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Comprehensive epidemiological surveys for Lyme disease have not been conducted for the Bactrian camel in
China. In this study, a total of 138 blood specimens collected from Bactrian camels from Zhangye City in Gansu
Province and Yili and Aksu in Xinjiang Province, China, were examined for the presence of Borrelia spp. Species-
specificity nested PCR based on the 5S-23S rRNA, OspA, flaB and 16S rRNA genes revealed that the total positive

rate of Borrelia spp. was 3.6% (5/138, 95% CI = 0.2-17.9). These results were confirmed by sequence analysis of
the positive PCR products or positive colonies. This is the first report of Borrelia pathogens in camels in China.
Two Borrelia species that cause Lyme disease and one that causes relapsing fever were identified in the camel
blood samples by sequencing. The findings of this study indicate that the Bactrian camel may serve as a potential
natural host of Lyme disease and/or relapsing fever in China.

1. Introduction

Borrelia species are distributed throughout the world and are
maintained in nature within various arthropod vectors and mammalian,
avian or reptilian hosts (Brisson et al., 2012; Vollmer et al., 2011). In
humans, Borrelia spp. are the causative agents of a major disease: Lyme
borreliosis (LB) (mainly caused by B. garinii, B. afzelii, and B. burgdorferi
sensu stricto). LB is also an important disease of domestic animals and
wildlife worldwide. LB-group spirochetes, commonly known as B.
burgdorferi s.1., cause one of the most significant natural zoonosis dis-
eases that is carried and transmitted by Ixodes spp. ticks (Wodecka
et al., 2010). There are at least 20 genospecies of B. burgdorferi s.1.,
which are classified based on their genetic differences. More than six of
these genospecies have been reported in China (B. burgdorferi s.s., B.
garinii, B. afzelii, B. valaisiana, B. sinica and B. yangtze) (Yu et al., 2016).
B. garinii is the main genospecies and is distributed mainly in northern
China, while B. burgdorferi s.s. is widely distributed in south China
(Chen et al., 2013; Wan et al., 1998). B. burgdorferi s.l. has been de-
tected in more than 20 mammalian species and seven genera of birds
(Li, 2009). Studies have shown that in addition to humans, at least six
other taxa of mammals (sheep, cattle, horses, dogs, cats and mice) and

two types of birds (seabirds and migratory birds) can be infected by
Borrelia spirochetes in China (Keesing et al., 2009). Previous research
used antibodies to detect the Borrelia spp. antigen within camel sera in
Egypt and reported a positive rate of 47.8% (Helmy, 2000).

The genus Camelus contains three species: Camelus dromedaries (one-
hump dromedary), Camelus bactrianus (two-hump Bactrian camel), and
Camelus bactrianus ferus (two-hump Bactrian camel). Dromedaries are
mainly found in the Arabian Peninsula, the Middle East, and parts of
Africa, whereas Bactrian camels are mainly located in Central and
Northeast Asia, Northern China, and Mongolia (Liu et al., 2015). Ca-
melus bactrianus ferus is a new species of camel, and it is mainly dis-
tributed in China and Mongolia (Guo, 2009). Currently, there are an
estimated 250,000 camels, which are mainly distributed in Xinjiang
and the Inner Mongolian Autonomous Region in China (Feng, 2016).
The Bactrian camel is an important economic livestock animal in
northwest China.

To the best of our knowledge, little molecular information is
available on the presence of B. burgdorferi s.l. complex in camels in
China. The investigation of known Borrelia and new Borrelia spp. as-
sociations is important for animal health and the livestock industry. The
aim of this study is to understand the role of camels as carriers and
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Fig. 1. Bactrian camel blood specimens were harvested in Northwest China (Gansu (Zhangye) and Xinjiang (Ili and Aksu)).

potential spreaders of Lyme disease in China. The exposure of camels to
B. burgdorferi s.l. complex was investigated using PCR assay and se-
quencing. The sequences of the 55-23S rRNA, OspA, flaB and 16S rRNA
genes obtained from positive DNA samples were analysed, and the ticks
that potentially act as vectors were discussed.

2. Materials and methods
2.1. Sample collection and DNA extraction

The Bactrian camel is free-choice grazing animal that inhabits desert
regions. A total of 138 blood specimens from Bactrian camels were
collected during May 2014 and November 2015 in two LB-endemic
localities at three sites in northwest China (Gansu (Zhangye) and
Xinjiang (Ili and Aksu)) (Fig. 1). Each blood sample was collected from
the jugular vein of the camel into a sterile tube containing an antic-
oagulant (ethylene diamine tetraacetic acid, EDTA). Genomic DNA was
extracted from individual specimens using a commercial QIAamp DNA
Blood Kit (QIAGEN, Maryland, USA) and a QIAamp DNA Mini Kit
(QIAGEN, Hilden, Germany) according to the manufacturer's instruc-
tions. The extracted genomic DNA samples were then stored at —20 °C
until use.

2.2. PCR amplification and sequence analysis

A nested PCR for the detection of B. burgdorferi s.l. was carried out
using four independent sets of species-specific primers to amplify the
58-23S rRNA, OspA, flaB and 16S rRNA genes, as described in previous
studies (Zhang et al., 2014; Postic et al., 1994; Guy and Stanek, 1991;
Wodecka, 2007; Ni et al., 2014; Zhai et al., 2017). The primer se-
quences are shown in Table 1. First-round PCR reactions were per-
formed in a thermocycler (BioRad, Hercules, CA, USA) with a total
volume of 25pl containing 2.5ul of 10x PCR buffer (Mg2+ Plus),
2.0 pl of each dNTP at 2.5 mM, 1.25 U of Taq DNA polymerase (TaKaRa,
Dalian, China), 1.0 pl of template DNA, 1.0 pl of each primer (10 pmol),
and 17.25pl of distilled water. The PCR conditions were as follows:
4 min of denaturation at 94 °C; 35 cycles of 94 °C for 30 s, annealing for

30 s (annealing temperatures of primers are listed in Table 1), and 72 °C
for 30-48 s (depending on amplicon size); with a final extension step at
72 °C for 10 min. Nested PCR reactions included 1 pl of the first-round
PCR product as template for another 30 cycles with the same para-
meters and annealing temperature profile as described above and in
Table 1. To avoid cross-contamination and sample carryover, pre- and
post-PCR processing and PCR amplification was performed in separate
rooms. B. garinii SZ genomic DNA (from Lanzhou Veterinary Research
Institute) was used as a positive control, while distilled water was used
as a negative control. PCR products were separated by 1.5% agarose gel
electrophoresis, and some positive amplicons from the second round of
PCR amplification were directly used for sequencing (GENEWIZ, Inc.
Beijing China) or cloned into pGEM-T Easy vector (Promega, Madison,
WI, USA). Positive colonies were then selected for PCR amplification
and sequencing.

2.3. Bioinformatics analysis

All the sequences obtained in this study were subjected to BLAST
search via the NCBI website (https://blast.ncbi.nlm.nih.gov/Blast.cgi)
using the BLASTn program. Multiple sequence alignment was executed
in Florence Corpet (http://multalin.toulouse.inra.fr/multalin/).
Phylogenetic analysis was performed using MEGA 6.06 software
(Tamura et al., 2013). Phylogenetic trees of Borrelia spp. strains were
constructed using all the sequences generated in this study and related
sequences previously deposited in GenBank to show the relationships
between different strains.

2.4. Statistical analysis
A 95% confidence interval (95% CI) for the overall prevalence value

of each Borrelia spp. strain was calculated using IBM SPSS Statistics
version 19.0.

2.5. Nucleotide accession numbers

All 8 sequences of Borrelia spp. 16S rRNA (including 3 sequences
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Table 1
Sequences of the primers used in this study.
B. burgdorferi sensu lata target gene Primer Nucleotide sequence (5’-3") Annealing temperature (°C) Amplicon size Reference
(bp)
16S OuterF GCGAACGGGTGAGTAACG 50 1360 Ni et al. (2014)
OuterR CCTCCCTTACGGGTTAGAA
InnerF GAGGCGAAGGCGAACTTCTG 60.2 622 Zhai et al. (2017)
InnerR CTAGCGATTCCAACTTCATGAAG
558-23S 5S rRNA (rrf) CGACCTTCTTCGCCTTAAAGC 57.6 412 Zhang et al. (2014)
23S rRNA (rrl) TAAGCTGACTAATACTAATTACCC
5S rRNA (rrf)IN CTGCGAGTTCGCGGGAGA 57.3 253 Postic et al. (1994)
23S rRNA (rrDIN TCCTAGGCATTCACCATA
OspA N1 GAGCTTAAAGGAACTTCTGATAA 52.5 561 Guy and Stanek (1991)
CI GTATTGTTGTACTGTAATTGT
N2 ATGGATCTGGAGTACTTGAA 53 352
Cc2 CTTAAAGTAACAGTTCCTTCT
FlaB OuterF TGGTATGGGAGTTTCTGG 53.3 774 Wodecka (2007)
OuterR TCTGTCATTGTAGCATCTTT
InnerF CAGACAACAGAGGGAAAT 54.7 604
InnerR TCAAGTCTATTTTGGAAAGCACC
Table 2
Prevalence of Borrelia spp. in camel blood samples from two Provinces in China assessed by the nested-PCRs.
Province City 16S 558-23S flaB OspA At least one gene
Gansu Zhangye 46 0 (0) 2 (4.3, 0.2-19.6) 0 (0) 2 (4.3, 0.2-19.6) 1(2.2, 0.1-13.8)
Xinjiang Aksu 43 5 (11.6, 3.2-36.8) 2 (4.7, 0.2-19.8) 2 (4.7, 0.2-19.8) 0 (0) 4 (9.3, 2.1-28.9)
1li 49 3 (6.1, 1.3-20.1) 0(0) 0 (0) 0(0) 0(0)
Total 138 8 (5.8,1.1-17.2) 4 (2.9, 0.1-16.3) 2 (1.4, 0.1-10.6) 2 (1.4, 0.1-10.6) 5 (3.6, 0.2-17.9)
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Fig. 2. Phylogenetic tree of the 16S rRNA gene sequences of Borrelia species obtained in the present study and those deposited in GenBank from different countries;
accession numbers are shown after isolate names. The 16S rRNA gene sequences obtained in this study are indicated by bold triangles. The tree was inferred using the
neighbour-joining method of MEGA 6.06; bootstrap values are shown at each branch point. Numbers above the branch reflect bootstrap support from 500 re-
plications. All sites of the alignment containing insertions-deletions or missing data were eliminated from the analysis (option “complete deletion”).
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Fig. 3. Phylogenetic tree of the 55-23S rRNA gene sequences of Borrelia species obtained in the present study and those deposited in GenBank from different
countries; accession numbers are shown after isolate names. The 5S-23S rRNA gene sequences obtained in this study are indicated by bold triangles. The tree was
inferred using the neighbour-joining method of MEGA 6.06; bootstrap values are shown at each branch point. Numbers above the branch reflect bootstrap support
from 500 replications. All sites of the alignment containing insertions-deletions or missing data were eliminated from the analysis (option “complete deletion”).

from Ili City and 5 sequences from Aksu City) were deposited in
GenBank under the following accession numbers: KY284013-KY284020
(among them, AKU1 = AKU3-12, AKU3 = AKU3-14, AKU4 = AKU3-
38, and AKU5 = AKU3-45). The sequences of the Borrelia spp. 55-23S
rRNA gene, including 2 sequences from Zhangye City and 2 sequences
from Aksu City, were deposited in GenBank under the following ac-
cession numbers: KU865304-KU865307. Two sequences of the Borrelia
spp. flaB gene from Aksu City were deposited in GenBank with the
following accession numbers: KU865318-KU865319. Two sequences of
the Borrelia spp. OspA gene from Zhangye City were deposited in
GenBank with the following accession numbers: KU865317 and
KY328701.

3. Results

3.1. PCR detection of Borrelia burgdorferi spirochetes from Bactrian camel
blood samples

The blood samples collected from a total of 138 Bactrian camels in
the field two Chinese provinces were screened for the presence of
Borrelia spp. by nested PCRs based on four gene loci. The samples were
amplified, and the PCR products had lengths of 253-622 bp for the four
genes. The results of the nested PCR amplification for positive sample
screenings are summarized in Table 2. Of these specimens, 4 tested
positive for 55-23S rRNA, 2 tested positive for OspA, 2 tested positive
for flaB and 8 tested positive for 16S rRNA, with positive rates of 2.9%
(95% CI =0.1-16.3), 1.4% (95% CI = 0.1-14.9), 1.4% (95%
CI = 0.1-10.6) and 5.8% (95% CI = 1.3-18.5), respectively. (The
sample ZY53 was detected from both 5S-23S rRNA and OspA, the
samples AKU3-12 and AKU3-18 were detected from both 5S-23S rRNA
and 16S rRNA, and the samples AKU3-14 and AKU3-45 were detected
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Fig. 4. Phylogenetic tree of the flaB gene sequences of Borrelia species obtained in the present study and those deposited in GenBank from different countries;
accession numbers are shown after isolate names. The flaB gene sequences obtained in this study are indicated by bold triangles. The tree was inferred using the
neighbour-joining method of MEGA 6.06; bootstrap values are shown at each branch point. Numbers above the branch reflect bootstrap support from 500 re-
plications. All sites of the alignment containing insertions-deletions or missing data were eliminated from the analysis (option “complete deletion”).

from both flaB and 16S rRNA). At least one B. burgdorferi s.l. gene was
detected in 5 of the 138 blood samples examined (3.6%, 95%
CI = 0.2-17.9).

3.2. Sequence and phylogenetic analysis

Sequence analysis of the positive PCR products of the 4 genes as-
sayed in this study revealed that the sequences were most similar to
those of B. garinii based on the 16S rRNA, 5S-23S rRNA and flaB gene
sequences (100%, 85-100%, and 96-100% identity, respectively)
(GenBank accession numbers: CP007564, DQ102468 and CP007564)
and were also similar to B. burgdorferi (100%, 100%, and 98-100%
identity, respectively) (GenBank accession numbers: AF210138,
KP400556 and CP009657). Interestingly, a novel Borrelia genospecies
(GenBank accession number: KY284014) was identified from the Ili
region, which had a high identity with B. theileri KAT (99.5%, GenBank
accession number: KF569941), which was detected from Rhipicephalus
geigyi, and with Borrelia sp., with 99.8% identity (GenBank accession
number: AB897890), which was detected from Haemaphysalis ticks
collected from wild sika deer (Cervus nippon yesoensis) from Hokkaido,
Japan, based on 16S rRNA.

Phylogenetic trees were constructed based on the identified Borrelia
spp. 16S rRNA (n = 8), 55-23S rRNA (n = 4), flaB (n = 2) and OspA

(n = 2) gene sequences by the neighbour-joining method using the
software MEGA 6.06 (Fig. 2-5). The phylogenetic tree based on 16S
rRNA sequences indicated that the 16S rRNA gene sequences (5 from
Aksu, 3 from Ili) from our study formed three distinct clades. The five
AKU (Aksu) strains cluster within a sub-clade of one of three main
clades, forming a sister clade with the B. garinii 16S rRNA sequences
from China. Interestingly, the strains from the Ili area belonged to two
different clades, with two sequences of B. garinii and B. burgdorferi be-
longing to the LD Borrelia spp. group and one sub-clade of B. theileri
belonging to RF Borrelia spp. group. In general, the results show the
presence of high heterogeneity among the 16S rRNA sequences of the 8
different Borrelia species strains (Fig. 2). The 55-23S rRNA sequences
formed two distinct clades: 4 strains (2 from Aksu and 2 from Zhangye)
formed two distinct sub-clusters in the Borrelia 5S-23S rRNA phyloge-
netic tree (Fig. 3). The 5S-23S rRNA sequences from the 2 Aksu strains
(AKU3-12 = AKU2 of 16S rRNA, AKU3-38 = AKU4 of 16S rRNA) and
one Zhangye Borrelia spp. strain belong to one clade of the same branch,
which are sister to B. garinii 16S rRNA. One Zhangye strain of the 5S-
23S rRNA sequence was located within the same branch (Fig. 3). A
phylogenetic tree was constructed based on all the Borrelia flaB se-
quences deposited in GenBank and two sequences (AKU3-14 = AKU3 of
16S rRNA and AKU3-45 = AKUS5 of 16S rRNA) obtained in this study.
The flaB sequences from Borrelia spp. formed two main clades. The
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Fig. 5. Phylogenetic tree of the OspA gene sequences of Borrelia species obtained in the present study and those deposited in GenBank from different countries;
accession numbers are shown after isolate names. The OspA gene sequences obtained in this study are indicated by bold triangles. The tree was inferred using the
neighbour-joining method of MEGA 6.06; bootstrap values are shown at each branch point. Numbers above the branch reflect bootstrap support from 500 re-
plications. All sites of the alignment containing insertions-deletions or missing data were eliminated from the analysis (option “complete deletion”).

sequences of the two Aksu strains clustered together with the B. garinii
flaB sequences (Fig. 4). Two distinct clades were formed from the se-
quences of the Borrelia spp. OspA phylogenetic tree. The sequences of
two strains from Zhangye clustered with the B. burgdorferi OspA se-
quences (Fig. 5).

4. Discussion

In China, Lyme disease is caused by various Borrelia spirochetes.
Many of these agents are highly pathogenic to both humans and ani-
mals (Liu et al., 2000). Previous studies reported the prevalence of
Borrelia in field-collected blood samples from cattle, sheep, dogs, rab-
bits and rats from different areas in China. These studies primarily used
serological detection methods and showed that the distribution of
Borrelia varied considerably in the different areas (Hou et al., 2010;
Wan et al., 1998).

The areas of Zhangye City, Gansu Province, and of Ili City and Aksu
City of Xinjiang Province all include desert regions and are located
along the Old Silk Road, halfway between Eastern Asia and Europe, in
areas where international livestock trade and travel were frequent
(Takada et al., 2001). Bactrian camels were important transportation

for trade and travel in the desert within these regions.

The Bactrian camel can harbour and spread many zoonoses, such as
Middle East respiratory syndrome coronavirus (MERS-CoV), Anaplasma,
Toxoplasma gondii, Onchocerca, Trypanosoma evansi, and Parabronema
skrjabini (Liu et al., 2015; Luo, 2012; Wang et al., 2013; Yang et al.,
2004; Yang et al., 2008). Ticks are one of the most significant vectors of
Borrelia burgdorferi s.l. and RF (relapsing fever). Domestic animals, ro-
dents, and many other wild animals host ticks, and animals bitten by
infected ticks can acquire the pathogen and serve as natural reservoirs.

The detection of B. burgdorferi s.l. using PCR is an alternative
method that can be used to improve the control and prevention of Lyme
disease. According to the nested PCR results, 138 field-collected blood
samples assayed with primers targeting the 16S rRNA, 5S5-23S rRNA,
flaB, and OspA genes revealed 8 (5.8%), 4 (2.9%), 2 (1.4%) and 2
(1.4%) positive samples, respectively, from three regions of two pro-
vinces in China where these camels live. According to our knowledge,
this is the first report of Borrelia spp. infection in camels in China, in-
dicating their reservoir role in the maintenance of this organism in the
environment. The 16S rRNA gene sequences of Borrelia spp. detected
from the Aksu region had the highest infection rate (11.6%), followed
by the Ili region (6.1%). The genetic identity of B. burgdorferi
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spirochetes can be clarified by their differential reactivity with genos-
pecies-specific PCR primers targeting the 5S-23S rRNA intergenic
spacer amplicon gene. Genetic heterogeneity should be further classi-
fied by analysing longer sequence data among B. burgdorferi strains that
have been previously identified as the same genospecies of atypical
strains of Borrelia spirochetes (Mathiesen Jr et al., 1997; Postic et al.,
1998). Moreover, the 16S rRNA gene was detected at a higher positive
rate in blood examined for Borrelia spirochetes than other genes in
previous research (Wodecka et al., 2010). Our study showed that the
infection rate of these genes decreased in the order 16S rRNA > 5S-23S
IRNA > flaB > OspA.

Two Borrelia species, B. garinii and B. burgdorferi s.s., were identi-
fied, and B. garinii was found to be widely distributed in camels in
China. In the present study, B. garinii and B. burgdorferi s.s. were
identified in camels from Aksu and Ili in Xinjiang Province. Sequence
and phylogenetic analysis revealed that those isolates were closely re-
lated to the corresponding genotypes based on 16S rRNA gene with
high sequence similarities (99.4%-100%, GenBank accession numbers:
CP007564; 100%, GenBank accession numbers: AY342028), although
the bootstrap values of the phylogenetic tree were relatively low. This
finding suggested the genetic diversity of B. garinii and B. burgdorferi s.s
in different hosts and geographic locations. Interestingly, the sequen-
cing of cloned PCR products from the 16S rRNA gene of Borrelia spp.
from the Ili region showed the presence of a new Borrelia species be-
longing to the relapsing fever group. The 16S rRNA gene sequence of
Borrelia sp. obtained from camel has a 99.5%, 99.8% and 99.8% simi-
larity to the gene of B. theileri KAT strain, Borrelia sp. 120618D12 and
Borrelia sp. 130707_13_HJF, respectively (GenBank accession numbers:
KF569941, AB897890 and AB897891). B. theileri belongs to the RF
Borrelia spp. group and is the causative agent of bovine borreliosis. It
was initially identified in cattle and subsequently in goats, sheep and
deer from Africa, South America, Mexico and Australia (L, 1903;
Mathiesen Jr et al., 1997). Most of the RF Borrelia spp. are transmitted
by soft-bodied ticks, but B. theileri is found in hard-bodied ticks and is
transmitted by Rhipicephalus spp., including R. annulatus, R. decoloratus,
R. microplus and R. evertsi (Barbour et al., 2005; Smith et al., 1985;
Trees, 1978). This study provides the first report of B. theileri in camel
blood samples in China.

At present, B. burgdorferi has been isolated from nine Ixodes ticks: I.
acutitarsus, I persulcatus, I. granulatus, H. longicornis, H. bispinosa, H.
concinna, H. formosensis, Boophilus microplus and D. silvarum (Niu et al.,
2009). A previous study reported that the Borrelia isolates were isolated
from D. marginatus collected from camels in Xinjiang, China, and these
isolates were genetically identified as B. burgdorferi sensu stricto (Wang
et al., 2015). The blood samples from Bactrian camels in this study were
donated by Dr. Li, who reported that there are ticks available to be
collected from these Bactrian camels that have been identified as be-
longing to H. asiaticum, H. dromedarii, R. sanguineus group, and D. niveus
(Li et al., 2015). Thus, these tick species might act as potential vectors
to carry and transfer Borrelia spp. that cause camel borreliosis in China.
Further study is required to determine whether these ticks are compe-
tent vectors for Borrelia spp.

In conclusion, we successfully identified infection with Borrelia
spirochetes from camel blood samples from different geographic loca-
tions of Gansu Province and Xinjiang Province in China. B. garinii and B.
burgdorferi s.s. were highly prevalent in the sampling areas of the two
provinces surveyed. Further studies concerning the prevalence of
Borrelia spp. groups for both Lyme disease and relapsing fever should be
performed to confirm the presence of these different Borrelia species in
camels within China. Our findings suggest that Borrelia infection in
camels could potentially present a concern for public health. More
detailed and widespread monitoring of tick populations and the
screening for Borrelia in a greater variety of hosts are warranted in
future studies.
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