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A B S T R A C T   

Introduction: Cerebrospinal fluid (CSF) infusion test analysis allows recognizing and appropriately evaluating CSF 
dynamics in the context of normal pressure hydrocephalus (NPH), which is crucial for effective diagnosis and 
treatment. However, existing methodology possesses drawbacks that may compromise the precision and inter
pretation of CSF dynamics parameters. 
Research question: This study aims to circumvent these constraints by introducing an innovative analysis method 
grounded in Bayesian inference. 
Material and methods: A single-centre retrospective cohort study was conducted on 858 patients who underwent a 
computerized CSF infusion test between 2004 and 2020. We developed a Bayesian framework-based method for 
parameter estimation and compared the results to the current, gradient descent-based approach. We evaluated 
the accuracy and reliability of both methods by analysing erroneous prediction rates and curve fitting errors. 
Results: The Bayesian method surpasses the gradient descent approach, reflected in reduced inaccurate prediction 
rates and an improved goodness of model fit. On whole cohort level both techniques produced comparable re
sults. However, the Bayesian method holds an added advantage by providing uncertainty intervals for each 
parameter. Sensitivity analysis revealed significance of the CSF production rate parameter and its interplay with 
other variables. The resistance to CSF outflow demonstrated excellent robustness. 
Discussion and conclusion: The proposed Bayesian approach offers a promising solution for improving robustness 
of CSF dynamics assessment in NPH, based on CSF infusion tests. Additional provision of the uncertainty measure 
for each diagnostic metric may perhaps help to explain occasional poor diagnostic performance of the test, of
fering a robust framework for improved understanding and management of NPH.   

1. Introduction 

1.1. Cerebrospinal fluid dynamics in normal pressure hydrocephalus 

Normal Pressure Hydrocephalus (NPH) is a complex neurological 
disorder characterized by disrupted cerebrospinal fluid (CSF) dynamics, 
which manifests clinically as the triad of gait instability, dementia, and 
urinary incontinence (Hakim and Adams, 1965). The elusive nature of 
this pathology presents an array of diagnostic and therapeutic chal
lenges resulting in a substantial prevalence of underdiagnosis and 
undertreatment. The consequent implications extend beyond the pa
tient, leading to avoidable healthcare costs and suboptimal clinical 

outcomes (Lalou et al., 2020). 
The current repertoire of diagnostic tools, used to supplement clin

ical assessment, includes extended lumbar drainage, intracranial pres
sure monitoring, tap tests, and infusion studies, each presenting its own 
set of limitations with varying levels of sensitivity and specificity 
(Thavarajasingam et al., 2021). The primary and most effective treat
ment modality for NPH is CSF flow diversion via shunt insertion (Hebb 
and Cusimano, 2001). Yet, it is recognized that the complexity of NPH 
extends beyond a mere disturbance in CSF circulation (Czosnyka et al., 
2021), and individual responses to shunting exhibit significant vari
ability (Lalou et al., 2021). Consequently, the assessment of CSF dy
namics has emerged as a crucial factor in making informed decisions 
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related to prognostication of shunt insertion, diagnosis of shunt mal
function, and proposition of viable solutions when a patient’s condition 
fails to improve post-management. 

Infusion studies have proven to offer comprehensive assessment of 
CSF dynamic parameters. Demonstrating significant diagnostic value in 
discriminating patients who may benefit from shunting and those for 
whom the procedure may be unnecessary or possibly even harmful, they 
form an integral part of the British national best practice guidelines for 
diagnosing and treating NPH (NICE IPG263). The European iNPH 
Multicentre Study (Wikkelsø et al., 2013) found that infusion studies 
show positive predictive value ranging from 86 to 94% for predicting the 
outcome of shunt treatment in idiopathic NPH patients, while, 
conversely, they display a contrasting, markedly lower negative pre
dictive value of only 18%. This discrepancy implies a probable 
under-identification of patients who could potentially benefit from 
shunting given the current diagnostic criteria. Currently, the selection 
criteria for patients for shunting rely on a rudimentary thresholding 
approach, focusing on two parameters of the CSF circulation model: 
baseline pressure (Pb) and resistance to CSF outflow (Rout). Therefore, 
there is a pressing need for the development of more refined analytical 
tools to enhance the predictive power of infusion tests. This improve
ment is crucial for facilitating optimal patient selection, with the aim of 
maximising the benefits of shunt treatment while minimizing adverse 
outcomes and associated healthcare expenditures in the management of 
NPH patients (Lalou et al., 2021). 

1.2. Computerised infusion studies 

During a CSF infusion study, an additional volume of fluid is intro
duced at a steady rate into the craniospinal space via either ventricular 
access (with shunt in situ or preimplanted reservoir) or lumbar access. 
The consequent intracranial pressure response is measured before, 
during, and after the infusion (Katzman and Hussey, 1970). 

The response to this volume challenge is recorded and traced 
through the application of a mathematical model of CSF dynamics, 
initially proposed by Marmarou (Marmarou et al., 1975), and later 
refined by Avezaat and Eijndhoven (Avezaat and van Eijndhoven, 
1984). Although multiple methods of varying complexity have been 
proposed for the assessment of CSF dynamics, such as the use of 
multi-compartmental models, constant-pressure infusion test, 
constant-rate infusion test, or control-theoretic metrics (Linninger et al., 
2016), Marmarou model has remained as a model which provides a good 
balance of simplicity with the amount and type of information it pro
vides. Because the Marmarou model applied to infusion test data has 
been used in our unit for over 20 years, and owing to our good under
standing of the data it produces, we aimed to evaluate the 
newly-developed method using this model first. The current compu
terised rendition of this test, originally developed at the Warsaw 

University of Technology (Czosnyka et al., 1990), is now integrated into 
the ICM + software for neuromonitoring (Cambridge Enterprise Ltd.) 
(Smielewski et al., 2009). 

The underlying objective of this approach is to identify model pa
rameters that minimise the discrepancy between the pressure response 
generated by the model and the data collected during the infusion study. 
Owing to the analytically well-conditioned nature of the model equation 
and its mathematical tractability, current methods leverage nonlinear 
gradient descent (GD) algorithms. This methodology is summarised 
visually in Fig. 1. 

1.3. Parameters describing cerebrospinal fluid dynamics 

The Marmarou model is characterised by several parameters, among 
which the resistance to CSF outflow (Rout) has received the most 
attention and is extensively utilised (Czosnyka et al., 2003). Rout is a 
physiological parameter that reflects the ease with which CSF can exit 
the cranial cavity and enter the venous system. Increased resistance to 
CSF outflow can cause disruptions in CSF flow, leading to its accumu
lation, which could potentially result in conditions like hydrocephalus. 
Various thresholds for the value of this parameter in prognosticating the 
response to shunting have been suggested, ranging from 12 to 18 
mmHg/mL/min (Lalou et al., 2021). 

Another variable relevant to the understanding of CSF dynamics is 
the brain elasticity coefficient (E), also known as the cranio-spinal 
compliance or elastance factor. It is frequently represented using the 
pressure-volume index (PVI). This parameter reflects the ‘steepness’ of 
the pressure-volume characteristics of the craniospinal spaces. In 
simpler terms, it describes the rate at which cerebrospinal compliance 
(the capacity to accommodate volume changes) changes in response to 
shifts in intracranial pressure. Although a correlation has been observed 
between this parameter and clinical outcomes related to CSF diversion 
in obstructive hydrocephalus (Tisell et al., 2002), such results have not 
been reproduced in the context of NPH (Nabbanja et al., 2018). It is 
worth noting that this parameter, within the formula for cerebrospinal 
compliance, is associated with a reference pressure parameter (P0). 
While initial assumptions suggested P0 might represent pressure in the 
sagittal sinus, these have since been refuted (unpublished results). The 
physiological significance of this parameter and its impact on the clin
ical picture in NPH remain unknown, but it is plausible that the inter
pretation of the elasticity (E) should be considered in conjunction with 
P0 (Andersson et al., 2008). 

Finally, since hydrocephalus can stem from either a failure of CSF 
flow or absorption (as reflected by Rout) or alterations in the CSF pro
duction rate (If), the latter parameter itself may hold a prognostic value. 

Fig. 1. A diagram showing the curve fitting approach. Data from infusion study (top left) is combined with a model of CSF dynamics (bottom left) and the 
discrepancy between the two curves can be evaluated (right). Pm is the measured intracranial pressure [mmHg], P̂(t) is the intracranial pressure predicted by the 
model [mmHg], Iinf is the infusion rate [mL/min], If is the CSF formation rate [mL/min], Rout is the resistance to CSF outflow [mmHg/mL/min], Pss is the pressure in 
sagittal sinus [mmHg], C is the cerebrospinal compliance [mL/mmHg], and P0 is the reference pressure [mmHg]. ICP – intracranial pressure. 
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1.4. Limitations of the current methods 

The current methods utilised for estimating cerebrospinal fluid (CSF) 
dynamics parameters, such as gradient descent (GD)-based optimisation 
for dynamic fitting and static methods comparing the pressure gradient 
during infusion, have notable limitations. These shortcomings can 
broadly be attributed to the model itself, as well as the process of 
parameter estimation by fitting the model to data. 

One primary concern lies in the fact that a perfect mathematical fit 
achieved using gradient descent methods may not fully represent the 
physical system it endeavours to model. This can be attributed to factors 
like measurement noise, artifacts (for example due to patient movement 
or vascular activity triggered by the infusion), the interdependence of 
model parameters, their varying sensitivity levels, as well as inherent 
limitations imposed by the algorithm design. 

Moreover, these predictive methods are often agnostic to the phys
iological context, disregarding the real-world values of these parameters 
in both patients and healthy controls. This lack of context can lead to 
potentially erroneous predictions wherein the generated values may fall 
outside of theoretically plausible ranges (purely because of a better 
mathematical fit), thereby undermining the clinical relevance and 
applicability of such predictions. 

Further, intrinsic to this model is the fact that some parameters are 
more sensitive to measurement error than others. However, current 
techniques fall short in that they only yield point estimates of the CSF 
dynamics parameters, failing to offer any uncertainty estimates. The 
absence of confidence intervals for the calculated parameters leaves a 
gap in our understanding of the potential variability or error associated 
with these estimates. In clinical settings, where individualised treatment 
decisions often depend on these parameters, this limitation may present 
a considerable obstacle in the delivery of optimally personalised care. 

Consequently, alternative methods should be sought that not only 
estimate the CSF model parameters but also assess the uncertainty or 
errors associated with these estimates. This capability could potentially 
provide greater confidence in our diagnoses or, conversely, caution 
when uncertainty is high. 

1.5. Aims of the study 

Our goal was to address the limitations of parameter estimation by 
developing a novel Bayesian approach for analysing CSF dynamics using 
infusion studies. We then sought to validate the performance of this 
approach using a retrospective database. 

2. Methods 

2.1. Subjects 

We conducted a single-centre retrospective cohort study of 858 pa
tients. The data collection took place at the Cambridge University 
Hospitals NHS Foundation Trust and the dataset spanned from 2006 to 
2020. During this period, these patients underwent specialized 
computer-aided constant rate infusion tests as part of their clinical in
vestigations for diagnosing NPH. None of the patients involved in the 
study had a shunt in place at the time of the investigation. Our dataset 
was fully anonymised and its use for retrospective analysis has been 
approved by the UK Research Ethics Committee (REC 23/YH/0085). 

2.2. Data collection 

The protocol for lumbar infusion studies was employed as detailed in 
prior work by our unit (Czosnyka et al., 2005; Smielewski et al., 2012; 
Levrini et al., 2021). 

The procedure begins with a lumbar puncture, using either one or 
two 21-gauge Quincke needles positioned under lidocaine local anaes
thesia at the L4-L5 intervertebral space with the patient in a lateral 

decubitus position. 
Strict aseptic technique was followed, including cleaning of the skin 

with an antiseptic solution, and carefully preserving the sterility of the 
pre-filled tubing and transducer. Our apparatus consisted of a standard, 
disposable fluid-filled pressure transducer (Edwards Lifesciences™ 
manometry lines, 180 cm length, 1.2 mm inner diameter) and a pressure 
amplifier (Spiegelberg or Philips). The high-resolution pressure wave
form data was collected with a sampling rate of 30 Hz (earlier years) to 
100 Hz (later years) and processed by the ICM + software (Cambridge 
Enterprise Ltd., Cambridge, UK). 

Once acceptable CSF pulse waveform was established, baseline 
pressure was recorded for 10 min followed by infusion of Hartmann’s 
solution at 1.5 mL/min. If the baseline ICP was above 15 mmHg, the rate 
was adjusted to 1.0 mL/min. This rate was maintained until a plateau in 
ICP was observed over a period of 5–10 min. As a safety measure, any 
surge in mean ICP to 40 mmHg or above necessitated an immediate halt 
in infusion. The overall duration of the infusion test was approximately 
between 30 and 45 min. 

The conclusion of the infusion test initiated a pressure-controlled 
withdrawal of CSF via a tap connected to the pressure lines, leaving 
the pressure transducer in situ. The procedure was halted when the 
pressure dropped to about 10 mmHg or when the patient reported 
discomfort such as headache or blurred vision. The raw ICP waveform 
signal was pre-processed in order to calculate time trends of pulse 
amplitude AMP (as the Fourier fundamental harmonic of the pulse), and 
mean ICP, used in further analysis of the pressure response to the CSF 
infusion. Calculations were performed with data downsampled to 0.1 
Hz. Finally, the duration of baseline, plateau ICP recording, the transi
tion phase of rising ICP, and the total infusion time were manually 
defined upon concluding the infusion test. 

2.3. Model specification 

We sought to fit the Marmarou model of cerebrospinal fluid (CSF) 
dynamics to experimental data obtained from CSF infusion studies. 
Since the values of baseline ICP (Pb) [mmHg] and infusion rate (Iinf) 
[mL/min] are fixed and characteristic to each recording, our model 
fitting problem can be defined as 

P̂(Rout, E,P0, t)=
(
If + Iinf

)
× (Pb − P0)

If + Iinf × exp
(
− Et

(
If + Iinf

))+ Iinf (1)  

If =
Pb − Pss

Rout
(2)  

Pss ≈ P0 (3)  

where P̂ is the model pressure [mmHg], Rout is the resistance to CSF 
outflow [mmHg/mL/min], E is the elasticity coefficient [1/mL], t is time 
[min], P0 is the reference pressure [mmHg], If is the CSF formation rate 
[mL/min], Iinf is the infusion rate [mL/min], and Pb is the baseline 
pressure [mmHg]. 

More specifically, we are seeking parameter values that minimise the 
discrepancy between the ICP trace measured during the infusion study 
Pm and our model P̂. To evaluate the goodness of fit, we have chosen the 
residual sum of squares (SSE) 

SSE(Rout, E,P0)=
∑T

t=1
(Pm(t) − P̂(Rout,E,P0, t))2 (4) 

because of its preferential behaviour with the chosen optimisation 
method. Our objective then takes the form: 

θ̂ = argmin
Rout ,E,P0

SSE(Rout,E,P0). (5)  
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2.4. Bayesian optimisation approach 

To determine parameter values that best fit the experimental data, 
while simultaneously accounting for physiological constraints and 
providing uncertainty measures, we employed a Markov Chain Monte 
Carlo (MCMC) approach. MCMC is a simulation framework which 
combines the model with data based on prior beliefs about the distri
butions of parameter values and arrives at the posterior (i.e. post- 
experiment) distributions of the estimated parameters following a 
large number of repeated simulations. The method proves particularly 
useful in scenarios where the parameter values possess tangible (phys
iological) significance, and their population level distributions are 
known or can be heuristically estimated based on expert knowledge. 
While there are multiple MCMC methods, for the proof-of-concept ex
plorations in the current work, the Metropolis-Hastings (MH) algorithm 
(Metropolis et al., 1953; Hastings, 1970) was chosen for its simplicity, 
mathematical tractability, and because this early method is 
well-understood theoretically and practically, owing to its ubiquity in 
data sciences and engineering. 

The Bayesian method was implemented entirely in Julia (Bezanson 
et al., 2017). This approach is visually represented in Fig. 2. 

The likelihood function, in other words the probability of the data 
given the parameters, was based on the Gaussian approximation and 
thus the mean-square error of the model fit to the data. 

The prior distributions of the parameters were chosen to be Gaussian, 
with the mean and standard deviation for each parameter established 
based on values reported in the literature. These were calculated as 
weighted averages based on reported values and study sample sizes. We 
further constrained the search space by imposing either hard or soft 
(using sigmoid transformation and penalty terms) limits, based on the 
theoretically permissible ranges for parameter values. For instance, Rout 
cannot be negative, and the elasticity coefficient is a ratio, therefore E 
must fall within the range of [0, 1]. The prior distributions and ranges 
are summarised in Table 1. 

A more comprehensive model derivation and MCMC specification 
are presented in the Appendix. 

2.5. Method validation 

The new Bayesian algorithm was compared against results obtained 
via the gradient descent (GD) algorithm implemented in ICM + using the 
following criteria. 

1. Rates of erroneous parameter predictions (those outside of pre
defined physiologically permissible ranges as stated in Table 1).  

2. Root-mean-square error (RMSE) of the curve fitting.  

3. Coefficient of determination (R2) of the pressure-volume (P–V) 
curve. 

2.6. Statistical analysis 

Based on the normality assessment, appropriate statistical tests were 
chosen for further analysis. Since the data were found to be non- 
normally distributed, the nonparametric Wilcoxon signed-rank test for 
dependent samples was employed for comparisons between the 
methods. 

The significance level (α) was set at 0.05. Effect sizes were calculated 
using Cliff’s delta, a robust and nonparametric measure that estimates 
the probability that a randomly chosen score from one group will be 
larger than a randomly chosen score from another group. Cliff’s delta 
values were interpreted as follows: negligible (<0.147), small 

Fig. 2. A schematic representation of the Bayesian approach. Apart from input data and model, this method utilises information about the parameter value dis
tributions. The main advantage is that it produces value distributions instead of point estimates. Therefore, one can evaluate uncertainty (here shown as standard 
deviation) for each parameter prediction. For simplicity, only two parameters (E, Rout) are shown. Posterior ∝ Likelihood × Prior. Rout – resistance to CSF outflow, E – 
elasticity coefficient. 

Table 1 
Table summarising the prior knowledge of the parameter distributions and 
ranges. μ – mean, σ – standard deviation, Min – minimum permissible parameter 
value, Max – maximum permissible parameter value. Rout – resistance to CSF 
outflow, E – elasticity coefficient, P0 – reference pressure, If – CSF production 
rate.  

Parameter μ σ Min Max Study (sample size) 

Rout 10.45 2.03 0.01 50.00 (Malm et al., 2011) (n = 40) 
(Albeck et al., 1991) (n = 8) 
(Ekstedt, 1978) (n = 58) 
(Albeck et al., 1998) (n = 52) 

E 0.33 0.08 0.00 1.00 (Szewczykowski et al., 1977) 
(n = 10) 
(Czosnyka et al., 1988) (n =
24) 
(Wahlin et al., 2010) (n = 37) 
(Okon et al., 2018) (n = 18) 

P0 5.21 3.67 − 10.00 Pb (Ekstedt, 1978) (n = 58) 
(Czosnyka et al., 1990) (n =
43) 

If 0.35 0.14 0.01 1.00 (Deck and Potts, 1969) (n = 16) 
(Rubin et al., 1966) (n = 11) 
(Cutler et al., 1968) (n = 12) 
(Masserman, 1934) (n = 284) 
(Huang et al., 2004) (n = 23) 
(Piechnik et al., 2008) (n = 12) 
(Penn et al., 2011) (n = 4) 
(Gideon et al., 1994) (n = 18) 
(Yoshida et al., 2009) (n = 6) 
(Rottenberg et al., 1977) (n =
3) 
(Silverberg et al., 2001) (n =
21) 
(Lorenzo et al., 1970) (n = 12)  
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(0.147–0.33), medium (0.33–0.474), and large (>0.474) effect sizes. 
The convergence of the MCMC simulations was assessed through 

both qualitative and quantitative methods. Trace plots and autocorre
lation functions (ACF) were used for visual inspection, helping to gauge 
the stability and mixing properties of the chains. Quantitatively, 
convergence was assessed using the Gelman-Rubin R̂ statistic (Gelman 
and Rubin, 1992), derived from triplicate runs for each recording. An R̂ 
value below 1.3 indicated satisfactory convergence, while R̂ below 1.1 
denoted excellent convergence. This multifaceted approach ensured the 
reliability of the MCMC estimates for the parameters being studied. 

The computational analyses were performed on a personal MacBook 
Air (2020 model) equipped with an Apple M1 chip and 16 GB of RAM, 
which provided sufficient processing power for the tasks involved. All 
statistical analyses were carried out in Julia 1.7.3 (Bezanson et al., 2017) 
using the HypothesisTests.jl package. 

3. Results 

3.1. The Markov chain-Monte Carlo convergence 

Visual examination of the MCMC chain traces did not reveal any 
signs of correlation among the samples. Furthermore, ACF plots indi
cated rapid decrease in autocorrelation, suggestive of swift convergence, 
which was observed in all instances. Therefore, a commonly used 
empirical burn-in period of 20% of chain length was chosen. 

During method development, satisfactory convergence was observed 
typically between 104 and 106 iterations. A mark of 105 iterations ach
ieved satisfactory convergence for 99% (850/858) and 98% (838/858) 
of recordings at R̂ below 1.3 and R̂ below 1.1 thresholds, respectively. 
Computational time for 104 iterations was under a second, while 105 and 
106 iterations required 4–7 s and 20–50 s per recording, respectively. 

3.2. Parameter value distributions 

The median resistance to CSF outflow for the Bayesian method was 
12.15 mmHg/mL/min (interquartile range (IQR): 8.80 mmHg/mL/min, 
1st quartile(Q1)–3rd quartile (Q3): 8.58–17.39 mmHg/mL/min), while 
for the gradient descent method it was 12.36 mmHg/mL/min (IQR: 8.54 
mmHg/mL/min, Q1–Q3: 8.64–17.18 mmHg/mL/min). The Wilcoxon 
signed-rank test revealed a significant difference (W = 156237, p <
0.0001), and the effect size, measured using Cliff’s delta, was 0.576, 
indicating a large effect with slightly higher resistance values for the 
gradient descent method. 

The median elasticity coefficient for the Bayesian method was 0.20 
mL− 1 (IQR: 0.24 mL− 1, Q1–Q3: 0.11–0.36 mL− 1), while for the gradient 
descent method it was 0.15 mL− 1 (IQR: 0.15 mL− 1, Q1–Q3: 0.10–0.25 
mL− 1). The Wilcoxon signed-rank test revealed a significant difference 
(W = 293318, p < 0.0001), and the effect size, measured using Cliff’s 
delta, was 0.203, indicating a small effect with slightly higher elasticity 
coefficients for the Bayesian method. 

The median CSF production rate for the Bayesian method was 0.39 
mL/min (IQR: 0.74 mL/min, Q1–Q3: 0.11–0.85 mL/min), while for the 
gradient descent method it was 0.48 mL/min (IQR: 0.71, Q1–Q3: 
0.28–0.99 mL/min). The Wilcoxon signed-rank test revealed a signifi
cant difference (W = 70762, p < 0.0001), and the effect size, measured 
using Cliff’s delta, was 0.806, indicating a large effect with higher CSF 
production rates for the gradient descent method. 

The median reference pressure for the Bayesian method was 5.63 
mmHg (IQR: 

9.07 mmHg, Q1–Q3: 0.40–9.47 mmHg), while for the gradient 
descent method it was 4.91 mmHg (IQR: 9.09 mmHg, Q1–Q3: 
− 0.18–8.91 mmHg). The Wilcoxon signed-rank test revealed a signifi
cant difference (W = 278558, p < 0.0001), and the effect size, measured 
using Cliff’s delta, was 0.243, indicating a small effect with slightly 
higher reference pressures for the Bayesian method. All histograms 

showing parameter value distributions are summarised in Fig. 3. 

3.3. Fitting error 

The errors of the fit were found to not follow normal distributions 
and therefore the Wilcoxon signed-rank test has been used for compar
isons between medians. The median RMSE of the gradient descent 
method was 0.54 mmHg (IQR: 0.36 mmHg, Q1–Q3: 0.39–0.78 mmHg) 
and for the Bayesian method it was 0.50 mmHg (IQR: 0.36 mmHg, 
Q1–Q3: 0.36–0.72 mmHg) which was found to be statistically significant 
(W = 23229, p < 0.00001) with a large effect size (Cliff’s δ = 0.936). 

Because the goodness of fit of the pressure-volume curve has not 
been used during the optimisation process, it provided an objective 
measure of method performance. An example comparison for a single 
patient is shown in Fig. 4. 

We compared the coefficient of determination (R2) of the pressure- 
volume curve obtained using the two methods: gradient descent and 
Bayesian. The coefficient of determination for the gradient descent 
method was 0.77 (IQR: 0.38, Q1–Q3: 0.53 0.91), while for the Bayesian 
method it was 0.77 (IQR: 0.39, Q1–Q3: 0.52–0.91). The Wilcoxon 
signed-rank test revealed a significant difference (W = 156134, p =
0.0030) and the effect size, measured using Cliff’s δ, was 0.558, indi
cating a large effect with higher R2 values for the gradient descent 
method. The graphical representation of value distributions is shown in 
Fig. 5. 

3.4. Rates of erroneous predictions 

Each CSF dynamics parameter is a value with physiological meaning. 
Therefore, we evaluated how well both methods accounted for the 
known constraints of parameter ranges based on previous research. 

CSF production rate was the most sensitive parameter, with 211 
(24.6%) out-of-range estimates with the gradient descent method, and 
15 (1.7%) false predictions with the new method. Resistance to CSF 
outflow has proven to be the most robust parameter with no false pre
dictions with either method. Elasticity coefficient and reference pressure 
ranged from 0 (0.0%) to 2 (0.02%) erroneous estimates. The rates of 
erroneous predictions are summarised in Table 2. 

3.5. Uncertainty distributions 

The standard deviation (SD) of posterior probability for parameter 
estimation for elasticity coefficient was found to be 0.02 mL− 1 (IQR: 
0.04 mL− 1, Q1-Q3: 0.01–0.05 mL− 1). This corresponds to 2% of the 
physiological range (0.01–1.00 mL− 1) for this parameter. 

The SD of Rout was 0.21 mmHg/mL/min (IQR: 0.31 mmHg/mL/min, 
Q1-Q3: 0.14–0.45 mmHg/mL/min). This value is equivalent to 0.42% of 
the physiological range (0.01–50.00 mmHg/mL/min) for this 
parameter. 

The CSF production rate was 0.05 mL/min (IQR: 0.09 mL/min, Q1- 
Q3: 0.02–0.11 mL/min). This accounts for 5% of the physiological range 
(0.01–1.00 mL/min) for this parameter. Finally, the reference pressure 
was 0.73 mmHg (IQR: 1.00 mmHg, Q1-Q3: 0.35–1.35 mmHg). How
ever, since this parameter does not possess a consistent range (the 
maximum value is dependent on the baseline pressure), it is not feasible 
to establish a percentage equivalent summary. 

The uncertainty distributions for the whole cohort are shown in 
Fig. 6. 

4. Discussion 

Accurate assessment and understanding of cerebrospinal fluid CSF 
dynamics in NPH are crucial for precise diagnosis and effective treat
ment. This study addresses some of the limitations of current methods by 
introducing a novel Bayesian approach aimed at refining the prediction 
of CSF dynamics parameters based on infusion studies. To the best of our 
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knowledge, no prior research has been conducted on a similar topic. 
Consequently, our efforts focused on comparing the new Bayesian 
method with the current state-of-the-art gradient descent (GD) method. 

The parameter value distributions obtained for the entire cohort 
using both methods were remarkably similar, which was reassuring. 
Noteworthy, the Bayesian method returned marginally higher values for 
elasticity and reference pressure while producing lower values for 

resistance to CSF outflow and CSF production rate. Except for If, the 
distributions of parameter estimates obtained with both methods dis
played substantial overlap. The peaks at the parameter range limits can 
be attributed to the restrictions enforced by the algorithm design. The 
noticeable peak at − 5 mmHg in P0 resulted from this value being chosen 
as the lower limit for the gradient descent method. 

A significant limitation of existing methodologies is their potential 
for erroneous predictions of CSF dynamics parameters. Our results 
demonstrated that the GD-based optimisation method experienced 
higher rates of inaccurate predictions compared to our Bayesian 
approach. Specifically, we noted significantly lower rates of inaccurate 
predictions for all parameters using the Bayesian method, with the CSF 
production rate showing the most remarkable improvement. This su
periority was expected based on the Bayesian method’s design, which 
inherently incorporates both theoretical and empirical constraints on 
parameter values, while also incorporating prior knowledge. Therefore, 
we anticipated that the uncertainty associated with If would be higher 
for the GD method, as it would incorporate variability from Rout and P0, 
whereas the Bayesian method handles the calculation of non-optimized 
If in a post hoc manner using the values of P0, Rout, and Pb. In line with 

Fig. 3. Histograms showing parameter value distributions for each method. Resistance to CSF outflow (top left), elasticity coefficient (top right), CSF production rate 
(bottom left), and reference pressure (bottom right). The results from each method have been overlaid. Bayesian method is depicted in solid black, and the gradient 
descent method is depicted in semi-transparent orange. 

Fig. 4. The figure presents a scatter plot that juxtaposes the pressure-volume 
curves derived from two distinct methodologies for a single patient, with the 
y-axis being depicted in a semi-logarithmic scale. In this illustrative instance, 
the Bayesian method exhibits a coefficient of determination (R2) of 0.99, while 
the gradient descent method yields an R2 value of 0.93. This disparity indicates 
a marginally superior fit when employing the parameters obtained using the 
Bayesian approach. It is important to note that the volume represented here 
does not pertain to the infused fluid volume; rather, it characterizes the change 
in the volume of the craniospinal space in response to the infusion. P – 
measured intracranial pressure, Pss – sagittal sinus pressure, Pb – base
line pressure. 

Fig. 5. Histograms showing goodness of fit diagnostics for both methods: Root-mean-square error of the model fit to data (left), and coefficient of determination of 
the pressure-volume curve (right). The results from each method have been overlaid. Bayesian method is depicted in solid black, and the gradient descent method is 
depicted in semi-transparent orange. 

Table 2 
A table showing the comparison in erroneous prediction rates for the gradient 
descent (current) and the Bayesian (new) methods. Rout – resistance to CSF 
outflow, E − elasticity coefficient, P0 – reference pressure, If – CSF production 
rate.  

Parameter Gradient descent Bayesian 

Rout 0 (0%) 0 (0%) 
E 2 (0.2%) 0 (0%) 
P0 2 (0.2%) 2 (0.2%) 
If 211 (24.6%) 15 (1.7%)  
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this, the Bayesian method’s uncertainty analysis showed that the stan
dard deviation for this parameter equalled 5% of its theoretically ad
missible physiological range, the highest among all parameters. 
Conversely, the resistance to CSF outflow demonstrated exceptional 
robustness, with no erroneous predictions and the lowest uncertainty 
(0.42%) compared to other parameters. 

We also evaluated the fitting error of the two methods. Our findings 
indicated that the Bayesian approach significantly outperformed the 
gradient descent method in terms of the root mean-square error (RMSE) 
of curve fitting. This improvement could be attributed to the fact that the 
MCMC methods, which form the basis of our Bayesian approach, explore 
the search space more efficiently and are less prone to issues like local 
minima, which can affect GD-based methods. While the two methods 
demonstrated identical median coefficients of determination for the 
pressure-volume (P–V) curve, the Wilcoxon ranked sum test returned a 
significant difference between them. Even though the shapes of the error 
distributions were nearly identical, this finding could be attributed to 
the fact that the Wilcoxon test is based on ranks of the data rather than 
the actual data values. Thus, even with identical medians, a significant 
difference can be detected if the ranks of the data points within each 
group differ. In conclusion, the goodness of fit achieved by our new 
Bayesian method was superior to or at least comparable to that of the 
current gradient descent method. 

4.1. Measuring uncertainty 

Unlike the traditional gradient descent method, which provides 
point estimates, our method offers the entire posterior probability dis
tribution, thus incorporating uncertainty into the prediction. This is a 
significant advantage, and the inclusion of uncertainty measures is 
crucial in clinical decision-making, as it may enable clinicians to assess 
the variability and reliability of the estimated parameters and provide a 
more nuanced understanding of the infusion test results, which can be 
particularly useful when the results are close to the widely recognized 
thresholds. 

With the gradient descent method, some patients would have been 
classified as having a positive test result (above the threshold), and some 
would have been classified as having a negative test result (below the 
threshold). In contrast, our Bayesian method does not force a binary 
classification but rather provides a probability distribution of potential 
outcomes. 

To interpret the results from our new method, if both the central 
tendency (mean or median) and the entire confidence interval (or 
credible interval in the Bayesian context) fall below or above the 
threshold, the results can be interpreted similarly to the gradient descent 
method. However, for cases where the probability distribution crosses 

the threshold, we propose three potential strategies.  

1. Classify these cases as indeterminate, requiring further diagnostic or 
clinical information for a definitive diagnosis.  

2. Use the entire probability distribution and assign the test result based 
on the side with the greater probability density mass.  

3. Report the result as either positive or negative but provide the 
associated probability that the result is true. 

This approach embraces the inherent uncertainty in medical testing 
and decision-making and may improve the clarity of communication 
between physicians and patients regarding the likelihood of a particular 
diagnosis. Future research is needed to determine the optimal strategy 
for interpreting results that cross the diagnostic threshold and their 
potential impact on clinical practice, influencing guidance and in
dications for shunt placement. 

4.2. Limitations 

Despite the promising findings and novel approach presented in this 
research, there are several limitations that merit further discussion. 
First, it is important to stress that the aim of this research was to validate 
the new approach by comparing it to an existing method, in the absence 
of a universally accepted gold standard. Reconciling our findings with 
patient outcome data would improve our capacity to thoroughly 
compare the predictive power achieved by parameter predictions ob
tained with each method. 

In addition, our new approach relies heavily on the implementation 
of MCMC methods. These are versatile, capable of handling diverse 
likelihood functions and parameter distributions. However, their effi
ciency and convergence are impacted by the choice of priors, particu
larly in sparse data scenarios. In our study, we bolstered the reliability of 
the priors by basing them on extensive published data obtained from 
various patient cohorts using diverse experimental techniques. MCMC 
approach may be robust to the choice of priors, especially in situations 
where the quality and amount of data allows the data to dominate the 
prior in calculating the posterior distribution. This feature arises as 
result of asymptotic validity, Markov chain property, mixing and 
adaptation mechanisms. However, the choice of priors can also affect 
the convergence and the estimates. Therefore, it is important to carefully 
consider and assess the impact of prior assumptions, especially in cases 
where the priors might be uncertain or misspecified. For example, the 
empirical distributions of some of the optimized parameters do not 
conform to perfect Gaussians. Therefore, a more extensive investigation 
into the choice of prior distributions and their parameters is warranted 
in future research. 

Fig. 6. Histograms showing standard deviations for parameter value distributions for the Bayesian method. Resistance to CSF outflow (top left), elasticity coefficient 
(top right), CSF production rate (bottom left), and reference pressure (bottom right). 

J. Chabros et al.                                                                                                                                                                                                                                 



Brain and Spine 4 (2024) 102837

8

Moreover, despite their benefits, MCMC methods can be computa
tionally demanding and assessing chain convergence can be complex. In 
our research, due to the lower dimensionality of our search space and 
the relative simplicity of our objective function and model, feasible 
iteration counts for standard computers yielded computation times 
within seconds. We meticulously evaluated convergence both visually 
using the autocorrelation function (ACF) and MCMC chain trace plots, 
and statistically using the well-established Gelman-Rubin statistic. 

Finally, while our study benefited from a large patient population, it 
was not a multicentre trial. The generalizability and external validity of 
our Bayesian approach would be strengthened through further valida
tion in larger, multicentre studies, which would offer more diverse pa
tient profiles and conditions, reflecting possible differences in data 
collection and care settings. Thus, in future research, it will be important 
to secure a dataset inclusive of comprehensive clinical outcome data. 

4.3. Clinical relevance and future directions 

This work introduces a new Bayesian methodology, focusing on 
evaluating its feasibility and performance compared to the current GD 
approach. The results provided herein demonstrate non-inferiority, and 
potential superiority, of this method across an array of performance 
metrics. A critical future direction is the assessment of its clinical utility, 
with the emphasis on the added benefit of uncertainty estimation. 

As an example, Wikkelsø et al. (2013) proposed Rout > 12 
mmHg/mL/min as the only parameter to show prognostic utility in the 
evaluation of response to shunting in NPH. The current GD method only 
provides point estimates for each parameter, including Rout. Therefore, a 
patient with Rout of 13.0 mmHg/mL/min would be unequivocally 
assigned to the group above the diagnostic threshold and, using this 
criterion, would undergo shunt placement surgery. In contrast, consider 
a scenario whereby the Bayesian approach yielded, for the same patient, 
Rout of 13.5 ± 0.01 mmHg/mL/min compared to 13.5 ± 4.0 
mmHg/mL/min. By taking into account the uncertainty, the clinician 
would be more inclined to categorise the former result in the 
above-threshold group, and more careful in interpreting the latter. Such 
nuanced understanding of potentially equivocal results could indicate a 
need for a repeat test or to give more priority to other clinical variables. 
Discriminating between these two, vastly different results is crucial in 
clinical practice, and the new method provides the necessary tools to do 
so. 

The study by Wikkelsø et al. (2013) also raises another point 
regarding the utility of other CSF dynamics variables, or its lack thereof. 
In future research, using the Bayesian methodology for the re-evaluation 
of the relationship between infusion test results and clinical outcome 
data potentially raises the prospect of utilising other parameters in 
prognostication of response to shunting. There is a strong case for 
developing multivariate models that incorporate various diagnostic 
modalities, including neuroimaging, clinical examination findings, and 
direct measurements of CSF pressure. Integrating these data sources 
could significantly enhance diagnostic accuracy for conditions with 
complex CSF dynamics. To address this need, longitudinal studies 
should be conducted to assess how accurately this model estimates pa
rameters under various pathological conditions and how these estima
tions correlate with clinical outcomes, especially in diseases like NPH. 

To further advance this approach, enhance its methodological 
robustness and aid its potential clinical applications, several avenues for 
future work are proposed. These pertain to the CSF model used and the 
MCMC approach employed to fit it to data. Although the Marmarou 

model is the best-known solution for modelling CSF dynamics, it can be 
criticized as oversimplified. Multiple advancements to this modelling 
framework have been proposed (Linninger et al., 2016), and incorpo
rating comprehensive physiological data and refining the existing 
mathematical frameworks may improve the approach described in the 
current work. 

Future investigations could focus on refining the MCMC algorithms 
by implementing alternative sampling algorithms and exploring the ef
fects of prior distributions on sampling efficiency, convergence, 
computational cost, and accuracy. For example, Gibbs sampling or the 
No-U-Turn Sampler (NUTS) can offer alternatives to Metropolis- 
Hastings approach in the current work. Similarly, moving away from 
the assumption of normal distribution for priors, other choices such as 
inverse gamma, half-Cauchy or uniform (non-informative) distributions 
need to be evaluated. 

Through these proposed studies, we aim to not only enhance the 
computational and analytical capabilities of Bayesian methods in 
physiological parameter estimation of CSF dynamics parameters but 
also to bridge the gap between theoretical research and its application in 
clinical practice. 

5. Conclusion 

In this study, we have introduced a novel Bayesian approach for the 
analysis of cerebrospinal fluid (CSF) dynamics in infusion studies, 
yielding superior goodness of fit and notably reducing erroneous pre
dictions compared to traditional GD methods. This new method yields 
parameter values aligned with those obtained from extant techniques 
and uniquely provides posterior distributions for each parameter within 
individual recordings. This functionality allows a robust quantification 
of estimation uncertainty, promoting a nuanced and reliable results 
interpretation. Collectively, our results underscore the Bayesian 
method’s potential to provide accurate, physiologically plausible CSF 
dynamics estimates, thereby minimizing misdiagnosis or inappropriate 
treatment risks. 
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Appendix 

A.1. Model derivation 

Mathematical modelling of complex nonlinear systems like CSF dynamics inevitably necessitates simplifications for tractability and compre
hensibility. The Marmarou model, with its limited compartments and parameters, may overlook nuanced aspects of CSF physiology, including brain 
pulsatility effects and the role of the glymphatic system. 

This model also operates on several assumptions, such as constant CSF production and a linear pressure-volume relationship. Practically, this 
implies that even though craniospinal compliance consists of both linear and exponential terms relative to optimal pressure, these are consolidated 
into a singular lumped elasticity coefficient in the model, simplifying the system’s dynamics. 

The Marmarou model is mathematically defined by a nonlinear differential equation 

Iinf =
1

E × (P − P0)
×

dp
dt

×
Pm − Pb

Rout
, (A.1)  

with the elasticity coefficent E [1/mL] defined as 

E=
1

C × (Pm − P0)
. (A.2)  

With 

If =
Pb − Pss

Rout
, (A.3)  

and under the assumption that Pss ≈ P0, this equation has the following analytical solution: 

P̂(Rout,E,P0, t)=
(
If + Iinf

)
× (Pb − P0)

If + Iinf × exp
(
− Et

(
If + Iinf

))+ Iinf . (A.4)  

A.2. Metropolis-Hastings algorithm 

The CSF dynamics model used to fit the infusion test pressure recordings in this study depends on four parameters: resistance to CSF outflow Rout, 
reference pressure P0, CSF production rate If, and brain elasticity coefficient E. Each of these parameters is a physiological value with an established 
permissible range. 

Markov Chain Monte Carlo (MCMC) methods like Metropolis-Hastings are effective in Bayesian inference due to their ability to explore complex 
posterior distributions and their general insensitivity to prior distributions. They work by creating a Markov chain, iteratively proposing new points 
based on the current state, which allows them to adapt and converge to the target distribution over time, a concept known as ergodicity. 

The algorithm begins with an initial guess for the parameter values, and at each iteration it proposes a new set of values based on a proposal 
distribution, which is usually taken to be a multivariate Gaussian distribution centred at the current values. 

In our study, we assumed Gaussian priors for all parameters, with mean values and standard deviations chosen to reflect the established physi
ological ranges for each parameter. The likelihood function for the data D given the proposed model parameters θ was given by 

L (D|θ) =
1
̅̅̅̅̅̅̅̅̅̅
2πσ2

√ × exp

(

−
(D − f(θ))2

2σ2

)

, (A.5)  

where f(θ) is the model prediction given the proposed values θ, and σ is the measurement uncertainty. 
In the Metropolis-Hastings algorithm, the proposed values are accepted or rejected based on the ratio of the likelihood of the data given the 

proposed values to the likelihood of the data given the current values, multiplied by the ratio of the proposal distribution evaluated at the current 
values to the proposal distribution evaluated at the proposed values: 

α=
L (D|θʹ)
L (D|θ)

q(θ|θʹ)
q(θʹ|θ)

(A.6)  

where L(D |θ) is the likelihood of the data D given the proposed values θ, q(θ |θ′) is the proposal distribution evaluated at the current values θ, and q(θ′ 
|θ) is the proposal distribution evaluated at the proposed values θ′. The parameter values are accepted with probability α, and rejected with probability 
1− α. If the proposed values are accepted, they become the new current values. If they are rejected, the current values remain unchanged. In either 
case, the new or the old value, is added to the distribution defining set (histogram). This process is repeated for many iterations, with the resulting 
sequence of accepted values approximating the posterior distribution of the parameters. 

Specifically, the algorithm proceeds as follows.  

1. Initialize the current values of the parameters, θ, based on the established means.  
2. For t = 1,2, …,T:  
1. Propose a new set of parameter values, θ′, from the proposal distribution. 

J. Chabros et al.                                                                                                                                                                                                                                 



Brain and Spine 4 (2024) 102837

10

2. Calculate the acceptance ratio  
3. Generate a random number u ~ Uniform(0,1).  
4. If u < α, set θ = θ′ (accept the proposal). Otherwise, keep θ the same (reject the proposal). 

Return the samples θ1,θ2, …,θT as an estimate of the target distribution. 
By running the algorithm for a sufficiently large number of iterations, we can obtain a sample from the posterior distribution of the model pa

rameters, which can be used to estimate the uncertainty in the optimized parameter values. 
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