recorded using a spinning disk confocal microscope (Zeiss

Observer; Carl Zeiss, Inc.). Frames were recorded for 34 min with

an acquisition rate of 1 frame/min and played at a speed of 5

frames-per-second. Scale bar, 10 mm.

(MOV)

Movie S5 RhoC activation in TEM4-depleted HUVECs.
HUVECs were infected with lentiviruses encoding Lifeact-tRFP

and TEM4 shRNA #3. Twenty-four h after the first infection,

cells were infected with RhoC-BiFC biosensor components. Time-

lapse images of RhoC-BiFC (left panel) and Lifeact-tRFP (right

panel) were recorded using a spinning disk confocal microscope

RhoGEF TEM4 Controls Endothelial Cell Migration

PLOS ONE | www.plosone.org 12 June 2013 | Volume 8 | Issue 6 | e66260



(Zeiss Observer; Carl Zeiss, Inc.). Frames were recorded for a total

period of 41 min, using an acquisition rate of 1 frame/min and

played at a speed of 5 frames-per-second. Scale bar, 10 mm.

(MOV)

Movie S6 Actin cytoskeleton dynamics in control HU-
VECs. HUVECs were infected with lentiviruses encoding NS

control shRNA and Lifeact-tRFP. Time-lapse images of Lifeact-

tRFP were recorded using a spinning disk confocal microscope

(Zeiss Observer; Carl Zeiss, Inc.). Frames were recorded for

68 min with an acquisition rate of 1 frame/min and played at a

speed of 5 frames-per-second. Scale bar, 10 mm.

(MOV)

Movie S7 Actin cytoskeleton dynamics in RhoC-deplet-
ed HUVECs. HUVECs were infected with lentiviruses encoding

RhoC shRNA and Lifeact-tRFP. Time-lapse images of Lifeact-

tRFP were recorded using a spinning disk confocal microscope

(Zeiss Observer; Carl Zeiss, Inc.). Frames were recorded for

120 min with an acquisition rate of 1 frame/min and played at a

speed of 5 frames-per-second. Scale bar, 10 mm.

(MOV)

Movie S8 Treatment with Y-27632 restores persistence
of HUVECs depleted of TEM4. HUVECs were infected with

lentivirus encoding TEM4 sh#3 shRNA and plated on gelatin-

coated plates. Cells were pretreated with 10 mM Y-27632 for

30 min and cellular migration was recorded using a bright field

microscope (Nikon Biostation IM) for 3 h with an acquisition rate

of 5 min/frame. Movies played at a speed of 5 frames-per-second.

Scale, 10 mm.

(MOV)

Movie S9 Migration of control HUVECs treated with Y-
27632. Cells were pretreated with 10 mM Y-27632 for 30 min

and cellular migration was recorded using a bright field

microscope (Nikon Biostation IM) for 3 h with an acquisition rate

of 5 min/frame. Movies played at a speed of 5 frames-per-second.

Scale, 10 mm.

(MOV)

Results S1

(DOCX)
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