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ABSTRACT

Summary: Pattern Gene Finder (PaGeFinder) is a web-based
server for on-line detection of gene expression patterns from serial
transcriptomic data generated by high-throughput technologies
like microarray or next-generation sequencing. Three particular
parameters, the specificity measure, the dispersion measure and
the contribution measure, were introduced and implemented in
PaGeFinder to help quantitative and interactive identification of
pattern genes like housekeeping genes, specific (selective) genes
and repressed genes. Besides the on-line computation service, the
PaGeFinder also provides downloadable Java programs for local
detection of gene expression patterns.
Availability: http://bioinf.xmu.edu.cn:8080/PaGeFinder/index.jsp
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1 INTRODUCTION
Spatiotemporal variation of gene expression can happen extensively
among tissues, developmental stages, physiological conditions and
individuals (Lage et al., 2008). The variation is believed to link with
gene function and pathology. Benefiting from current applications of
high-throughput technologies, e.g. microarray and next-generation
sequencing (NGS), simultaneously monitoring gene differential
expressions in large scale becomes easier. When digging into these
large volume of data, patterns can be detected.

Currently, three kinds of pattern genes, housekeeping genes,
specific/selective genes and repressed genes, have received general
attentions. Housekeeping genes are generally defined as genes that
express ubiquitously in all conditions, which have been adopted as
molecular markers in qualitatively or semi-quantitatively measuring
gene expression level for a long time (Warrington et al., 2000). The
specific (selective) genes are a group of genes whose expressions are
enriched in one or several conditions, e.g. tissues, or developmental
stages (Liang et al., 2006). Opposite to the specific gene expression,
some genes are expressed in almost all conditions except in one
or several conditions. These genes are acknowledged as repressed
genes or ‘disallowed genes’ (Thorrez et al., 2011). They are
exceptions of housekeeping genes. The spatiotemporal preference
of these pattern genes carries crucial information of what the genes
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do and how they work together to execute certain physiological
functions.

Traditionally, these pattern genes were detected by molecular
technologies like RT-PCR, in situ hybridization etc. However, due to
the limitation of technologies, many pattern genes identified by these
methods were later found to be inappropriate when including more
samples. This problem was significantly reduced with availability
of large scale datasets generated by microarray, SAGE or NGS.
Upon these high-throughput data, various methods were adopted
previously on detecting such pattern genes, including cutoff, relative
fraction (Chang et al., 2011; Liu et al., 2008) and learning algorithms
like Naive Bayes classifier (De Ferrari and Aitken, 2006) and
SVM (Dong et al., 2011). Some of them are simple but qualitative
(e.g. cutoff); some are quantitative but insensitive (e.g. relative
fraction); some are powerful but instable and hard to be implemented
(e.g. learning algorithms). Therefore in this study, we introduced
three novel parameters as quantitative indicators to describe and
automatically identify pattern genes from serial transcriptomic data.
An on-line server was constructed as well to provide dynamic
analysis service.

2 METHODS

2.1 SPM and identification of specific gene
To quantitatively estimate the relative expression specificity of a gene in a
sample, the specificity measure (SPM) was introduced as following. Each
gene expression profile was first transformed into a vector X:

X= (x1,x2,...,xi,...,xn−1,xn) (1)

where n is the number of samples in a profile. At the same time, a vector Xi

was created to represent the gene expression in sample i:

Xi = (0,0,...,xi,...,0,0) (2)

The SPM of a gene in a sample was then determined by calculating the cosine
value of intersection angle θ between vector Xi and X in high-dimension
feature space:

SPMi =cos θ = Xi •X

|Xi|•|X| (3)

where |Xi| and |X| are the length of vector Xi and X, respectively. The
value of SPM ranges from 0 to 1.0. A SPM value close to 1.0 indicates the
major contribution of gene expression in a designated sample (e.g. vector
Xi) against that in all samples (vector X). The higher the SPM value is
(e.g. SPM ≥ 0.9), the more specific the gene expression is in a sample.
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2.2 DPM and identification of housekeeping gene and
repressed gene

To evaluate the variability and diversity degree of a gene expression profile,
a new parameter of dispersion measure (DPM) was introduced as following.
The gene expression profile (X) was first converted to its corresponding SPM
profile (XSPM):

XSPM = (SPM1,SPM2,...,SPMi,...,SPMn−1,SPMn) (4)

The DPM was then determined by

DPM=

√√√√√
n∑

i=1
(SPMi −SPM)2

n−1
·√n (5)

where n is the sample number, and SPM is the mean of SPMs in a gene

expression profile. Unlike conventional SD analysis, DPM is independent
of gene expression level and sample number by scaling into a region of
0–1.0 as above. In this way, DPM makes variability comparable between
profiles or datasets. A value of DPM close to 0 suggests equal expressions
of gene over samples. Therefore, DPM can serve as a good indicator in
quantitative description and identification of ‘strict’ housekeeping genes
that have nearly constant expression in all samples, e.g. DPM ≤ 0.3. As
exceptions of housekeeping genes, the repressed genes are detected by
verifying gene expressions in all samples except one.

2.3 CTM and identification of selective gene
The contribution measure (CTM) is a statistical parameter developed to
measure the enrichment of gene expressions in several samples. The CTM
was calculated by

CTM=
√√√√ k∑

i=1

SPM2
i (6)

where k is the number of selected samples. In this study, the tissue-selective

genes were described and identified as genes whose expressions are enriched
in limited samples (e.g. 2 ≤k ≤ 4), in each of samples (SPMi ≥ 0.4) and
together (e.g. CTM ≥ 0.9 and DPM ≥ 0.9).

3 ACCESS OF PaGeFinder
The PaGeFinder can be freely accessed at http://bioinf.xmu
.edu.cn:8080/PaGeFinder/index.jsp. To initiate the interactive data
analysis, user is required to upload a local pre-processed gene
expression dataset to the remote server. The dataset should be
prepared in tab-delimited format as following: the first row contains
titles of each column. The first column contains unique identifiers
(normally probeset IDs or gene symbols) for genes, which will be
used to query or browse the analysis results. The following rows
and columns are expression data of samples. Currently, the server
only accepts tab-delimited plain text file or its compressed ‘.zip’
file, which cannot exceed 10 Mbits in file size. After successful file
uploading, data validation function is called to check for missing
data or improper values. If the dataset passes the validation, the
server will respond the statistic of valid rows (genes) and columns
(samples); otherwise, prompt error messages.

When file is uploaded and validated successfully, an optional
expression cutoff value is asked as an indicator of gene
absence/presence for further data normalization. Clicking on the
button ‘continue’ will lead to the query page, where analysis results

can be downloaded at the right top corner of page or browsed
by three different ways: Gene Search, Pattern Gene Search and
Pattern Search. When query a designated gene via the ‘Gene Search’
form, its normalized expression profile, SPM distribution and its
DPM evaluation will be shown. The ‘Pattern Gene Search’ form
enables user to retrieve information of specific genes, housekeeping
genes, selective genes and repressed genes through four independent
sub-forms. The query starts by setting proper cutoffs for detecting
these four pattern genes. A set of default cutoffs have been preset
for convenience; however, user can freely customize results by
modifying cutoff values in respective forms. Query submission will
respond a sorted list of genes (identifiers) that satisfy query criteria.
Clicking on an identifier will lead to the detailed information page,
where the gene patterns can be visualized in charts as well as
quantitative measures. The ‘Pattern Search’ form provides functions
for detecting two global gene expression patterns, similarity and
correlation analyses, which was previously implemented in the
GEPS sever (Wang et al., 2006).

For those large datasets, the PaGeFinder even provides
downloadable Java programs for local analysis. Currently, three
standalone Java programs for SPM/DPM calculation, similarity
calculation and correlation calculation are available.

4 CONCLUSION
In summary, the introduction of three novel parameters in
PaGeFinder provides an easier, more sensitive and robust way
in quantitative detection of gene expression patterns than current
methods like cutoff and relative fraction. PaGeFinder is particularly
useful for dynamic and global understanding of gene functions under
serial spatiotemporal conditions. Moreover, it also can be widely
applied on mining other high-throughput data based on protein,
metabolite or other molecule systems.
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