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Abstract Taxis behaviour in Drosophila larva is thought to consist of distinct control mechanisms

triggering specific actions. Here, we support a simpler hypothesis: that taxis results from direct

sensory modulation of continuous lateral oscillations of the anterior body, sparing the need for

‘action selection’. Our analysis of larvae motion reveals a rhythmic, continuous lateral oscillation of

the anterior body, encompassing all head-sweeps, small or large, without breaking the oscillatory

rhythm. Further, we show that an agent-model that embeds this hypothesis reproduces a surprising

number of taxis signatures observed in larvae. Also, by coupling the sensory input to a neural

oscillator in continuous time, we show that the mechanism is robust and biologically plausible. The

mechanism provides a simple architecture for combining information across modalities, and

explaining how learnt associations modulate taxis. We discuss the results in the light of larval neural

circuitry and make testable predictions.

DOI: 10.7554/eLife.15504.001

Introduction
The larvae of Drosophila display taxis behaviours by spontaneously crawling towards or away from

the source of stimuli such as odours, or more generally, up or down stimulus gradients, including

chemical, light and temperature gradients (Luo et al., 2010; Gomez-Marin et al., 2011; Gomez-

Marin and Louis, 2012; Gomez-Marin and Louis, 2014; Kane et al., 2013; Klein et al., 2015). This

behavioural tendency is flexible and can be altered by associative learning if the stimulus is pre-

sented together with a positive or negative reinforcer (Scherer et al., 2003; Gerber et al.,

2004; Ache and Young, 2005; Diegelmann et al., 2013; Schleyer et al., 2015a). The development

of both a rich genetic manipulation toolkit and sophisticated behavioural assays have provided the

basis for a recent explosion of studies targeting the biological underpinnings of larval taxis, as an

ideal model system for investigating the neural basis of sensorimotor control and learning.

Larval chemotaxis, in particular, has been extensively studied. The main chemosensory organ is

located on the head, and the small spatial separation of the bilateral olfactory receptors makes it

unlikely that the animal can detect the instantaneous odour gradient. In fact, it has been shown that

larvae can still chemotax with a single active receptor (Fishilevich et al., 2005; Gomez-Marin et al.,

2010; Louis et al., 2008). The key information used by the larva appears to be the change in odour

concentration experienced as it moves forward and/or casts its head sideways (Gomez-Marin et al.,

2010). Olfactory sensory neurons are well suited to carry this information as they have been shown

to give strong transient responses during changes in odour concentration (De Palo et al., 2013;

Nagel and Wilson, 2011; Kim et al., 2011; Schulze et al., 2015) and the frequency and direction of

turns (large body bends leading to a new trajectory direction) appears correlated to decreases or

increases in the perceived concentration (Hernandez-Nunez et al., 2015; Schulze et al., 2015).

Other sensory modalities could in principle use spatially separated sensors to detect instantaneous

gradients across the body to direct steering, but recent studies reveal substantial similarity in the
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characteristics of larval taxis behaviour across different modalities (Gepner et al., 2015;

Bellmann et al., 2010; Lahiri et al., 2011). This suggests it may be possible to provide a more gen-

eral account that elucidates the nature of the sensory-motor transformation during all forms of taxis,

and how multiple stimuli combine.

Several models have been designed to capture quantitatively the observed larval behaviour dur-

ing its approach to an odour source (Davies et al., 2015; Hernandez-Nunez et al., 2015;

Schleyer et al., 2015a; Gepner et al., 2015). These models typically assume the expression of taxis

consists of multiple behavioural states with state transitions that are biased by sensory stimuli. In

Davies et al. (2015); a model closely based on the behavioural analyses in Lahiri et al. (2011);

Gomez-Marin and Louis (2014); Gomez-Marin et al. (2011); Ohashi et al. (2014) reproduces many

characteristics of larval chemotaxis by combining three mechanisms: biased forward runs (weather-

vaning), increased probability to stop runs when odour concentration decreases (klinokinesis), and

increased probability to resume running when a head cast is in a direction that increases the experi-

enced odour concentration (klinotaxis). Each contributes to the improvement of odour taxis perfor-

mance, and in theory, each could be individually modulated by sensory stimuli characteristics,

context, other stimuli, or learning, in a manner that modifies the observed odour preferences. How-

ever, behavioural observation shows rather strong similarities in the behavioural modulations result-

ing from apparently unrelated conditions, such as odour-tastant associative learning and variation of

stimulus concentration (Schleyer et al., 2015a), which simultaneously modulate both the klinokinetic

and klinotactic responses (weathervaning was not assessed in this study). Also, a recent attempt to

categorise larval behavioural states using an unsupervised method based on the animal’s posture

suggests the existence of a continuum rather than clear-cut categories (Szigeti et al., 2015).

It remains possible that the apparent repertoire of taxis behaviours seen in the larvae is, in fact,

the result of a single underlying mechanism. In this paper, we take a bottom-up, synthetic approach

(Braitenberg, 1986) to investigate whether a simpler sensorimotor control scheme can give rise to

the observed phenomena of taxis. We combined a detailed observation of the larva’s crawling

motions with an agent-based simulation to explore the behaviours that can emerge from the interac-

tion between brain, body, and environment.

Specifically, inspired by the description in larvae of frequent low amplitude head sweeps,

which modulate run direction (Gomez-Marin and Louis, 2014), and the idea that closed-loop sen-

sory modulation of an intrinsic motor pattern can be a particularly efficient neural mechanism for

flexible behavioural control (Izquierdo and Lockery, 2010; Kanzaki, 1996; Levi et al., 2005;

Willis and Arbas, 1997b), we investigated the hypothesis that taxis in larvae results from continuous

anterior body oscillations modulated by immediate sensory inputs.

Our analysis reveals that larvae indeed display continuous anterior body oscillation. We show, in

both a simple discrete-time model and a neural model in continuous time, that direct sensory modu-

lation of oscillation amplitude is sufficient to reproduce many specific larval taxis signatures, without

requiring specific parameter tuning to different conditions. Finally, we discuss the biological rele-

vance of our proposed mechanism and how it could provide a simple and robust solution for com-

bining information across modalities, or from learnt and innate pathways, to modulate taxis.

Results

Evidence for continuous anterior body oscillation in larvae
We used previously recorded tracks of 42 wild-type larvae performing innate chemotaxis (Gomez-

Marin et al., 2011) to analyse the body-bend, the anterior body angular velocity and the forward

speed. This reveals a continuous alternation between left and right turns, which appears most clearly

in the angular velocity of the anterior part of the body (Figure 1A ‘blue line’). Larvae are known to

regularly stop their forward peristalsis motion and display large lateral head sweeps (Gomez-

Marin et al., 2011). A closer look shows that these head sweeps do not seem to break the continu-

ous alternation between left and right turns, i.e., if the larva’s head was moving left before stopping

the peristalsis motion, the first head sweep after stopping will be to the right, and vice versa

(Figure 1B and Figure 2A,B). Thus, these head sweeps appear to be part of a continuous oscillation

rather than individual motor actions triggered independently. Also, the distribution of body bending,

anterior body angular velocity and acceleration, as well as the extent of each lateral oscillation of the
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Figure 1. Examples of individual larva motion dynamics during chemotaxis show lateral oscillations. Left side panels show the angular speed of the

anterior part of the body (blue), body bending (black), and peristaltic steps (grey dotted lines) based on tail speed (green) corresponding to the paths

shown on the right. Events of interest are labeled by numbers. (A) Path section with no peristalsis inhibition. The larva shows a continuous alternation

between left and right, but turning is biased in both amplitude and duration towards positive angles, resulting in a left curve. (B) Path section with an

intermediate (1) and two stronger (2 and 3) peristalsis inhibition events that do not interrupt the turning alternation. (C) Path section with a peristalsis

inhibition event covering two successive turns (4 and 5). The green vertical bars (1 and 2) indicate moments at which the body bending decreases (from

left to right) even though the larva anterior body is still slightly swinging towards the left. This is due to the simultaneous forward peristalsis motion

bringing the posterior part of the body towards the axis of the anterior part. The angular speed of the anterior body provides thus a better proxy than

body bend to infer the control commands involved. (B,C) Red dotted lines indicate the onset of peristalsis inhibition (conservatively late measure) which

occurs before any strong changes in angular speed or body bending.

DOI: 10.7554/eLife.15504.002

The following figure supplement is available for figure 1:

Figure 1 continued on next page
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Figure 1 continued

Figure supplement 1. Peristalsis and lateral oscillation rhythms appear decoupled.

DOI: 10.7554/eLife.15504.003
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Figure 2. Group statistics of larva motion dynamics during chemotaxis support the existence of an intrinsic lateral oscillatory rhythm. (A,B) Average

(±95%CI) dynamics of the anterior body angular velocity (blue), body bending (black) and tail velocities (green) displayed before and after the onset of

peristalsis inhibition events aligned at t ¼ 0 (dashed red line, when tail speed drops to a minimum), and categorised according to whether the larva is

sweeping towards the left (A) or right (B) at t ¼ 0. Drops in forward crawling speed tend to be accompanied by a large head sweep, as shown

previously (Hernandez-Nunez et al., 2015) (see Figure 2—figure supplement 1). Large head sweeps are preceded by low-amplitude head casts in

the opposite direction (arrows), suggesting the large head cast direction is dependent on the state of the oscillation. (C) Fourier analysis of the angular

velocity of the anterior body (blue) and tail speed (green) across all larvae (see inset for a single individual). Tail speed (peristalsis) rhythm is fairly

constant across larvae at around 1.0 Hz, with slight harmonics of the tail speed at 0.5 Hz, which results from the tendency of some larvae to alternate

continuously between a weaker and stronger peristalsis wave (see Figure 1A’s tail speed for an example). The angular velocity of the anterior body

(blue) shows a slower rhythm than the peristalsis, with a higher variation across and within individuals. Note that the rhythms are not multiples of each

other, suggesting that they are operating independently (see also Figure 1—figure supplement 1). (D) Distributions of markers of the anterior body

sweeps (see inset for logarithmic scale) reveal no sign of bimodality, suggesting a continuum of turning modulations rather than the triggering of

distinct specific actions. (E,F) Distributions of individual head-sweep’s duration (E) and maximum angular speed (F). Head sweeps are defined as the

period between the two successive points in time where the anterior body angular speed crosses zero. (F) Head sweeps tend to reach higher angular

velocity during stop phases (dash grey) than during crawling phases (grey) (i.e. when tail speed average during head sweep is <0.3 mm/s and >0.7 mm/

s, respectively). (E) Head sweep durations can vary; however, the distributions of duration are similar during stop phases (dash grey) and forward

crawling phases (grey), suggesting a shared underlying oscillatory rhythm (E).

DOI: 10.7554/eLife.15504.004

The following figure supplement is available for figure 2:

Figure supplement 1. Correlation of head sweep statistics to tail speed.

DOI: 10.7554/eLife.15504.005
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anterior body, show a smooth curve with no signs of bimodality (Figure 2D) suggesting a continuum

of turning modulation rather than a discrete set of distinguishable actions.

A Fourier analysis confirms the existence of an oscillatory rhythm with a mean frequency around

0.3 Hz; that is roughly one turn left and one turn right every 3.3 s (Figure 2C, blue). This turning

oscillation seems decoupled from the peristalsis motion (Figure 1—figure supplement 1), which

operates around a mean frequency of 1.1 Hz (Figure 2C, green). The peristalsis rhythm appears

remarkably constant, perhaps because of biomechanical constraints (Ross et al., 2015). Therefore, a

direct coupling between peristalsis and turning oscillation would constrain the larvae to spend as

much time sweeping left as sweeping right, which would restrict the flexibility in trajectory altera-

tions. By having the lateral oscillations decoupled from peristalsis, however, the relative duration

between left and right sweeps can vary. This is indeed what we observed in larvae. A curving path to

the left for instance, is achieved by spending slightly more time (and also increasing the angular

speed of the head sweep) sweeping left than sweeping right (Figure 1A ‘blue region’: Time spent

turning right = 12.9 s; Time spent turning left = 22.9 s; Ratio right/left = 0.64. Integral left = 179.3

degrees; Integral right = �64.6 degrees; Total = 114.7 degrees left; Ratio right/left = 0.73). Even-

though larvae show larger and quicker head sweeps when the peristalsis motion has stopped

(Figure 2F), the head sweep duration is similar between crawling phases and stop phases

(Figure 2E), suggesting again the existence of a shared underlying oscillatory rhythm.

To summarise, our observations support the hypothesis that a continuous lateral oscillation of the

anterior body sits at the core of the chemotaxis mechanism, and that its rhythm is decoupled to the

peristaltic rhythm thus allowing more freedom to adjust the head-turning velocity and amplitude.

Hypotheses and modelling assumptions
We embedded the idea that continuous lateral oscillation of the anterior body sit at the core of the

taxis mechanism in two simple agent-based models, one running in discrete and the other in contin-

uous time. Our hypotheses are:

. ‘Small amplitude head-casts’ and ‘large amplitude head-casts’ (Gomez-Marin and Louis,
2014) are manifestations of a single underlying mechanism that continuously drives a lateral
oscillation of the anterior body (head casts).

. The direction (left or right) of a head-cast at a given time-step is determined only by the cur-
rent state of an intrinsic oscillator rather than the sensory input or its history, or an active
choice by the larva to probe the environment.

. The amplitude of each of these alternating head-casts is continuously modulated by the stimu-
lus perceived.

We sought to simplify our models as far as possible so as to establish the nature of the essential

sensorimotor components that could underlie the emergence of chemotactic signatures observed in

larvae. Our implemented models therefore also make the following simplifying assumptions:

. Stopping (inhibition of forward peristalsis) is not essential for taxis, except insofar as it aids
reorientation by enabling larger turns or tighter curvature of paths. Hence, we neglect stops,
and in our model, the agent is continuously stepping forward, even when displaying large
turns. Note that we address the limits of this assumption, and how stopping could be intro-
duced to the model, in the discussion.

. As the anterior body bearing determines the forward step direction in larvae, we assume it is
the crucial variable for taxis, and not the actual bend of the body. Therefore, we limit our
model to a single oriented point in space, representing the position of the larva as a whole
along with its current bearing. The control mechanism then determines the trajectory of that
point through space. This way of abstracting the larval trajectory has been previously used in
biological analysis (Louis et al., 2008) and enables us to compare our model to larval trajec-
tory statistics.

A simple oscillatory agent reproduces taxis
We first embedded the above ideas into a discrete-time agent (see ’Materials and methods’). At

each time-step, the point agent rotates on the spot (by an amount a, see Figure 3A, grey arrow)

and makes a step forward of a fixed size l = 1 mm in this new direction (Figure 3A).
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The direction of these re-orientations alternates between left and right on each time-step

(Figure 3A). This represents the continuous heading oscillation observed in larvae (Figure 1).

The amplitude (a) of these left/right alternating re-orientations is bounded from above and below

(Equation 7). For most results reported in this paper the lower bound is 0 degrees (prevents a ‘right’

turn becoming a ‘left’ turn or vice versa) and the upper bound 180 degrees to represent the maxi-

mum possible re-orientation given the larva body bending constraints (Figure 3A,B dashed line).

In the absence of any stimulus, the amplitude (a) of these re-orientations has a baseline angle �B.

In the main results, we set �B = 10 deg, so as to roughly match the apparent small amplitude oscilla-

tions observed in larva Figure 1A. However, we show that the value of this parameter is not crucial

for the emergence of taxis (Figure 3—figure supplement 1).

In the presence of stimulation, such as a gradient of odour concentration, the amplitude (a) of

each of these re-orientations is modulated by the stimulus perceived. The stimulus perceived is taken

as the difference in stimulus intensity between the previous and current location (in our model: pn)
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Figure 3. Discrete-time agent model. (A) The agent consists of an oriented point (black dot) from which the odour

concentration is sampled, the grey arrow indicates its orientation and the red line indicates the motion trail. At

each time step, the agent performs a rotation (0 � a � 180 deg) on the spot alternating between left and right

rotations (‘L’ and ‘R’) so as to set a new orientation (grey arrow), and then moves forward by 1 mm. (B) In the

absence of stimulation, the extent of this rotation is set according to a constant baseline �B (typically �B =10 deg),

which is alternated between L and R causing movement in a zig-zag fashion. In the presence of stimulation, the

extent of the rotation (e.g., towards the right) is modulated by the change of stimulus intensity (blue line, pn�1)

perceived between the previous tn�1 and current tn position. The modulation is simplified down to a linear

constant gain g; so that the extent of the rotation (here towards the right) is: a ¼ �B þ g� pn�1. As a result, when

g<0, an increase in stimulus intensity perceived (pn�1>0) would decrease the extent of the rotation towards 0

degrees (i.e. the agent goes straight), whereas a decrease in stimulus intensity perceived (pn�1<0), would increase

the rotation up towards 180 degrees (i.e. agent makes a U-turn). Effectively, a negative gain (g<0) yields attraction

towards higher stimulus intensity. Inversely, a positive gain (g>0) yields aversion (D) (g ¼ 0 results in neither). (C,D)

Section path examples from agent simulation in an odour gradient, with line colours as in (A). The underlying dark

continuous line indicates the overall path taken by the agent. The blue lines indicate the isoclines of the odour

concentration.

DOI: 10.7554/eLife.15504.006

The following figure supplement is available for figure 3:

Figure supplement 1. Model’s robustness to change in baseline angle.

DOI: 10.7554/eLife.15504.007
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(Figure 3B). The amplitude (a) of the rotation is determined by a simple linear function: pn�1 is multi-

plied by a constant gain g, and this is then added to the baseline intrinsic oscillations �B (Figure 3B).

Thus, bearing angle can be bidirectionally modulated, that is, the signal perceived can lead to an

increase or decrease in the amplitude of the next turn, as compared to the baseline angle �B,

depending on the sign of pn�1 and the constant gain g (Figure 3B).

The gain g is taken to represent the sensorimotor transformation, which gives a linear relationship

between perceived sensory stimulation and motor command. What this linear transformation could

imply for the larva is considered in the discussion.

Figure 3C,D shows that this simple agent is sufficient for taxis to emerge. The behaviour is very

robust to the choice of baseline turning angle �B or gain values (Figure 3—figure supplement 1).

Effectively, a negative gain (g<0) yields attraction towards higher stimulus intensity because decreas-

ing stimulation (pn�1<0) triggers strong re-orientations, while increasing stimulation (pn�1>0) straight-

ens the path (Figure 3B). Inversely, a positive gain (g>0) yields aversion (Figure 3D), and a null gain

(g ¼ 0) yields neither attraction nor repulsion. While the sign of the gain g determines attraction or

repulsion, the magnitude determines its strength: the larger the gain, the stronger the agent’s reac-

tion to the sensory stimulation is, and thus stronger attraction or aversion emerges in the resulting

trajectories (see Figure 3—figure supplement 1, first row).

In the following sections, we examine the ability of this basic model to capture the typical chemo-

tactic signatures observed in larvae, including path shapes, bearing to odour distribution shapes,

sensory history, and their qualitative change resulting from typical manipulations such as change in

stimulus concentration or associative learning.

Characteristic taxis trajectories
An emergent property of our agent model is that for an attractive odour (i.e. a negative gain) the

distribution of bearing angle to the odour’s source shows two peaks around 90 and �90 degrees

(Figure 4). Therefore, the agent tends to spend more time with the odour on its sides rather than

directly in front or behind it. Interestingly, this is also true with real larvae (Figure 4).

For both larval and the agent generated paths, this tendency is emphasised while displaying no

large turns (Figure 4C blue line) and large turns tend to happen while the odour is located behind

(Figure 4C red line), a result consistent with previous findings (Gomez-Marin et al., 2011;

Schleyer et al., 2015b). Spending time with the odour located 90 degrees on the side translates

into orbiting around the odour source. This ‘orbital behaviour’ can be observed clearly in simulated

trajectories from the deterministic (absence of random noise) version of our agent model

(Figures 4B and 5B).

However, in our models, increasing the gain (towards higher negative values) results in a qualita-

tive change to the shape of agent’s trajectories from circular orbits to those characterized by straight

crossings over the odour source, and sharp re-orientation events once the peak has been passed

over, that is, when the odour source is now located behind the agent (Figure 4B). When further

away from the odour source, the perceived changes in concentration (pn�1) are smaller so, as during

orbital behaviour, the agent tends to spend time with the odour on its side. As a result, the model

predicts different statistics depending on the proximity to the odour: when close to the odour, cross-

ing-over paths occur, resulting in a flattening of the bearing-to-odour distribution curve. Examination

of actual larvae paths reveals similar signature: crossing-over trajectories emerge when close to the

odour source [except for the Or42a single receptor mutant larvae, that show an orbital behaviour

(see below)], which indeed results in a flattening of the distribution curve (Figure 4A,D).

Modulation of the chemotactic response as a simple change in gain
Chemotaxis in larvae can be altered in several ways. For instance, genetic alterations of the periph-

eral olfactory circuits that reduce the number of functional OSNs (Louis et al., 2008; Gomez-

Marin et al., 2011) or receptor diversity (Gomez-Marin et al., 2011) increase the spread of trajecto-

ries around a source, and can produce trajectories that seem to maintain a distance from the source

(Figure 5A).

A change in gain parameter g of our model is sufficient to generate trajectories that capture these

path signatures (Figure 5B). As the gain is reduced, the spread of trajectories increases, and orbital

trajectories eventually arise: the agent maintains a radial distance from the source. Critically, these
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are not due to active repulsion (Gomez-Marin et al., 2011; Kreher et al., 2008; Asahina et al.,

2009) but due to a weak sensory-to-turn gain g that does not allow the agent to perform sufficiently

large reorientations to track the peak concentration as the agent moves in the arena.

Schleyer et al. (2015b) describe in detail the effects of changing the concentration of the odour

source on the statistics of larval chemotaxis. Perhaps surprisingly, they show that similar behavioural

effects are obtained after associative learning (Figure 5C). Here also, a change in stimulus intensity

or a change in gain g in our model closely captures these effects (Figure 5D). The explanation of

why both kinds of changes yield similar effects is straightforward in our model as a change in stimuli

intensity perceived pn�1 or gain g both directly affect the next head-sweep amplitude (see

Equation 6).

A widely used summary measure of chemotaxis is the performance index: the proportion of a

group of larva that is near the odour source after some period of time. In our model, the
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Figure 4. Typical path signatures for larvae and simulation. (A,B) Example of paths. (C,D) Distributions of bearings to odour. Both larvae and simulated

agents tend to spend most time with the odour located on their sides (�90 and 90 degrees), orbiting the source. In both larvae and simulation, orbital

behaviour is emphasized during peristalsis forward motion (turn < 30 degrees for the model) (C blue curve), and when the larvae/agent is more than

1cm away from the odour (D green curve). Crossing-over trajectories, by contrast, are constituted of regular large turns that happen mostly while the

larvae/agent is heading away from the odour (C red curve) and is rather apparent when the larvae/agent is close to the odour (D blue curve).

DOI: 10.7554/eLife.15504.008

Wystrach et al. eLife 2016;5:e15504. DOI: 10.7554/eLife.15504 8 of 25

Research article Computational and Systems Biology Neuroscience

http://dx.doi.org/10.7554/eLife.15504.008
http://dx.doi.org/10.7554/eLife.15504


performance index increases quite linearly with change in gain (Figure 5E) and can therefore

account for the continuum of performance indices observed in larvae across experiments. This was

not necessarily the case in previous agent simulation models, where small changes in parameter val-

ues would yield drastic changes in performance index (Davies et al., 2015).

It thus seems that our model can capture a variety of effects observed in path signatures, detailed

motor changes and performance indices by changing in a single parameter (g). In the discussion, we

reflect on possible implications of this result for the architecture underlying chemotaxis in larvae.

Sensory history preceding turns
The average sensory history perceived before the occurrence of large turns shows a slow monotonic

decrease in concentration which extends up to 10s prior to the large turn. This has been reported

for larvae during chemotaxis (Gomez-Marin et al., 2011) or as a response to white noise
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optogenetic stimulation of olfactory receptor (Gepner et al., 2015), and can also be observed in our

model (Figure 6).

In larvae, this may suggest the existence of a low-pass filter enabling larvae to integrate mono-

tonic decreases over relatively long time scales to increase the probability of triggering a large turn

(Gomez-Marin et al., 2011; Davies et al., 2015; Gepner et al., 2015). However, our model does

not possess such a low-pass filter: large turns occur as the consequence of the stimulus change per-

ceived during the last time-step only. Here, the amplitude of a turn correlates with the size the stim-

ulus change pn�1, with maximum change occurring when the agent moves directly down-gradient.

The re-orientation towards down-gradient causes a progressive decrease of the stimulus perceived,
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which is reflected in the stimulus history. Since turns are more likely to be triggered when the larva

faces away from the odour then averaging the stimulus around these turn events will reflect this his-

tory of monotonic sensory decrease. Therefore, the monotonic sensory decrease can result from the

structure of the environment, and not from a low-pass filter in the larva.

However, we cannot give a sufficient explanation as for why the monotonic decrease is also seen

under white noise optogenetic stimulation (Gepner et al., 2015). Our agent is a point in space, and

therefore does not capture the details of head sweep movements through space. Further investiga-

tion of dynamics at this level would require implementing our agent into a more elaborate model

that accounts for the larva’s body, which promises to be an interesting endeavour. Nonetheless, the

emergence of this monotonic decrease from the interaction between our reactive agent and the

environment suggests caution is needed when interpreting the causal implications of sensory history

prior to actions.

First-turn bias
Larvae show a slight tendency to bias their first head cast (after a stop event) towards the side of the

attractive stimulus (i.e. the odour side (Gomez-Marin et al., 2011; Gomez-Marin and Louis, 2012)

or darker side during negative phototaxis (Kane et al., 2013), or towards preferred temperatures

(Luo et al., 2010). This may suggest the involvement of bilateral sensing to obtain gradient informa-

tion, or a memory of gradient information obtained during the run. But if we identify ‘turns’ in our

model as those re-orientation angles exceeding the threshold that is usually associated with stop-

ping in the larva, the agent also reveals a tendency to bias its first ‘turns’ towards the odour source

(Figure 7), despite having no gradient information other than the change from one time step to the

next. This tendency arises because of the oscillatory nature of the agent. Given an attractive odour

(i.e. a negative gain g<0), large re-orientations are more likely to be triggered when a negative pn�1
has been perceived during the previous step. And since a negative pn�1 is more likely to be
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perceived when turning away from the odour, the subsequent turn, in the opposite direction, is thus

more likely to be directed towards the odour side.

Nonetheless, this bias is weak and requires a large dataset to appear significant. Our model pre-

dicts that the bias should increase together with increasing odour attraction, whether from stronger

gain due to appetitive learning; stronger sensory input due to increased odour concentration, or

both (Figure 7A); it should also become more apparent when the odour is located on one side of

the larvae (Figure 7B).

A neural implementation of oscillation
So far, we have used a simple discrete time model to examine whether the basic principle of contin-

uous lateral oscillations, modulated in amplitude by the stimuli perceived, can account for larval

taxis. The discrete-time sensorimotor model assumed that head-sweeps and sensory perception are

instantaneous and synchronized, which might imply that the descending sensory signal in the larvae

may require precise timing in order to interact with the ongoing motor control of the oscillation.

Here, we aim to investigate whether our hypothesis can be verified in continuous time given the

biophysical constraints of a neural implementation. The agent is again abstracted to an oriented

point-sensor but now, critically, the change in heading is driven by a neural oscillator in continuous

time, while sensory stimuli are continuously updated under the agent’s motion through the

environment.

For our purposes, we adapted (see ’Materials and methods’ ) a spike-rate neural model of a cen-

tral pattern generator (CPG) that has been successfully used to model lamprey locomotion

(Cohen et al., 1992; Lansner and Griller, 1997) see Marder and Calabrese, 1996. The CPG con-

sists of a pair of compartments, here taken to be driving the changes in the agent’s heading

(Figure 8A). Each compartment has a pool of self-connected excitatory neurons (E), and a cross-

inhibitory interneuron (C) projecting to the other compartment. This produces a regular alternation

in firing bursts between left and right sides that can be modified by the additional bilateral inputs, A

and S. The A unit represents descending sensory signals either processed or direct, while the S unit

represents a modulatory signal. The spike rates from both compartments drive the changes in head-

ing angle via a simple mechanical model (Figure 8B) , see ’Materials and methods’). Note this agent,

like the discrete-time model, does not incorporate stops. It moves forward at a constant speed in

the direction pointed by the heading angle. In the absence of stimuli arriving from the input unit A,

the parameters of the system have been set so that it produces a regular ±10 degrees oscillation in

the heading at around 0.3 Hz. The sensory input allows this oscillation to be perturbed, modifying

the amplitude and phase relationships between the bursts of each side, resulting in a change in the

agent’s heading.

We evaluated the effect of stimulus timing against oscillator phase on the ability of this model to

express overt bearing changes, by delivering perturbations to the input A (note both sides L and R

receive the same perturbation) at different points in the oscillation cycle. Measuring the overall

change in bearing against a bilateral step-input of magnitude Am across different times ts showed

that the larva can be steered in a direction determined by the sign of Am and, crucially the state of

the oscillator at time ts. The resulting steering varied smoothly across the oscillator phase and there-

fore it is not critically dependent on the precise timing of the perturbation (see Figure 8F).

In a virtual odour environment, the continuous agent also produces curved paths when further

away from the odour source, characteristic of larval behaviour, that subsequently become orbits

around the odour source (Figure 8D). The parameters of the model have been set such that the fre-

quency of oscillation is within the ranges observed in larva (see Figure 8C), and thus when measur-

ing the mean frequency of the heading velocity over such trajectories we obtain a noisy frequency

spectrum comparable to the larval trajectory data. Further, we established that a doubling of the

gain (from g ¼ 70 to g ¼ 140), which effectively doubles the input due to the sensory induced pertur-

bations from the input A, results in a qualitatively comparable change from orbital to crossing-over

trajectories, as observed with the discrete-time agent (Figure 4). The heading velocity dynamics

emerging from the model (Figure 8E) are reminiscent of the experimental data of anterior body

angular velocity (Figure 1) in terms that in both there is a baseline rhythm while heading velocity

increases under larger re-orientations (see Figure 1).

The sensory stimuli during a change in heading naturally fall into a fixed phase relationship to the

oscillator activity since the turn direction depends on which oscillator compartment is active.
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Therefore, the input perturbation perceived in the virtual odour environment relates to the turning

motion, as these two variables are in a closed-loop. Consequently, increasing the gain also increases

heading angular velocity and thus results in sharper re-orientation maneuvres, which in turn result in

larger sensory perturbations.

Figure 8. Neural model in continuous time. (A) Central pattern generator modelled with neurons of mean firing rates (adapted from Wilson, 1999).

Arrows indicate excitatory connections, a bar denotes an inhibitory connection and circle denotes a neuromodulatory connection. Cross inhibitory

connections go to all neurons of the opposite compartment. The A unit represents mean firing rate of an OSN, and it projects to both compartments.

The S unit represents a neuromodulatory neuron which modulates the half-response threshold of the E and C neurons to effectively imitate the effects

of a slow adapting current. We denote the left and right E as EL and ER respectively. (B) A torsional spring is acting on the agent heading change to

represent the restoring viscoelastic forces of the larva body bends. The red arrow indicates the direction from which the agent is coming, and the grey

arrow indicates its heading direction. (C) Frequency spectrum of heading velocity oscillations that are comparable to larval data. (D) Example taxis

trajectories in a virtual odour gradient with different gain. (E) Sample oscillator dynamics during chemotaxis, showing EL and ER alternating, while the A

input as influenced zig-zag motion of the agent in the environment. Under high-gain the turns appear sharper as required. (F) Effects of unit-step

perturbations on bearing angle across oscillator phase. Panels below show the simultaneous state of the heading angular velocity, an example step-up

in the firing rate of A and the respective state of neural bursts from EL and ER (here shown unperturbed by the step-input A).

DOI: 10.7554/eLife.15504.012
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Discussion

Oscillation as a principle of larval locomotion
Rhythmic behaviour is ubiquitous in biological systems. Producing oscillations during locomotion is

widespread in biological systems, from multisegmented animals (Iino and Yoshida, 2009;

Izquierdo and Lockery, 2010; Lansner and Griller, 1997) down to single cells (Yang et al., 2011),

and may have advantages for sensorimotor control when tracking up an odour trail or plume

(Hangartner, 1969; Farkas and Shorey, 1972; Budick and Dickinson, 2006; Willis and Arbas,

1997a; Cardé and Willis, 2008).

We have presented evidence from tracking of Drosophila larva that their locomotion also contains

a rhythmic lateral oscillation (Figures 1 and 2), which is apparently uncorrelated with the peristaltic

rhythm (Figure 1). We take this continuous oscillation to be the underlying basis for larval behaviours

that are often treated as distinct states triggered by dedicated sensory motor processes (see

Green et al., 1983; Sawin et al., 1994; Cobb, 1999; Vogelstein et al., 2014; Ohashi et al.,

2014; Gomez-Marin and Louis, 2012, 2014; Hernandez-Nunez et al., 2015; Gepner et al., 2015).

That is, we suggest running/weathervaning and casting/turning all result from the same underlying

and continuously active oscillatory mechanism (Figure 9C,D), and that taxis involves continuous and

direct sensory modulation of the oscillation amplitude. We show that models embodying this

hypothesis, despite their simplicity, are sufficient to capture a range of taxis phenomena observed in

larvae (Figures 4, 5, 7, 8).

In this oscillatory taxis mechanism, ‘directed’ motion by the animal towards a target does not

require a lateralised descending signal, nor does it include any switch between states or actions.

Robust steering simply emerges from the closed-loop nature of the system: the oscillations control

the exposure of the sensor to the stimuli, and the sensory signal controls the oscillations by perturb-

ing the stable cyclic dynamics of the oscillator. A CPG is believed to operate within the thoracic and

abdominal segments of larvae, executing a motor program for exploratory locomotion (Hughes and

Thomas, 2007; Berni et al., 2012; Lemon et al., 2015), while a recurrent CPG circuit generating

oscillations is consistent with cross-connections in the ventral nerve cord of the larva (Kohsaka et al.,

2012; Rickert et al., 2011). Indeed, genetic disruption of the mid-line connection pattern, particu-

larly in the anterior segments (T1, T2, T3), disrupts lateral body bending (Berni, 2015). This require-

ment echoes the essential neural architecture to implement our hypothesized oscillator.

A simple sensorimotor mapping
We propose that the key mapping underlying taxis behaviour is a direct relationship of the perceived

sensory signal to the modulation of oscillation amplitude. This direct relationship can thus be mod-

elled as a single parameter: the gain g. In our models, both the valence (attractive or aversive) and

salience (strength of attraction or aversion) of the oriented response along a gradient of stimulus

intensity are determined by the value of g. For instance, in our abstract discrete-time agent, a high

negative gain leads to a strong attraction, whereas a low but positive gain will lead to a moderate

aversion (Figure 5C).

This ‘gain’ is only a model parameter and does not represent any specific neuro-anatomical fea-

ture in larvae. Rather, it could be seen as the net effect of the complete pathway from the stimula-

tion of sensory receptors to muscle contraction. However, the fact that a single degree of freedom is

sufficient to capture a substantial range of characteristics of the animal’s behaviour, including the

path signatures (Figures 4) as well as the effect of odour-tastant associations, or reductions in the

number of ORs (Figure 5) can be informative for reconstructing the neural architecture underlying

chemotaxis in larvae.

A simple picture emerges as to how larvae may modulate their chemotactic response, whether as

a result of habituation (Cobb and Domain, 2000; Larkin et al., 2010), learning (Ache and Young,

2005; Scherer et al., 2003; Gerber et al., 2004; Diegelmann et al., 2013; Schleyer et al., 2015a),

motivation (Wang et al., 2013), developmental maturation (Gong et al., 2010; Krashes et al.,

2009) or by integrating multiple stimuli. All parallel sensory pathways simply need to converge and

sum their signals (Figure 9C), whether inhibitory or excitatory. The net sum will determine the

valence (attraction or repulsion) and the strength of the chemotactic response.
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For example, associative learning is believed to be based on experience-driven plasticity of the

mushroom body (MB) pathway (Gerber et al., 2004) and here learning is seen as a change in the

effective signal transmission of this pathway, which runs parallel to the innate one, before both con-

verge onto the motor system. The effective strength of signal transmission is changed by synaptic

plasticity that may result in inverting the relative balance between the MB outputs that control

attraction vs. aversion (as in the adult [Aso et al., 2014, Owald et al., 2015]) in an odour-specific
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Figure 9. Oscillation and peristalsis modulation. (A) Real larvae tail velocities show a bimodal distribution, with the first peak corresponding to

peristalsis inhibition events. Inset illustrates the extraction of maxima peaks (red curve) of tail velocities. (B) Average (±95%CI) of the tail velocities

(green) and absolute values for the anterior body angular velocity (blue) and body bending (black) displayed before and after peristalsis inhibition

events (aligned at t = 0, when tail speed dropped to a minimum). Red line highlights that average tail speed velocity (green) starts dropping before the

occurrence of a large increase in body bending (black) or anterior body angular velocity (blue). This suggests that tail speed is not a mere physical

consequence of a large turning event. (C) Conceptual scheme illustrating our overall view: all modalities, innate and learnt, are integrated at the zone of

convergence. The summed signal is sent to both the neural oscillator mediating turning of the anterior body (blue), and to neurons mediating

peristalsis inhibition (green). Associative center (Asso center), such as the mushroom body, where signal weightings can be modulated given the co-

activation of a reinforcer neuron (R). Note that our scheme allows for sensory inputs to bypass the zone of convergence, and send their signals directly

onto local control of the oscillator and/or the peristalsis motion. (D) Qualitative depiction of how apparently distinct behaviours could emerge from a

continuous modulation signal. Growing signal strength increases anterior body angular velocity (blue) and inhibits crawling speed (green)

simultaneously. If the signal is sufficiently strong peristalsis disruption happens (arrow), leading to an abrupt drop of tail speed velocities. The relaxing

of the peristaltic synchronous left-right body contraction enhances the reaction to the thoracic left-right asynchronous oscillatory contraction, thus

resulting in sharp increase in head sweep amplitude. Peristalsis spontaneously resumes when the sensory command lowers below peristalsis disruption

threshold. The combinations of these two parameters (blue and green) can lead to the emergence of straight runs (light green area), curved runs (light

blue area) and the stop and head-casts (light red area) behaviours as observed in larvae.

DOI: 10.7554/eLife.15504.013
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manner. After convergence with the other pathways, a net inversion would correspond to a change

in the sign of the gain in our model (Figure 3).

This is consistent with the results of Schleyer et al. (2015a) showing that learning and changes in

odour concentration yield similar motor effects; as well as the results of Gepner et al. (2015) sug-

gesting that larvae combine olfactory and visual signals upstream of the decision to turn. It also

explains the apparent similarity of taxis behaviours observed across modalities (compare for odour:

Gomez-Marin et al., 2011; light: Kane et al., 2013, temperature: Lahiri et al., 2011, and why when

aversive light stimulus and attractive olfactory stimulation are perfectly synchronized their antagonis-

tic effects appear to blend smoothly (see Bellmann et al., 2010, Figure 1C). A state-based model,

by contrast, needs to postulate that all these factors have equivalent and parallel effects on multiple

mechanisms to account for these results (Davies et al., 2015).

Integrating lateral oscillation with peristaltic motion
In the current work, we examined chemotaxis behaviour in the absence of a mechanism for stopping.

The models’ results show that peristalsis inhibition is not crucial for the emergence of the taxis signa-

tures discussed above. However, it is clear that crawling speed in larvae can be reduced down to

zero, and this is correlated with large body bends (Figure 1 tail speed), and thus has an impact on

chemotaxis behaviour. We here briefly speculate on how crawling speed might be included in our

model in future.

An initial hypothesis is that stopping could be a by-product of making large turns, i.e., that the

physical constraints of body bending lead to the peristaltic wave being disrupted. However, our

analysis (consistent with Gepner et al., 2015; Hernandez-Nunez et al., 2015) shows that the inhibi-

tion of the forward motion is triggered on average at the onset of the turn and is thus not a mere

consequence of large body bends (Figure 9B). We also note from our analysis that speed reduction

is graded (Figure 1B,C), although contrary to turning amplitude (Figure 2D), the tail speed distribu-

tion is bimodal (Figure 9A). This is not necessarily indicative of a bimodal control signal (‘decision to

stop’); however, as such discontinuities (Figure 9D) can be explained by the non-linear dynamics

arising from simple models of peristaltic wave propagation (Ross et al., 2015) as the speed is

reduced. Our simple suggestion, then, is that the same signal that changes the oscillation amplitude

could also directly change the peristalsis speed, which below some threshold results in a stop.

There is some experimental data suggesting that average speed, frequency of stopping events

and average body-bending amplitude co-vary across stimuli conditions. Larva both reduce their

crawling speed and increase their turn-rate in response to large step increases in

CO2 (Gershow et al., 2012). Larvae tend to accelerate when moving up a chemical gradient

(Gomez-Marin and Louis, 2014) which is correlated with a reduced turn-rate (Schleyer et al.,

2015a). Fast escape responses involve reduced head sweeping and rapid crawling (Ohyama et al.,

2015). In some paradigms, crawling speed and turning amplitude are not so clearly inversely corre-

lated, e.g., large step increases in ethyl acetate concentration decrease turn-rate but reveal only a

weak non-significant increase in speed (Gershow et al., 2012); however, in the same paper, when

the larvae move in a spatial gradient, the inverse correlation between speed and turn-rate is

observed. In addition, peristalsis and head sweeps cease together under some conditions, e.g., sud-

den light offsets (Kane et al., 2013), but this may be a freezing reaction unrelated to normal taxis

behaviour.

Predictions
We have proposed a model in which re-orientation is always active during taxis, as part of an oscil-

latory sensorimotor program. This mechanism makes predictions that differ from taxis arising from

the alternation of discrete-action motor programs (Gomez-Marin et al., 2011; Gomez-Marin and

Louis, 2014; Kane et al., 2013), as implemented in alternative state-based models (Davies et al.,

2015; Schleyer et al., 2015b; Ohashi et al., 2014).

We have assumed that all head-sweeps are under the control of the same oscillator, indepen-

dently if the animal has stopped or is running. The head-sweep amplitude should decrease under

favourable changes, such as moving up-gradient towards an attractive odour, and increase under

unfavourable changes. It also follows that ‘stop and head-cast’ events should be preceded by a

smaller head-sweep in the opposite direction, which indeed agrees with our analysis of larval tracks
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in (Figures 1B and 2A,B), whatever the conditions. This relationship implies that ‘stop and head-

cast’ and ‘weathervaning’ behaviours are not independent mechanisms, and hence, for example, it

should not be possible to obtain neurogenetic control over one without affecting the other.

The oscillator hypothesis predicts that stimulus elicited responses are timing dependent. Specifi-

cally, the continuous model predicts that experimentally varying the timing of stimulus exposure, for

example via optogenetically induced olfactory stimulation, would trigger head-sweeps whose magni-

tude and direction vary as a function of the state of the oscillator at the time of stimulation. In con-

trast, a state-based model would predict that a step stimulus during re-orientation could trigger a

termination of the head-sweep and a transition to the run state, thus ‘accepting’ a new heading

direction. Thus, it does not predict a similar relationship between the stimulus timing, nor its

strength, and the amplitude of the head-sweeps.

Our model also has potential consequences for learning. Current theory supports the view that

memory expression is due to efficacy changes in synapses converging to mushroom body output

neurons (MBONs) that encode valence; stimulating these neurons can elicit attraction or aversion

(Aso et al., 2014; Sachse and Beshel, 2016). However, our model suggests that the mushroom

body pathway is yet another pathway that converges to modify the effective gain in the motor sys-

tem, and thus MBON valence would also be sensitive to activation timing. That is, it should not be

possible to yield a change in odour attraction behaviour via optogenetic activation of a target

MBON unless the stimulus respects the timing sensitivity of the larval oscillator, mimicking a closed-

loop motor action-stimulation.

Conclusion
Larval taxis behaviour has been characterised as transitions between discrete states, or actions

(Green et al., 1983; Sawin et al., 1994; Cobb, 1999; Gomez-Marin and Louis, 2012) requiring

‘action-selection’ or ‘decision-making’ processes (Gomez-Marin and Louis, 2014). Here, we pre-

sented an alternative hypothesis according to which taxis results from a single simple sensory-motor

process (Figure 9C): sensory signals directly modulate the continuous lateral oscillations of the ante-

rior body, which we observed in larvae (Figure 1). Despite their simplicity, our models capture a

remarkable number of taxis phenomena observed in larvae and suggest an elegant picture in which

all types of sensory signals, mono or multi-modal, can combine by simply converging on the single

process that lies at the core of taxis: a turning oscillator. Additional new features such as different

sensory receptors or intermediate relays, such as the MB pathway, can be directly integrated, and

their respective influence can be modulated by simply changing the intensity of their signals.

It has been argued that over long time scales, natural selection favours not merely effective inno-

vations, but systems that flexibly enable the incorporation of innovations (Vermeij, 1973). The mod-

ularity of the system described here could provide such an evolutionary flexibility since it allows

for behaviour to adapt by simply plugging in or removing input modalities. In future work, we will

investigate the algorithmic nature of the proposed mechanism, how it operates within the complex-

ity of larvae body mechanics and its robustness under increasing neural realism and additional pro-

cesses required for the various tasks larvae perform in natural environments.

Materials and methods

Real larvae path analysis
We analysed the tracks from 42 wild-type larvae, the data recorded for Gomez-Marin et al. (2011),

which was supplied by Matthieu Louis. Each 3rd-instar foraging-larva path was recorded for 5 min at

7fps after releasing each larva on a rectangular agarose slab opposite to an odour source given by

an ethyl butyrate droplet suspended from the lid. Tail, centroid, and head positions were extracted

from each frame of the video using custom tracking software. Having obtained the processed data

we used Matlab to analyse the tracks. Body bending was calculated as the angle formed between

the tail-to-centroid axis and centroid-to-head axis. The variable ‘angular velocity of the anterior part

of the body’ was obtained as the derivative across time of the centroid-to-head axis orientation.

Specifics of the path analysis are presented where appropriate in the result sections.
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Agent-based simulation in discrete time steps
The agent model is an abstract description of the mechanism we believe larvae use to move up or

down stimulus gradients. It consists of a point with position xn; yn and an associated orientation

�n 2 �2kp;þ2kp. The model runs in discrete time n 2 f1 � � �Ng, with each time-step representing an

iteration of an algorithm. The agent’s algorithm is simple, and we provide a MATLAB implementa-

tion for download (Wystrach et al., 2016). It is summarised by the following state-update equations

that need to be executed in their order of appearance :

�n �n�1þHð�Bþ g�ðsT þ pn�1ÞÞð�1Þn (1)

xn xn�1þlsin�n (2)

yn yn�1þlcos�n (3)

sn Cðxn;ynÞ (4)

pn sn� sn�1 (5)

n nþ 1 (6)

assuming initial conditions for sensory input s0 ¼ 0 and a random initial position set for x0;y0 and ori-

entation angle �0.

At each time-step the agent moves distance l, in the updated direction �n, which depends on the

intrinsic turning pattern, alternating left or right for odd or even time-steps. The baseline amplitude

of the lateral oscillation is set to the baseline angle �B. In the presence of environmental stimulation,

the baseline angle is modified by sensory input sn determined by the concentration Cðxn; ynÞ at the
current location. This includes a phasic signal pn ¼ sn � sn�1, which corresponds to the change of

stimulus intensity perceived between two time-steps, and, optionally, a tonic signal sT , which corre-

sponds to the absolute stimulus intensity perceived at a given step. The strength of modulation

depends on the gain g, and HðxÞ is a hard-limit function:

HðxÞ ¼
x if 0� x�p

p if x>p

0 if x<0

8

>

<

>

:

(7)

A negative gain g with a positive pn�1 (i.e. an increase in concentration perceived) on one step would

lead to a decrease in turning away at the next step (up to the lower boundary of HðxÞ), while a nega-

tive pn�1 (i.e. a decrease in concentration perceived) will lead to an increase in turning away on the

next step (up to the higher boundary of HðxÞ). Thus, with a negative g, the resulting paths tend to be

directed towards the odour source, while a positive g would mediate repulsion.

The function Cðx; yÞ could be a fixed odour-gradient map, or a bivariate normal distribution (see

Equation 25) that can be used to represent the distribution of odour concentration around an odour

source. The maps of odour gradients used in our simulations have been provided by Matthieu Louis’

Lab, as recorded in (Gomez-Marin and Louis, 2014). Stronger odour source concentrations were

modelled by simply scaling the gradient map. If the agent hits the boundary of the odour gradient

map, a new orientation is randomly assigned so the agent keeps within the boundaries.

In some conditions, we added noise (see results). The additive noise is modelled simply as :

�n �n�1þHð�Bþ g�ðsT þ pn�1ÞÞð�1ÞnþZn; (8)

where Zn is drawn from normal distribution and then added to the agent’s current heading angle.

Agent-based simulation in continuous time
The continuous agent is abstracted to an oriented point-sensor (as in the discrete-time model) but

now, critically, the change in heading displays inertial moments and is driven by a model of coupled

neural oscillators. The model attempts to capture the dynamics of heading change in continuous

time, given that the stimuli are integrated by the driving non-linear oscillator and that re-orientation

motion is constrained by some form of muscle-body constraints.

We use the single-segment model of the lamprey (Lansner and Griller, 1997) to represent the

neural oscillator driving the change in heading of the agent. The CPG consists of a pair of compart-

ments, here taken to driving changes in heading of the agent (Figure 8A). Each compartment
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contains a pool of excitatory neurons E and a cross-inhibitory interneuron C, which projects to the

opposite compartment. The E unit of Figure 8A with its self-connection, therefore, stands for the

activity of a pool of excitatory neurons that interconnect within the compartment and project to the

C inhibitory neuron, while both E and C receive an inhibitory connection from the C neuron of the

opposite compartment. Further the E neurons of both compartments receive input from the A unit,

which represents pooled sensory input, and a modulatory influence from the S unit, whose effects

will be described shortly.

Our model is based on the version of Wilson (1999) of the lamprey simplified model

(Lansner and Griller, 1997) according to which the neuronal responses are given at the spike-rate

level given by the Naka and Rushton (1966) function:

Rðx;hÞ ¼
mxn

hnþxn if x � 0

0 if x < 0
;

�

(9)

which maps the stimulus intensity x of the net synaptic input to the expected spike-rate response of

a neuron. The parameter h sets the half-response threshold while n sets the steepness of the

response, which we take here to be n¼ 2. Spike-rates can only take positive values and therefore the

function is constrained to lie in the positive integers up to the maximum m, which here will be set to

m¼ 100 throughout. Each neuron also accounts for a spike-rate adaptation effect due to a slow

after-hyperpolarization potential current IAHP, which operates by raising the half-response threshold

hðtÞ of Equation 9. The equations for the left side of the coupled oscillators that we examined are as

follows :

t

dEL

dt
¼�ELþRðAþWeeEL�WecCR;64þ gðAÞHELÞ (10)

dHEL

dt
¼ 1

tHðAÞ
ð�HELþELÞ (11)

t

dCL

dt
¼�CLþRðAþWceEL�WccCR;64þ gðAÞHCLÞ (12)

dHCL

dt
¼ 1

tHðAÞ
ð�HCLþELÞ; (13)

where EL;CL represent the excitatory and cross-inhibitory neuron of the left compartment in

Figure 8A, while the HX represents the dynamics of the IAHP of a neuron, Rðx;hÞ is the Naka and

Rushton (1966) function of Equation 9, and Wx are the synaptic weights shown in Figure 8A. On

the same figure, we see that the neuromodulatory unit S connects to both compartments, its effects

are exerted via modifying the time constant and gain of the IAHP:

gðAÞ ¼ 6þ 0:09Að Þ2 (14)

tHðAÞ ¼
35

ð1þ 0:04A2Þ ; (15)

where an increase in the input from A will result in an increase of the IAHP gain and a decrease in its

time constant tH . The neural model has the respective equations for the right compartment, contain-

ing ER and CR for the right side oscillator:

t

dER

dt
¼�ERþRðAþWeeER�WecCL;64þ gðAÞHERÞ (16)

dHER

dt
¼ 1

tHðAÞ
ð�HERþERÞ (17)

t

dCR

dt
¼�CRþRðAþWceER�WccCL;64þ gðAÞHCRÞ (18)

dHCR

dt
¼ 1

tHðAÞ
ð�HCRþERÞ; (19)

To represent the biophysical constraints on re-orientation due to body-bending in real larvae, we

used an idealized linear spring-mass-damper acting on the change in heading of the agent see

Figure 8B. The system uses a pivoting spring-damper-mass on a joint to represent the elastic and

damping forces exerted by the surrounding cuticle under the influence of opposing muscle forces
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driving body-bending in the larva. The muscles would normally be driven by motor neurons, but

here, we simplify by assuming that the motor neurons replicate the activity of the EL and ER pre-

motor neurons and thus the later can be directly used.

The agent continuously moves at speed of 1 mm/s in the direction indicated by the body angle �.

This simplification is justified in terms of our finding that the peristaltic wave peaks are uncorrelated

with the body bending and thus can be taken as slow motion of the posterior body segment follow-

ing the heading direction indicated. However, our model does not capture the straightening of the

body bend due to this motion, or the friction forces exerted from the contact with the ground with-

holding the restoration. Given that the oscillation is driven by the premotor neuron activity and that

the larva is assumed to continuously move at constant speed, the details of how the body bending is

restored have been simplified out in our model to be driven by restorative elastic forces of the

body. We take a non-dimensionalized approach writing the muscle model driving the head as sec-

ond order system of idealized spring-mass-damper (see Fung, 2013):

d2�ðtÞ
dt2

¼�2z�0ðtÞ� k�ðtÞþ ðELðtÞ�ERðtÞÞ; (20)

where z¼ h=ð2 ffiffiffiffiffiffi

kg
p Þ defines the damping ratio, with h the damping force coefficient, k the stiffness

coefficient of a linear spring and g the muscle gain. We assume muscles on each side of the body

work against each other to change the heading and thus, in this two-dimensional model, the net tor-

que produced is taken to be the difference in spike rates of the premotor neurons ELðtÞ�ERðtÞ driv-
ing the muscles on each side. Evidently, the system is not representative of the larval muscle activity

but the change in orientation caused by this activity. Nevertheless, it allows us to examine an

embodied sensory-motor process during chemotaxis in continuous time avoiding the use of a

detailed body that in essence would still only describe the motion of the olfactory sensor at the larva

model which is needed for our demonstration. Further, writing the system in this form allows us to

avoid having to consider specific values for the parameters and examine a generic system described

by a level of damping, for which we have chosen an intermediate value z¼ 1=2. The bearing B is cal-

culated via an integration of the change of heading angle � in Equation 20. The continuous forward

motion towards the current bearing is then converted to Cartesian coordinates to indicate the posi-

tion of the head as a point:

dB

dt
¼ �ðtÞ

10
(21)

dx

dt
¼ sin

BðtÞ
10

(22)

dy

dt
¼ cos

BðtÞ
10

; (23)

the factors of 10 are simply used here to scale-down the motion of the agent so it looks similar to

the scale used in the discrete agent model. Lastly, we define the A neuron’s activity pattern which

we assumed to be representative of an olfactory sensory neuron. A’s output is a combination of a

tonic output bT , which is required to maintain the oscillation but also influences the oscillation fre-

quency Lansner and Griller (1997), along with the derivative of the odour concentration CðtÞ super-
imposed :

AðtÞ ¼ bT þG
dC

dt
; (24)

where g defines the gain defining how much the derivative of the sensory stimuli alters the firing rate

of input A, which perturbs the motor patterns and in turn influences the sensed stimulus in a closed-

loop such that the rhythmic behaviour generates input for adaptive control (Willis and Arbas,

1997a). The sensory stimuli is drawn from a virtual odour gradient that is simply taken to be a scaled

bivariate normal distribution:

Mðx;yÞ ¼ 1

2psxsy

ffiffiffiffiffiffiffiffi

1��2
p

exp � 1

2ð1��2Þ
ðx��xÞ2

s2
x
þ ðy��yÞ2

s2
y
� 2�ðx��xÞðy��yÞ

sxsy

h i� � (25)
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with �¼ Covðx;yÞ
s1s2

being the correlation of x and y. The sensory information as a function of time is then

given by :

CðtÞ ¼ cMðxðtÞ;yðtÞÞ: (26)

The model system was evaluated numerically, with the parameter set and initial conditions listed in

Table 1, using mathematics software from Wolfram Research, Inc. (2015) (for an example file see

Wystrach et al., 2016. For our purposes, the choice of parameters was broad and any arbitrary set

that has sufficiently strong contralateral inhibition Wcc such that the left-right oscillators quickly lock

in antiphase while the frequency of the oscillation falls approximately within the larval range of

0.5 Hz, was sufficient.

Further, we examined the change of bearing in response to a step change in the input firing rate

of A. For these results, input from the odour gradient was ignored and the change of bearing was

examined in response to a step increase of amplitude Am in the input at various time points ts:

AðtÞ ¼ bT þAmUðt� tsÞ; (27)

where UðtÞ is the unit step function with an onset time at ts. The change of bearing was measured by

integrating the head angle for long enough time for it to settle back to its cycle of zero-average

change of bearing. Each curve of Figure 8F consists of 102 points covering ts timing over a full cycle

Table 1. CPG model parameter set and initial conditions. Mðx; yÞ is the multinomial distribution of

Equation 25.

Parameters

Wcc;Wec 4

Wce 1/10

Wee 3

bT 19

t 1/10

m 10
2

n 2

c 10
3

� 1/5

z 1/2

k 1

Initial Conditions

CLðt � 0Þ;CRðt � 0Þ 0

ELðt � 0Þ 80

ERðt � 0Þ 20

HELðt � 0Þ 0

HERðt � 0Þ 0

HCLðt � 0Þ 0

HCRðt � 0Þ 0

�ðt � 0Þ 0

Bðt � 0Þ 0

Aðt � 0Þ bT

gðt � 0Þ 6þ ð9Að0Þ=100Þ2

tHðt � 0Þ 35=ð1þ 0:04Að0Þ2Þ
Cðt � 0Þ Mðxð0Þ; yð0ÞÞ

DOI: 10.7554/eLife.15504.014
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of oscillation (ie. from one peak of EL burst to the next), while each curve differs in the step ampli-

tude Am.

Obtaining the frequency spectrum of head velocities
We sample the heading speed of each larva trajectory at Dt ¼ 1=10 and then perform a discrete

Fourier transform of each of the heading speed vectors �j of trajectory j :

Fj
s;r ¼

1
ffiffiffi

n
p

X

n

r¼1
exp 2pi

ðs� 1Þðr� 1Þ
n

� �

�jr: (28)

The spectrum plot shown in Figure 8C represents the mean spectrum out from the speed vectors of

n¼ 25 trajectories. The starting point of each trajectory is distributed according to a squared matrix

of points centred on the odour source (see starting positions in Figure 8D). Each trajectory’s initial

point condition xð0Þ;yð0Þ is set to point on this square matrix with a horizontal and vertical distance

of 10mm between each point.
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