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abstract

T cells in the immune system are activated by binding to foreign peptides (from an external pathogen) or mutant
peptide (derived from endogenous proteins) displayed on the surface of a diseased cell. This triggers a series of
intracellular signaling pathways, which ultimately dictate the response of the T cell. The insights from com-
putational models have greatly improved our understanding of the mechanisms that control T-cell activation. In
this review, we focus on the use of ordinary differential equation–based mechanistic models to study T-cell
activation. We highlight several examples that demonstrate the models’ utility in answering specific questions
related to T-cell activation signaling, from antigen discrimination to the feedback mechanisms that initiate
transcription factor activation. In addition, we describe other modeling approaches that can be combined with
mechanistic models to bridge time scales and better understand how intracellular signaling events, which occur
on the order of seconds to minutes, influence phenotypic responses of T-cell activation, which occur on the
order of hours to days. Overall, through concrete examples, we emphasize how computational modeling can be
used to enable the rational design and optimization of immunotherapies.
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INTRODUCTION

T cells are the members of the immune system re-
sponsible for identifying and killing diseased cells,
cells that are either infected with a foreign pathogen or
are mutated within the host to become cancerous.
T cells perform this immune response through binding
of the T-cell receptor (TCR), expressed on the surface
of T cells, to a major histocompatibility complex (MHC)
displaying a foreign antigen on the surface of a dis-
eased cell. This triggers a series of intracellular sig-
naling pathways1,2 (Fig 1), which integrate to enable
the T cell to make a switch-like decision to become
activated or not. Considering the complexity of the
positive and negative feedback loops and multiprotein
interactions in these pathways, it is difficult to predict
how changes to T cells (ie, modifying the TCR,
expressing engineered chimeric antigen receptors
[CARs], or targeting specific intracellular signaling
molecules) would affect T-cell activation. Therefore,
systems biology approaches combining quantitative
experiments with mechanistic modeling are needed to
predict T-cell dynamics. Systems biology modeling
identifies how individual components influence the
system as a whole.3

Systems biologymodels have been used to study T-cell
activation, including mechanistic models, logic-based

models, and data-driven statistical models. The latter
two can identify new structural features of a pathway
and bridge time scales between signal initiation and
phenotypic response, but often lack mechanistic in-
formation about the system. Mechanistic models
typically include known interactions between individ-
ual molecular species. Ordinary differential equation
(ODE)-based deterministic models provide quantita-
tive insights into how kinetic and physical changes to
the system influence the output. Mechanistic sto-
chastic models incorporate biologic variability and
predict responses within a heterogeneous cell pop-
ulation. Because overactivation of a few T cells can
lead to serious system effects and even death, sto-
chastic models can identify which cell-to-cell differ-
ences significantly influence an individual cell’s
response. Here, we highlight computational models of
T-cell activation, with a focus on how mechanistic
models (Table 1) advance our understanding so that
the immune system can be engineered to better fight
disease.

MECHANISTIC MODELS

Antigen Discrimination

Several theories have been proposed21-24 to explain the
mechanism through which T cells become activated
by as few as one or two agonist antigens, referred to as
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sensitivity, but not by thousands of antagonist self-antigens,
even though there is only a small difference in the binding
affinities of the two antigen types, referred to as specificity.
The dominant hypotheses include (1) kinetic segregation,
(2) kinetic proofreading, (3) receptor scanning, and (4)
serial triggering, which have been reviewed previously.25,26

There is computational and experimental data to support
each hypothesis, and it is likely that all of these, and more,
play a role in the highly sensitive and specific initiation of
TCR activation.

The theory of kinetic segregation proposes that the physical
separation of the TCR from phosphatases, such as CD45,
enables accumulation of phosphorylated TCR domains,
which can initiate T-cell activation (Fig 1; purple).24 Ex-
periments show that the large extracellular domains of
many membrane-spanning phosphatases are excluded
from the narrow contact region between a T cell and its
target.27,28 This physical exclusion of phosphatases is
thought to prevent aberrant signaling.29 Burroughs and
Wülfing30 constructed a model of kinetic segregation to
show how the size of the extracellular receptor domain,
and therefore, the bond length between the T cell and
antigen-presenting cell, controls the composition of the

segregated regions. However, this model cannot explain
T-cell specificity and sensitivity.

Kinetic proofreading and receptor scanning provide a mecha-
nism for TCR specificity, which cannot be predicted by a simple
binding-activationmodel. In kinetic proofreading, an antigen
must remain bound for a certain amount of time to allow
for enough CD3 phosphorylation to initiate downstream
signaling. Several models of T-cell activation have in-
cluded kinetic proofreading, each explaining complex
data.25,31,32 We highlight a recent model of receptor
scanning informed by new high-resolution experiments
that specifically quantify antigen-receptor dwell time
thresholds for CD4+ and CD8+ T cells. Stepanek et al21

created a new model, termed LCK (lymphocyte-specific
protein tyrosine kinase)-come-and-stay, which predicted
that the CD4 and CD8 coreceptors play an important role
in setting the threshold level for T cells. Their model
predicted that the difference in the LCK binding of CD4
and CD8 is sufficient to account for the activation
threshold differences between CD4+ and CD8+ T cells,
and they validated this prediction experimentally.

To account for the high sensitivity of T-cell activation, serial
triggering33 has been proposed. In this mechanism, one
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FIG 1. Schematic of T-cell receptor (TCR) signaling. The main TCR signaling pathways incorporated into mechanistic computational models are shown here.
Purple: Antigen discrimination: the TCR alpha/beta (α/β) chains bind to an antigen displayed on a major histocompatibility complex on a diseased cell; the
CD3 chains are associated with the TCR. Blue: Intracellular receptor phosphorylation: various kinases, such as lymphocyte-specific protein tyrosine kinase
(LCK), CSK, and ZAP-70, and phosphatases, such as SHP-1, SHP2, and CD45, influence the phosphorylation of state of the CD3 immunoreceptor tyrosine-
based activation motifs (ITAMs) on the TCR. These molecules can either phosphorylate or dephosphorylate the TCR directly, influence the activity of
a molecule that directly acts on the TCR, or bind to phosphorylated ITAMs to protect them from dephosphorylation. Gold: LAT signalosome: many different
adaptor proteins and kinases bind together in the LAT signalosome to activate downstream signaling pathways. Teal: Mitogen-activated protein kinase
(MAPK) pathway: the MAPK pathway acts as a positive feedback to prevent LCK association with the phosphatase SHP-1, as well as activate downstream
transcription factors. Solid lines represent direct activity, dashed lines represent indirect activity, arrows represent phosphorylation events, and blunted lines
represent dephosphorylation events. Red lines are inhibitory mechanisms, and teal lines are positive feedback mechanisms.
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peptide-MHC complex can bind and unbind from many
TCRs. This allows for short dwell times to lead to strong
activation such that a single antigen-MHC complex can
initiate enough TCR signaling to activate downstream
transcription factors. Serial triggering explains T-cell sen-
sitivity and specificity and is also consistent with kinetic
segregation and kinetic proofreading.34 Thus, multiple
mechanisms of antigen discrimination work together to
influence T-cell decisions.

Modeling of antigen discrimination has also been applied to
CAR-engineered T cells. Harris et al35 measured T-cell
activation by TCRs and CARs with the same antigen
binding kinetics and showed that CARs are 10- to 100-fold
less sensitive than TCRs. Using a simple model of kinetic
proofreading coupled with an incoherent feedforward loop,
they hypothesized that the CAR has weaker receptor ac-
tivation through the proofreading step, but similar down-
stream activation after receptor phosphorylation.

Intracellular Receptor Phosphorylation

Once the TCR binds to its respective agonist target, the
intracellular signaling domains on the receptors become
phosphorylated. The endogenous TCR contains three CD3
dimers, each bearing several pairs of tyrosine phosphor-
ylation sites called immunoreceptor tyrosine-based acti-
vation motifs (ITAMs; Fig 1; blue).36 A variety of models
attempt to describe the intracellular signaling events that
lead to CD3 phosphorylation.

ODE-based mechanistic models explore the mechanisms that
regulate individual proteins in the system. Rohrs et al4 in-
vestigated how LCK, the main activating kinase in T cells, is
regulated. This model showed that the catalytic rates of
phosphorylated LCK species preferentially phosphorylate
specific tyrosine substrates, resulting in a feedback loop in
which active LCK prefers to downregulate LCK activity by
phosphorylating at an inhibitory phosphorylation site, whereas
unphosphorylated and doubly phosphorylated LCK prefer the
activating site. Other models have explored the regulation of
phosphatases associated with T-cell activation signaling.5,19,20

These minimal models provide a basis to explore how various
proteins influence phosphorylation of the TCR itself, including
how the three ITAMs onCD3ζ amplify T-cell signaling.8,11,15,17,18

These minimal models can be expanded to incorporate new
experimental data regarding the roles of CD3ζ.37

There are several models of TCR phosphorylation.34 An
early model of intracellular T-cell signaling assumes that the
TCR is immediately phosphorylated on TCR binding. This
model by Zheng et al5 predicted strong early phosphory-
lation of ZAP-70 and slower dephosphorylation due to
negative feedback from the phosphatases, matching ex-
perimental data. However, this model does not include the
influence of activation or feedback mechanisms on the
ITAM domains themselves. Activation of the CD3ζ ITAMs
has been studied by Mukhopadhyay et al.6 Their first model
predicted that the structure of CD3ζ, with six tyrosine

phosphorylation sites, could promote a switch-like decision
in the on/off state of an individual CD3ζ protein, termed
ultrasensitivity.6 The model tested many possible mecha-
nisms of phosphorylation and ZAP-70 binding, showing
that ultrasensitivity requires that multiple ITAMs be phos-
phorylated sequentially with increasing ZAP-70 binding
affinities. Interestingly, follow-up experiments using a recon-
stituted cellular system did not show ultrasensitivity.7 On the
basis of these experiments, Mukhopadhyay et al7 created
a new model that correlates the CD3ζ structure with its rate
of activation. The model showed that CD3ζ phosphorylation
increases with subsequent phosphorylation events because
of increasing rigidity of the CD3ζ chain.

Several groups have developed detailed mechanistic models
of TCR activation using phosphoproteomic mass spec-
trometry. Rohrs et al9 paired phosphoproteomic measure-
ments of recombinant proteins with mechanistic modeling to
quantify LCK-mediated site-specific phosphorylation of
CD3ζ ITAMs with or without CD28. This work predicted that
the ITAMs are phosphorylatedwith distinct kinetics and shed
light on differences between the various ITAMs and cos-
timulatory domains. Chylek et al10 used mass spectrometry-
based phosphotyrosine measurements to create a model of
the early time points (less than 1 minute) of T-cell activation.
Their work specified individual pathways for different CD3
proteins, showing that CD3ε influences recruitment of the
actin remodeling protein WAS, which was originally thought
to be regulated by CD3ζ. Sjölin-Goodfellow et al11 modeled
a minimal system of four proteins (CD3ζ, LCK, ZAP-70, and
generic phosphatases), focusing on the role of ZAP-70
binding and catalytic activity. The model explained the
different roles of ZAP-70 binding and catalytic activities and
provided possible mechanistic explanations for the obser-
vation that the CD3 ITAMs are phosphorylated asymmetri-
cally (where LCK binds to singly phosphorylated ITAMs
before phosphorylating the second ITAM site). Taken to-
gether, these models present a picture of the subtle kinetic
differences between the ITAM tyrosine site phosphorylation
that may directly influence downstream signaling outputs.

The LAT Signalosome

The models summarized in the Antigen Discrimination and
Intracellular Receptor Phopshorylation sections describe
T-cell activation up to the point of ZAP-70 binding to the
activated TCR. Once bound, ZAP-70 is phosphorylated at
several sites and is able to phosphorylate downstream pro-
teins in the LAT signalosome (Fig 1; gold). LAT is a mem-
brane-bound intracellular scaffolding protein with several
phosphorylation sites, where the four membrane distal tyro-
sine residues strongly regulate T-cell activation.12 The three
C-terminal tyrosine sites bind to the SH2 domains of adaptor
proteins GRB2, GADS, and Grap,38 which bind different
proteins required for T-cell activation (ie, PLCγ, SOS, SLP76,
ITK, NCK, and Vav). Multiple different combinations of LAT
signalosomes are necessary for T-cell activation.39-41
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Computational tools can aid in modeling the large number
of multiprotein interactions in LAT signalosomes. One tool is
BioNetGen, in which rules define possible site-specific
interactions, such as binding or phosphorylation, regard-
less of the state at other sites on the interacting proteins.42

BioNetGen can generate a set of ODEs; however, for the
case of branching LAT complexes, it enables a network-free
simulation that can enumerate the evolution of these
protein complexes.43 Nag et al 12,44 used BioNetGen to
construct a model focusing on the aggregation of LAT into
clusters containing GRB2 and SOS. These are high valence
proteins that aggregate in branched structures to help
colocalize downstream signaling molecules and increase
signal strength. Nag et al12 predicted the amounts of
monovalent, bivalent, and trivalent LAT in the clusters and
proposed that LAT bound to adaptor proteins besides Grb2
could account for the monovalent and bivalent forms.
Sukenik et al13 showed experimentally that GADS can di-
merize through interactions in the SH2 domain, and this
homodimerization promotes LAT binding. They developed
a model on the basis of the experimental measurements
and predicted that cooperative binding of GADS dimers to
phosphorylated LAT could increase the sensitivity of TCR
signaling. Mukherjee et al14 used BioNetGen to simplify
the multiprotein interactions involved in LAT binding and
investigate ITK kinase activity, a functional output. Rather
than including binding events that lead to LAT signal-
osome recruitment of ITK, they assumed that ITK and its
substrate PLCγ are directly recruited to phospho-LAT. The
model predicted that cooperative allosteric regulation of
ITK by IP4, a signaling modulator, is important in con-
trolling ITK activity.

The Mitogen-Activated Protein Kinase Pathway

Many of the molecules in the LAT signalosome lead to
pathways that activate transcription factors. The ERK/mi-
togen-activated protein kinase (MAPK) pathway (Fig 1;
teal) exhibits rapid and robust activation, controls TCR
activation via feedback,45 and influences T-cell functional
response.46 This pathway displays ultrasensitivity in T cells
and is thought to help make an on/off activation decision
from the graded upstream inputs after TCR binding.15

Several models have explored the ERK/MAPK pathway
and its role in T-cell activation.

ERK response in T cells is typically digital, resulting in
a bimodal population as the stimulus level increases above
threshold. Das et al15 used computational modeling to
better understand how RasGRP and SOS coordinate MAPK
activation. They found that RasGRP activation leads to
a graded response, whereas SOS is subject to positive
feedback that results in a digital response. These results
were validated by Jun et al,16 who expanded the model to
include another MAPK pathway leading to p38 activation.
They found that p38 activation requires SOS binding,
without allosteric regulation.

ERK also provides feedback upstream of the MAPK
pathway to LCK. ERK phosphorylates LCK at a protection
site, preventing it from being dephosphorylated by the
phosphatase SHP-1, maintaining LCK’s catalytic activity.
Altan-Bonnet and Germain17 modeled these competing
feedback loops with kinetic proofreading and demonstrated
that the feedback loops determine the threshold for antigen
discrimination, while keeping a rapid and sensitive response.
Altan-Bonnet and Germain17 also showed that the cellular
response is highly dependent on SHP-1 concentration.
Feinerman et al47 further tested the effects of protein ex-
pression heterogeneity on T-cell signaling using a stochastic
model implementation. The model predicted that CD8
controls the half-maximal concentration of antigen required
for cells to respond, and SHP-1 controls themaximal percent
of cells that respond. Coregulation of these two proteins was
predicted to limit population-level variability in T-cell re-
sponse, which they validated experimentally.

Cytosolic Messengers

Cytosolic messengers are activated downstream of the LAT
signalosome. One of the most important messengers in
T-cell activation is calcium. In T-cell activation, PLCγ in the
LAT signalosome promotes formation of IP3, which re-
leases calcium from intracellular vesicles. This calcium
promotes signaling to activate the transcription factor
NFAT. Perley et al48 modeled TCR-mediated activation of
calcium and downstream cytokines. Their model showed
the importance of positive feedback from ERK to kinases
such as LCK to promote calcium release.

Several groups have used computational modeling to ex-
plore how messengers influence kinetic proofreading.49-51

These studies incorporate the temporal summation model,
in which the messenger accumulates downstream if TCRs
are serially triggered.49 Once this messenger reaches
a certain level, it activates downstream signaling without
waiting for kinetic proofreading at the receptor level,
a phenomenon known as kinetic proofreading escape.
Calcium has been shown to exhibit these characteristics,
but more work is needed to better understand how other
messengers influence T-cell activation.

Phenotypic Responses

Extending models of T-cell signaling beyond activation of
transcription factors requires a change in time scale. All of
the intracellular signaling events described previously oc-
cur on a time scale of seconds to minutes after antigen
binds to the TCR; however, gene regulation and protein
synthesis take much longer (hours to days). Although some
mechanistic models attempt to explain these events over
time, the exact mechanisms and parameters that govern
these events are not well defined.52 Therefore, more
coarse-grained mechanistic models are used to explain
phenotypic responses of T-cell activation. For example,
Locasale53 used an ODE-based model to explore how
memory can develop in long-term interrupted T-cell

Understanding T-Cell Activation Through Computational Modeling
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stimulation. Their model simplified signaling such that
T-cell antigen binding directly stimulates transcription
factor activation. The model identified possible gene reg-
ulation mechanisms that allow T cells to integrate activation
signals over longer time scales; however, their work lumps
many of the intracellular signaling pathways described
earlier into a single intermediate step.

FUTURE DIRECTIONS

Mechanistic models are useful for predicting the dynamics
of intracellular signaling. However, more work can be done
to improve their predictive ability. These models can be
expanded to account for additional signaling mechanisms,
such as binding of adaptor proteins to CD3ζ,54 differences
between the individual ITAMs,55 and T-cell costimulatory
domains.56 More detailed models are also needed to de-
scribe how the LAT signalosome triggers downstream
pathways that activate transcription factors associated with
T-cell activation and differentiation.57

In addition, mechanistic models can be complemented by
other modeling approaches (Table 2). Logic-based models
help identify new interactions between proteins in a path-
way.58,59 Logic-based models have the ability to incorporate
hundreds of proteins, compared with tens of proteins,
which are typically included in mechanistic ODE-based
models. Although logic-based models cannot provide
quantitative information about the signaling reactions, they
can predict how various signaling events influence the
phenotypic responses of T cells. For example, Kaufman
et al60 used a Boolean formalism to explore how kinases

remain active, even after the antigen unbinds from the TCR,
linking the timing of antigen binding and intracellular signal
initiation to longer time scales of T-cell response. Miskov-
Zivanov et al61 created a Boolean model that predicted
T-cell differentiation into regulator or helper cells on the
basis of the strength and timing of antigen presentation.
Zhang et al62 compared how activation of cancerous T cells
differs from healthy T-cell activation. Thus, logical models
can provide new insights and predict functional responses.

Data-driven statistical modeling can be used to bridge the
time scales between the initial signaling events and T cells’
phenotypic responses. Kemp et al63 created a multivariable
regression model that relates the levels of intermediates in the
TCR activation pathway to production of interleukin-2, a cy-
tokine that mediates the cells’ immune response. They
measured levels of 11 proteins downstream of the TCR and
CD28 after T-cell activation with different antigen peptides.
They then used partial least squares regression to identify the
combination of signaling events that could explain the
interleukin-2 production. Themodel also predicted the effects
of altering individual pathways. This work showed that T-cell
activation is regulated by a combination of multiple signaling
nodes downstream of the TCR. More recently, data-driven
models have benefited from mass cytometry techniques
(CyTOF), which canmeasuremore than 40proteins at once.64

Such models of T cells65 and NK cells66 provide new insight
into the complexity of signaling dynamics.

It is increasingly evident that the spatial arrangement of
molecules plays an important role in T-cell activation.49,67 New
experimental data are rapidly emerging to indicate the im-
portance of molecular movement and arrangement in T-cell
activation.68-70 Some models of T-cell activation account for
the molecules’ spatial distribution,8 and software such as
Simmune, developed by the National Institutes of Health/
National Institute of Allergy and Infectious Diseases, has
opened new opportunities to explore these spatial features.71

With the renewed focus on immunotherapy, it is important
to understand how T cells are activated so that they can be
engineered to fight diseases.72,73 Computational models can
identify promising methods for optimizing activation through
the TCR74 and CARs,75 reducing the time and money spent
on guess-and-check preclinical experiments. Accurately
predicting how modifying signaling mechanisms affects
T-cell phenotypic responses requires a mechanistic model
with downstream signaling outputs that are detailed and
precise enough to be used as inputs to course-grained logic
or statistical models that predict phenotypic responses.
Ultimately, by combining various computational modeling
approaches with robust experimental data, we can gain
insight needed to optimize new immunotherapies.

TABLE 2. Summary of Different Model Features

Model
Time
Scales

Level of
Complexity Pros Cons

Mechanistic Seconds-
minutes

Molecular
kinetics
(tens of
species)

Quantitative Computationally
complex

Molecularly
detailed

Difficult to span
time scales

Logic based Minutes-
days

Pathway
interactions
(hundreds of
species)

Requires
limited
a priori
knowledge

Not quantitative

Incorporates
many
species

Requires big
data

Statistical
models

Minutes-
days
(between
scales)

Input/output
relationships

Able to span
time scales

Limited
mechanistic
information

Can identify
unknown
interactions

Requires big
data
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