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Some neurons in the entorhinal cortex (EC) fire bursts when the animal occupies locations
organized in a hexagonal grid pattern in their spatial environment. Place cells have also
been observed, firing bursts only when the animal occupies a particular region of the
environment. Both of these types of cells exhibit theta-cycle modulation, firing bursts in
the 4–12 Hz range. Grid cells fire bursts of action potentials that precess with respect
to the theta cycle, a phenomenon dubbed “theta precession.” Various models have been
proposed to explain these phenomena, and how they relate to navigation. Among the most
promising are the oscillator interference models. The bank-of-oscillators model proposed
by Welday et al. (2011) exhibits all these features. However, their simulations are based
on theoretical oscillators, and not implemented entirely with spiking neurons. We extend
their work in a number of ways. First, we place the oscillators in a frequency domain
and reformulate the model in terms of Fourier theory. Second, this perspective suggests
a division of labor for implementing spatial maps: position vs. map layout. The animal’s
position is encoded in the phases of the oscillators, while the spatial map shape is
encoded implicitly in the weights of the connections between the oscillators and the
read-out nodes. Third, it reveals that the oscillator phases all need to conform to a linear
relationship across the frequency domain. Fourth, we implement a partial model of the
EC using spiking leaky integrate-and-fire (LIF) neurons. Fifth, we devise new coupling
mechanisms, enlightened by the global phase constraint, and show they are capable of
keeping spiking neural oscillators in consistent formation. Our model demonstrates place
cells, grid cells, and phase precession. The Fourier model also gives direction for future
investigations, such as integrating sensory feedback to combat drift, or explaining why grid
cells exist at all.
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1. INTRODUCTION
Some neurons in the entorhinal cortex (EC) exhibit spatial firing
patterns (Hafting et al., 2005). These neurons, called “grid cells,”
spike preferentially when the animal is at points arranged in a
hexagonal grid pattern. Before that, neurons in the hippocampus
were found to activate when the animal was in a particular loca-
tion in the environment (O’Keefe and Dostrovsky, 1971; Muller
et al., 1987). These neurons are called “place cells.”

Both types of cells, place cells and grid cells, are modu-
lated by the theta rhythm, a pattern of activity that oscillates at
between 4 and 12 Hz. Moreover, the frequency at which grid
cells oscillate is influenced by the animal’s movement. As the
animal moves, the frequencies increase slightly. The amount of
increase depends on what direction the animal is moving, and
how fast (Sargolini et al., 2006). If the animal moves in a cell’s
preferred direction, the frequency increases more, whereas in
the opposite direction, the frequency increases only marginally.
The term “velocity-controlled oscillator,” or VCO, denotes a
neuron or population of neurons whose activity oscillates, but
at a frequency that is modulated by velocity (Welday et al.,
2011).

The result of increased frequencies causes the timing of spike
bursts to precess in phase relative to the baseline theta cycle
(O’Keefe and Recce, 1993; Tsodyks et al., 1996; Geisler et al.,
2007). This phenomenon, first described by O’Keefe and Recce
(1993), is called “phase precession.”

Combining the ideas of VCOs and grid cells, researchers pro-
posed that the grid patterns might arise from an interference pat-
tern between VCOs (Burgess et al., 2007; Blair et al., 2008). As the
animal moves, these VCOs take on slightly different frequencies,
and hence their relative phases change.

Phase is the time integral of frequency, just like position is
the time integral of velocity. Hence, if a VCO’s frequency is
proportional to the animal’s velocity, then the VCO’s phase is pro-
portional to the animal’s position. This is the basis for oscillator
interference models.

By combining (adding) two VCOs with different frequencies,
the result is a beat interference pattern that generates periods of
constructive and destructive interference as their phase difference
evolves (Blair et al., 2008). Since phase and position are linked,
this interference pattern overlays the animal’s spatial environ-
ment. Combining three VCOs (that differ in preferred direction
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by multiples of 60◦) tends to create a hexagonal grid interference
pattern (Burgess et al., 2007; Krupic et al., 2012).

Despite this progress in understanding grid cells, a satisfac-
tory explanation of the relationship between grid cells and place
cells remained unclear. As recently as 2008, researchers had only
a handful of ideas of how grid cells might combine to produce
place cells (Moser et al., 2008). Some have experimented with
combining a random selection of grid cells to produce place-cell
like behavior (Fuhs and Touretzky, 2006; Solstad et al., 2006).
Others suggested that a sum of grid cells could create place cells,
but offered only vague justification (O’Keefe and Burgess, 2005;
McNaughton et al., 2006). A more detailed proposal argued that
place cells resulted from the Moiré interference patterns between
small-scale grid patterns (Blair et al., 2007). However, their
method involves intricate resealing of so-called “theta cell” grids,
which the authors point out as “potentially a serious limitation”
(Blair et al., 2007).

A recent study concluded that distributed encoding using grid
cells formed a more efficient representation of spatial location
than the same number of place cells (Mathis and Herz, 2012).
That work is interesting, but does not discuss the mechanisms
underpinning these various cell types. A comprehensive review
of the various proposed models can be found in Zilli (2012).

A spiking-neuron based model of path integration used
Gaussian surfaces to represent place cells, but encoded these
Gaussians by their Fourier coefficients (Conklin and Eliasmith,
2005). This implementation takes advantage of the Fourier Shift
Theorem (discussed later), moving the Gaussian pattern of exci-
tation around by applying phase shifts to the Fourier coefficients.
However, their model does not address grid cells. Can the Fourier
Shift Theorem be used in conjunction with grid cells?

In 2011, Welday et al. showed that “Theta cell burst fre-
quencies varied as the cosine of the rat’s movement direc-
tion.” In other words, the frequency of each oscillator includes
a component proportional to the cosine between the pre-
ferred direction vector, and the animal’s velocity vector (Welday
et al., 2011). They formed a bank of VCOs arranged into a
2-dimensional (2-D) array, where one dimension spans a vari-
ety of preferred directions, and the other dimension repre-
sents the degree to which frequency is increased by movement.
Figure 1A is a recreation of a portion of Figure 7 from their
paper.

In their firing-rate model, each VCO is represented as a ring
oscillator with a wave of activity that cycles at theta frequency.
Hence, each neuron in a ring activates at a particular phase. A
read-out node connected to a number of neurons in these ring
oscillators will act as a coincidence detector, and fire only when
the incoming spikes are sufficiently synchronized. In this sense, a
read-out node detects the phase convergence of its inputs.

According to their paper, a read-out node connected to all
the phase-matched neurons from rings in the same row could
behave like a place cell, and fire only when all the input neu-
rons are in phase with each other. Similarly, choosing only three
phase-matched neurons from a row, but with preferred direc-
tions separated by 120◦, yields a grid cell. Finally, choosing all
the phase-matched neurons from rings with the same preferred
direction vector can generate a “border cell.”

A B

FIGURE 1 | Cartesian vs. polar representation of VCOs. (A) The
Cartesian arrangement is a derived from part of Figure 7 in Welday et al.
(2011). (B) The polar arrangement consists of a number of “propellors,”
lines of VCOs that pass through the origin. We will refer to the space in (B)

as the VCO address space.

The authors point out that their model can produce not
only grid fields and place fields, but “a sufficiently large
number of VCOs should be able to approximate the spatial
frequency spectrum of almost any desired spatial function.”
However, their justification for this assertion is mathematically
unconventional.

Furthermore, they point out that such a system of oscillators is
susceptible to drift; before long, these ring oscillators will start
to drift out of phase and thereafter fail to produce the desired
phase convergence. A coupling mechanism is needed to keep the
bank of oscillators in a coherent phase state. Progress has been
made to incorporate phase-resetting mechanisms into such mod-
els (Monaco et al., 2011). However, the mechanism does not
improve the stability of path integration, but rather resets the
phases to a previously known state as the animal approaches a
landmark.

While the authors hint at the use of Fourier theory, they do
not take full advantage of the theory and its interpretations.
For example, their arrangement of the VCOs into a rectangular
array obscures phase patterns that are revealed by a more con-
ventional frequency-domain layout. They also miss the intuitive
link between this frequency domain and hexagonal grid orien-
tation and frequency, and the link between “border cells” and
the Fourier Projection-Slice Theorem (Natterer and Wübbeling,
2001).

In this paper, we extend their work in a number of critical ways:

• We express the oscillator states and their interrelations in
terms of Fourier theory by arranging the VCOs in a frequency
domain.

• Our formulation exposes a linear constraint on the phase
relationships between the VCOs.

• We suggest the division of two different components involved
in forming activation maps: position is encoded in VCO
phases, and map layout is encoded in connection weights.

• We propose and implement novel coupling mechanisms that
stabilizes VCO phase relationships.

• We implement a partial model using spiking leaky integrate-
and-fire neurons.
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2. MATERIALS AND METHODS
2.1. FOURIER MODEL
In this section, we describe how Fourier theory leads to a deeper
understanding of the interactions between oscillators. For a
primer on the relevant theory, see Appendix A. .

The bank-of-oscillators model (Welday et al., 2011) states
that a VCO’s frequency depends on two parameters: the speed
of the animal, and the cosine of the animal’s velocity vector
with the VCO’s preferred direction. In Welday et al. (2011),
these VCOs were organized into a 2-D space in which one axis
enumerates preferred directions, and the other axis represents
the influence of speed (labeled “slope of speed modulation” in
Figure 1A).

Another, perhaps more intuitive way of presenting the same
2-D parameter space is to use polar coordinates, as shown in
Figure 1B. In this view, each VCO’s preferred direction is indi-
cated by its polar angle, while its speed modulation is indi-
cated by its distance from the origin. We will refer to this
polar arrangement as the VCO address space, and refer to a
VCO’s address in this space as d, using either Cartesian or polar
coordinates.

Instead of thinking of a VCO as a ring of neurons, we will think
of a VCO as a population of neurons that represents a 2-D unit
vector, which we will call a phase vector (For more on how a pop-
ulation of neurons can represent a vector, see Appendix B..). Each
VCO’s phase vector simply rotates around the unit circle at the
VCO’s specified frequency.

Consider the VCO with address dA in Figure 2A, four units
from the origin, in the direction of 30◦. If the animal’s velocity, v,
is in that direction, the VCO will exhibit a higher frequency than
the VCO at the origin. More precisely, the VCO’s frequency will
increase by an amount proportional to dA · v, the dot-product of

A B

FIGURE 2 | Trigonometric wave fronts. (A) Indicates the coefficient at
30◦, 4 units from the origin. (B) Indicates the coefficient at 170◦, 7 units
from the origin. The bottom row shows the real part of the Fourier basis
function corresponding to the single non-zero Fourier coefficient set to 1.

dA and v. After a time t, the difference in phase between the VCOs
at dA and the origin will be

φ(t) =
∫ t

0
dA · v(τ) dτ = dA ·

∫ t

0
v(τ) dτ = dA · x(t).

That is, the phase difference depends linearly on the animal’s posi-
tion, x(t). Even though φ is an angle, we will also represent it as
a vector on the unit circle. We can write this phase vector as a
complex number using Euler’s formula,

(cos φ, sin φ) ≡ cos φ + i sin φ = exp (iφ) ,

where i = √−1. Thus, we can represent our phase difference as

(cos φ, sin φ) = exp
(
idA · x

)
.

Thus, the components of the phase vector trace out sine and
cosine wave fronts that are fixed in the animal’s environment. The
bottom row of Figure 2A shows the wave front corresponding to
the VCO located at dA. A different VCO at location dB traces out
a different wave front, as shown in Figure 2B.

Considering that the animal has many such VCOs, what hap-
pens if we combine them all into a sum, as if a single read-out
node was adding together all the phase vectors from all the VCOs?
The value of the read-out node would be

p(x) =
∑
ρ, θ

exp
(
idρ, θ · x

)
, (1)

where dρ, θ is the address of a VCO, and the subscripts ρ and θ

index distance from the origin and orientation, respectively. An
image created using this simple method is shown in Figure 3. The
activity of this read-out node corresponds to a spatial map akin
to a place cell. Why is that? The answer has to do with the fact
that Equation (1) almost looks like an inverse Discrete Fourier

FIGURE 3 | The spatial function traced out by adding together the

whole bank of VCOs.
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Transform1 (Oppenheim and Schafer, 1999). In the following sec-
tions, we outline the benefits of thinking about the EC in terms of
the Fourier transform, and use it to extend the bank-of-oscillators
model.

2.2. ENTORHINAL CORTEX
Here we outline our model of how the Fourier transform relates
to the navigational function of the EC.

We can think of the VCO address space as a 2-D frequency
spectrum (frequency domain). In the frequency domain, each
location corresponds to a Fourier basis function (wave front),
with orientation and frequency dictated by its location, as illus-
trated in Figure 2. Analogously, each VCO’s phase vector traces
out a Fourier basis function as the animal moves around, with
orientation and frequency dictated by the VCO’s address in this
space.

A read-out node that adds together the phase vectors of two
VCOs receives the sum of those two Fourier basis functions.
(Recall that the read-out node is a population of neurons that can
encode the resulting vector). Hence, adding these phase vectors
together is like adding Fourier basis functions.

1It would be the IDFT, except that the summation indices correspond to polar
coordinates, whereas the IDFT indices use rectangular spacing.

Different firing-rate spatial maps can be constructed by pick-
ing and choosing which VCOs to combine. For example, the
bottom row of Figure 4 shows a number of spatial maps similar
to those elicited by place cells, grid cells, and “border” cells. The
VCOs used to create the maps are colored darker in the top row.
For the sake of comparison, we included Figure 4C to show the
“place” cell that was proposed in Welday et al. (2011), using only
the VCOs from a given spatial frequency (but all orientations).

There is more flexibility though. A read-out node can also
combine the VCO phase vectors using different weights, and even
apply a phase rotation to individual VCOs. Remember, each VCO
and read-out node is a population of neurons that encodes a 2-
D phase vector. Using the Neural Engineering Framework (NEF,
see Appendix B.), we can scale and rotate a VCO’s phase vector by
choosing the appropriate connection strengths. Scaling and phase
rotation is exactly what a Fourier coefficient does. Hence, com-
bining the VCO phase vectors in this way performs an inverse
Fourier transform, where the connection weights are determined
by the desired Fourier coefficients.

Consider the following example, illustrated in Figure 5. Part
A in the figure shows an idealized spatial activation map, where
brightness indicates the desired activity. We wish to use a com-
bination of VCOs (wave fronts) to duplicate—as accurately
as possible—that activation map. Figure 5B shows the Fourier
transform of the ideal map in A, overlaid with sampling locations

A B C D

FIGURE 4 | Sample spatial maps (bottom row) and the selection of VCOs used to generate them (darker dots, top row). Each cell type receives input
from: (A) all VCOs, (B) three VCOs arranged in a triad, (C) an annulus of VCOs, and (D) a line of VCOs.

A B C

FIGURE 5 | Example of a general spatial map. (A) Shows the ideal spatial map. (B) Shows the modulus of the spatial map’s Fourier coefficients, overlaid with
VCO locations (18 propellors, 9 rings). (C) Shows the spatial map resulting from combining all the VCOs, each weighted by its corresponding Fourier coefficient.
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that correspond to the VCO addresses. By sampling the Fourier
transform at those locations, we get the Fourier coefficients that
we should use as weights for the VCO phase vectors. That is,
each VCO’s phase vector gets transformed by the Fourier coef-
ficient as it is transmitted to the read-out node. Part C of the
figure shows the theoretical activity of the read-out node, attained
by combining the VCO phase vectors using these Fourier coeffi-
cients. Note that a cone filter was also used to compensate for the
polar sampling, as is common practice in computed tomography
reconstruction (Natterer and Wübbeling, 2001).

Why is this Fourier interpretation helpful? The answer comes
from how it decomposes the construction of spatial maps into two
parts. The animal’s position in its environment is encoded by the
phases of the VCOs, while the shape of the spatial map is encoded
by the connection weights.

We have already discussed how the connection weights can
produce almost any spatial map. Now we will look at how the
animal’s location is represented by the collective phases of the
VCOs.

The Fourier Shift Theorem (described in Appendix A.) states
that any function f can be shifted by multiplying each of
its Fourier coefficients, Fk, by a phase ramp, as shown in
Equation (A2) in Appendix A. In 2-D, we have two spatial dimen-
sions, (x, y), and two frequency dimensions, (k, �). The Fourier
Shift Theorem states that the Fourier coefficients of our function,
shifted by (x, y), can be written,

G(k, �) = exp

(
−2πi

(k, �) · (x, y)

N

)
F(k, �).

Or, more concisely,

Gd = exp

(
−2πi

d · x

N

)
Fd, (2)

where d is the address of the VCO, and x is the shift. We shift our
function simply by multiplying its Fourier coefficients by a phase
ramp. It is called a phase ramp because the expression inside the
exponential function is a ramp (or linear function) in 2-D. The
slope of the ramp is controlled by x. If x is the animal’s posi-
tion, then the slope of the ramp changes as the animal moves,
as illustrated in Figure 6.

This view of the EC makes clear a strict set of conditions on
the VCO phases. They all must change in a way consistent with
a linear phase ramp. We can take advantage of this condition. As

will be seen, spiking neurons do not make perfect oscillators. In
the next section, we will use this constraint to generate coupling
mechanisms that stabilize the process.

The results shown thus far are from an idealized implemen-
tation of the EC and its bank of VCOs. However, we also imple-
mented a partial version of the EC Fourier model using spiking
leaky integrate-and-fire (LIF) neurons (Koch, 1999). Here we
describe our implementation of the model, outline the challenges,
and display results from simulation experiments.

2.3. DYNAMICS OF COUPLED OSCILLATORS
2.3.1. Neural simple harmonic oscillator
The simple harmonic oscillator is governed by the system of
differential equations

dx

dt
= cy

dy

dt
= −cx

where c is a scalar. Solutions to this dynamical system include
all circular orbits around the origin in the (x, y)-plane. The fre-
quency of oscillation is proportional to c. To implement this
behavior in neurons, we compute the decoders D that decode

f (x, y) = [x + τscy, y − τscx]

(see Appendix B.). The decoded state is immediately fed back into
the population, leading to the trajectory shown in Figure 7.

A VCO can be constructed by making the population encode
a 3-D vector of the form (x, y, θ), where the x and y components
oscillate at frequency (in radians per second) specified by θ. In
this case, the decoder would be designed to decode

f (x, y, θ) = [
x + τsθy, y − τsθx

]
.

We used a stabilized version of the simple harmonic oscillator by
incorporating a unit-vector constraint into the decoder,

f (x, y, θ) =
[
x + τsθy, y − τsθx

]∥∥[
x + τsθy, y − τsθx

]∥∥
2

.

In our model, the VCOs were modeled using populations of 300
LIF neurons. The degree to which the animal’s velocity vector
influences the frequency of the oscillators depends on where the

FIGURE 6 | Encoding location in a phase ramp. As the animal moves from A to B, the VCOs change their frequencies in such a way that the slope of their
phase ramp represents the animal’s position (see Equation 2).
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VCO sits in the plane. Similar to the frequency law stated in
Equation (27) of Welday et al. (2011), we derive the frequency of
the VCO at location dn from the animal’s velocity vector, v, using

θn = 8 + 1.6 ‖v‖2 + 1.273 dn · v (3)

where the vectors v and dn are assumed to be in the unit cir-
cle. The coefficient of 1.6 comes from using Equation (27) from
Welday et al. (2011) with a maximum speed of 25 cm/s, while the
coefficient of 1.273 comes from 4/π, a factor that scales from radi-
ans to radius and increases the influence of that term by a factor
of 4. Figure 8 shows how the frequencies vary with the VCO’s dis-
tance from the origin, and that the frequencies are always above
the baseline theta-rhythm of 8 Hz no matter which direction the
rat is moving.

Our model is composed of 1-D arrays of equally-spaced VCO
nodes, each one centered on the origin of the address space, and
each one containing 17 VCOs. We will refer to each linear array as
a “propellor.” The partial model includes three such propellors.

2.3.2. Phase coupling
The stochastic nature of spiking neurons causes imperfect behav-
ior of the oscillators. If set to the same frequency and started in
phase, perfect oscillators will remain in phase. In reality, however,
slight errors in frequencies will accumulate and cause the oscilla-
tors to drift out of phase. Then, the VCO phases will no longer
accurately represent the location of the animal.

FIGURE 7 | Decoded state of a simple harmonic oscillator

implemented using 200 spiking LIF neurons. The plot on the left shows
the x and y components over 1 s of time, while the graph on the right plots
the phase portrait of x vs. y over the same time frame.

FIGURE 8 | Frequency modulation for VCOs with preferred direction

dn = [1,0] and v either [1, 0] or [–1, 0]. The dotted line shows the baseline
theta-frequency of 8 Hz. Notice that all VCOs have a frequency above the
baseline 8 Hz, no matter which way the rat is running.

Phase drift in VCOs can be corrected, as demonstrated in
Monaco et al. (2011). In that work, the animal records a snap-
shot of the VCO phase offsets for a number of spatial land-
marks. Later, as the animal passes near one of the landmarks,
the VCOs are smoothly brought into the their corresponding
(recalled) phases using error feedback. This approach addresses
the incorporation of sensory feedback to correct absolute phase
errors, but does not intrinsically stabilize the path integration
process.

In this paper, we address the internal consistency of the VCOs,
rather than absolute drift. We use phase coupling to maintain an
internal state consistent with a phase ramp. Such coupling can
be implemented in a number of ways. For brevity, we outline our
solution in detail for part of the network (coupling within a single
propellor), and include less detail for the other forms of coupling
(between propellors).

The absolute phase of the oscillators does not matter. What
matters is the phase differences between VCOs. In particular, the
phases should follow a linear phase ramp along the propellor, as
described by Equation (2). The phases can drift, as long as their
relative phases maintain a linear trend across the array.

One way to stabilize the relative phases is to couple the oscilla-
tors to each other. We reasoned that the system should be free
to allow any linear slope in phase, but discourage other phase
differences.

Since the phase should change linearly and the VCO nodes
are equally-spaced, then each pair of adjacent VCOs should have
the same phase difference, or phase step. For each propellor, we
introduce an array of neural populations to couple the oscil-
lators within that propellor. We call these nodes “phase step”
nodes. Figure 9 shows the array of VCOs (the propellor), and
their connections to an array of phase-step coupling nodes. Each
adjacent pair of oscillators is connected to the same phase-step
node. Each phase-step node contains 500 LIF neurons, and rep-
resents a 6-D vector of the form (a, b, α, β, c, s), where (a, b) and
(α, β) are the phase vectors from the two connecting oscillators,
and (c, s) represents a phase difference of φ, where c = cos φ and
s = sin φ.

Ideally, all the phase-step nodes for a given propellor should
report the same phase difference. In reality, the phase-step array
creates a consensus for this phase difference. Each coupling
node decodes the phase difference, (c̃, s̃), between its afferent

FIGURE 9 | Array of velocity-controlled oscillators (propellor). Each
adjacent pair of VCOs is coupled by a phase-step node. The
phase-step nodes are randomly connected to each other to arrive at a
consensus for what the phase difference should be between adjacent
VCOs.
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VCOs using

(c̃, s̃) = (a, b) · (α, β),

where (a, b) and (α, β) are the oscillator states, and (α, β)

is the conjugate of (α, β). If a + ib = exp(iφk) and α + iβ =
exp (iφk + 1), then their phase difference can be represented by
another phase vector,

c̃ + is̃ = exp (iφk) exp (−iφk + 1) ,

= exp (i (φk − φk + 1)) .

Note, however, that the computation is done by the network
entirely in Cartesian coordinates, using

c̃ + is̃ = (a + ib) · (α − iβ)

= (aα + bβ) + i (−aβ + bα) .

Each phase-step node decodes (c̃, s̃) and projects it out to a ran-
dom subset of other phase-step nodes (including itself). Thus,
each phase-step node receives (c̃, s̃) from a number of other
nodes, each equally weighted with all the weights adding to 1. This
weighted-average consensus gets stored in the (c, s)-components
of each phase-step node’s state.

Recall that our phase-step nodes store vectors of the form
(a, b, α, β, c, s). In a perfect world, the VCO states (a, b) and
(α, β) would differ in phase by exactly (c, s). However, there is
always some error. To reduce the error, each phase-step node
projects phase adjustments back to their connected VCOs. Given
the consensus phase difference (c, s), we can generate corrected
estimates of (a, b) and (α, β) using

(
ã, b̃

)
≈ (α, β) · (c, s),(

α̃, β̃
)

≈ (a, b) · (c, s) .

In other words, we rotate (α, β) clockwise to get (ã, b̃), an approx-
imation of (a, b). Likewise, we rotate (a, b) counter-clockwise to
get (α̃, β̃), an approximation of (α, β). Then we can compute
phase correction vectors,

(�α, �β) =
(
α̃, β̃

)
− (α, β) ,

(�a,�b) =
(

ã, b̃
)

− (a, b) .

This process is illustrated in Figure 10.
Only half of each correction needs to be incorporated to bring

the two oscillators into the correct phase relationship. In our
implementation, we divide the corrections by 5 and feed them
back into the (x, y) components of the corresponding VCOs. The
divisor of 5 was chosen instead of 2 for stability reasons. In our
experience, a wide range of divisors work equally well.

This phase-coupling method maintains a linear progression
in phase across each propellor array of VCOs. However, there is
nothing keeping the propellors in phase with each other. There

FIGURE 10 | Calculation for coupling VCOs using phase-step nodes. In
this figure, the consensus phase difference is 60◦, as indicated in the
center of the figure. The VCO states are shown in the boxes labeled (a, b)

and (α, β). Each VCO is rotated into alignment (nominally) with the other
VCO. The error vectors are fed back as corrections to the VCOs.

are two forms of phase locking required to keep all the propellors
consistent.

Notice that all DC nodes should be in phase with each other
since there is no direction-dependent frequency modulation on
the DC nodes; only the speed affects their frequency. Hence, we
need to make sure the phase of the DC components match across
all (three) propellors. We achieved this by adding a single 6-D
node to perform a coupling similar in nature to the phase-step
coupling described above. This DC coupling node acts as a mech-
anism for finding a consensus phase among the DC nodes. This
function could also be accomplished using random connections
between DC nodes, similar to how the phase-step nodes arrive at
a consensus.

A more complex form of coupling is required to keep the 1-D
phase ramps from the individual propellors coplanar with each
other. While the phase-step nodes keep the phase linear within a
1-D propellor, we still need a way to ensure that the VCO phases
form a linear function (a plane) in 2-D that passes through the
origin. For example, drift could cause one propellor to attain a
disproportionately steep slope that makes it tilt out of the plane
delineated by the other propellors.

In order to ensure that the 1-D phase ramps are coplanar,
we chose to couple together three phase-step nodes (from three
different propellors). If the propellor orientations are offset by
multiples of 60◦, the coupling constraint becomes quite simple
(omitted here). The resulting phase adjustments are fed back to
the phase-step nodes.

2.4. SIMULATION OF RAT MOTION
We created our network model to test some specific aspects of the
Fourier model. In particular, we wanted to see if we would find
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grid cells that fired spikes on a hexagonal grid of locations. We also
wanted to see if these grid cells would exhibit phase precession
compared to a global theta cycle. We added a 2-D VCO node that
oscillates at approximately 8 Hz, and used this node’s state as the
definitive theta cycle.

To simulate the movement of a rat in a circular environment,
we added a random-walk function that adjusts the velocity vec-
tor smoothly. One could predict the rat’s location by numerically
integrating the rat’s velocity. However, the rat’s own perceived
location (as encoded in the phase ramp of the EC VCOs) soon
drifted away from the computed position. This drift phenomenon
has been observed before (Zilli and Hasselmo, 2010) and is
probably due to temporal delays in network activity, network
transients caused by sudden input changes, and inaccuracies in
the frequencies of the VCOs2. A real rat seems to avoid this prob-
lem by updating its perceived location with sensory information
(Burgess et al., 2007). Our model has no sensory input. In terms of
assessing the spatial maps of the rat’s EC neurons, what is impor-
tant is where the rat believes it is, not necessarily where the rat
actually is Barry et al. (2007) and Blair et al. (2007). We deter-
mine the rat’s perceived location from the slopes of the phase
ramps of the three propellors. In particular, the phase-step nodes
encode the slope that we need. Each propellor gives us a pro-
jection of the rat’s position onto the propellor 3. Combining the
three projections gives us an over-determined system; we find the
least-squares solution to get a good estimate of the rat’s perceived
location.

2.5. NETWORK ARCHITECTURE
As shown in Figure 11, the network consists of three “wheels” of
nodes, along with a velocity node, DC phase-coupling node, a

FIGURE 11 | Network overview. The velocity node modulates the
frequency of the VCOs (see Equation 3). The phase-step nodes couple the
VCOs to maintain a 1-D phase ramp within each propellor. The coplanar
coupling nodes further keep the phase slopes of the different propellors
linearly consistent (so that they all rest in a common plane). The DC phase
coupler node keeps the absolute phase of the propellors synchronized. The
grid cells sum triads of VCOs. The theta cycle node is a stand-alone
oscillator that maintains a frequency of approximately 8 Hz.

2We did not assess the accuracy of the VCO frequencies after implementing
the various couplings, though it would be an interesting study.
3Proof that the rat’s location is projected onto each propellor comes from yet
another fascinating and useful property of the Fourier transform, the Fourier
Projection Theorem. This property is used heavily in computed tomography
reconstruction (Natterer and Wübbeling, 2001).

theta-cycle node, and an array of grid-cell nodes. Each wheel has
three propellors at angles 0◦, 120◦, and 240◦ (though a full model
would include more propellors per wheel). The first wheel con-
tains 17 VCO populations per propellor. Each population has 300
LIF neurons and encodes a 3-D vector. The recurrent connections
of these oscillating populations have a synaptic time constant [τs

in Equation (B2) of Appendix B] of 10 ms.
The phase-step wheel also has three propellors, but with 16

nodes per propellor (since they model the phase differences
between the VCO nodes). Each phase-step population has 500
LIF neurons and encodes a 6-D vector as described in the previ-
ous section. The coplanar coupling wheel mirrors the phase-step
wheel, with each coplanar coupling node having 500 LIF neurons
and encoding a 6-D vector.

In hopes of observing grid-cell behavior in our model, we cre-
ated an array of grid-cell nodes (see Figure 11). The grid-cell
array contains 17 nodes, mirroring the 17 nodes in each of the
VCO propellors. Each grid-cell node (containing 200 LIF neu-
rons) encodes a 2-D vector sum of the phase states from the
three corresponding VCOs. That is, each grid-cell node receives
the phase state from a triad of VCOs (VCOs at the same radius,
but oriented 120◦ apart) and simply adds them together.

The DC phase-coupler node has 500 LIF neurons and encodes
a 6-D vector that duplicates the phases of the three DC nodes.
The velocity node has 100 LIF neurons and encodes a 2-D vec-
tor. Finally, the theta-cycle node contains 500 LIF neurons and
encodes a 2-D vector that oscillates at approximately 8 Hz. The
recurrent connections of the theta-cycle population use a synaptic
time constant of τs = 5 ms.

Unless otherwise specified, we used the following parame-
ter values for all neurons: synaptic time constant τs = 5 ms,
refractory period τref = 2 ms, membrane time constant τm =
20 ms, spiking threshold Jth = 1, encoding vectors (en from
Equation B1) selected randomly (uniformly) from the unit hyper-
sphere, neural gain and bias (αn and βn from Equation B1) chosen
to randomly (uniformly) sample the unit hyper-sphere of the
representational space, with a maximum firing rate in the range
200–400 Hz.

3. RESULTS
The simulations were run using the Nengo software package
(nengo.ca). The whole model includes 119 nodes, for a total of
68,700 LIF neurons. We ran the model for 300 s simulation time.
The execution of the model took about 110 min to run on a laptop
with a 2.9 GHz Intel Core i7 processor and 8 GB of RAM.

3.1. GRID CELLS
Figure 12 shows a sampling of activity from neurons in the grid-
cell nodes, with their spikes (shown as red dots) superimposed
over of the rat’s trajectory (shown as gray lines). In the figure,
the spatial frequency of the grid-cell triad increases from A to D.
Recall that each triad combines the output from the three corre-
sponding VCO nodes, one taken from each propellor. The further
from the center (DC), the higher the spatial frequency. The red
dots of spikes clearly occur on a hexagonal grid with different
scales. Not all neurons in the grid nodes exhibited grid firing
patterns. However, about 10% did.
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FIGURE 12 | Spikes (red dots) from grid cells superimposed on the rat’s

trajectory (gray lines). All the grid cells were taken from triads with an
orientation of 0◦. The neuron in (A) is from a grid-cell node at position 2
(where the central, or DC, grid-cell node is index 0). The neurons in (B–D)

are from grid-cell nodes 3, 4, and 6, respectively.

FIGURE 13 | Theta-phase precession of grid-cell spikes. The red lines
indicate spike events, while the gray line depicts the theta cycle generated
by the “theta cycle” node.

3.2. THETA-PHASE PRECESSION
If we focus on the timing of the grid-cell spike bursts, we can
see that the start of the bursts precess through the theta cycle.
Figure 13 plots the spikes as red lines over the theta cycle pro-
duced by the “theta” node. The frequency of oscillation for the
VCOs—and hence the grid cells—is higher than the nominal 8 Hz
theta cycle (as shown in Figure 8). Thus, we see the bursts of
grid-cell activity precess through the lower-frequency theta cycle.

4. DISCUSSION
The model proposed in this paper extends the model pro-
posed by Welday et al. (2011). We have re-formulated their
bank-of-oscillators model using Fourier theory. The VCOs oscil-
late, so various combinations of them can result in complex
interference patterns. Fourier theory is a convenient and powerful
tool for understanding these interference patterns.

Our Fourier interpretation points out a global constraint on
the VCOs, that they must maintain a phase ramp in the address
space. The Fourier Shift Theorem shows us that the location of
the animal in its 2-D environment is encoded in the slope of this
phase ramp.

Moreover, this phase constraint can be used to generate (or
interpret) coupling mechanisms that keep the phases in the
proper formation. The VCO phases tend to drift, destroying the
location information. Coupling mechanisms that allow phases to
change, but only in a manner consistent with a linear phase ramp,
maintains the location information.

Each VCO generates a Fourier basis function on the ani-
mal’s environment. Spatial maps, such as place fields and grid
fields, result from the interference patterns between these basis
functions. Our Fourier-theory interpretation suggests that the
connection weights from the VCOs to the read-out nodes con-
stitute Fourier coefficients. That is, the connections alter the
amplitude and phase of each Fourier basis function. Applying a
different weight to each VCO is like applying a different Fourier
coefficient to each Fourier basis function. Hence, each read-out
node performs an inverse Fourier transform.

The inverse Fourier transform implemented by the connec-
tions is modulated by the phase state of the VCOs. Since the
VCOs are constrained to maintain a linear phase ramp, the spa-
tial maps get shifted (thanks to the Fourier Shift Theorem). The
slope of the phase ramp encodes the animal’s position in its envi-
ronment, so the spatial maps are all shifted in concert with the
animal’s motion. This framework makes it easy to understand the
relationship between the VCOs and cells that exhibit spatial maps.

Interestingly, grid cells might be a byproduct of the computa-
tion of place cells. All the VCOs in Figure 4A are added together
to get the place cell. However, that sum could be done in stages.
As an intermediate step to adding all the VCOs together, all pos-
sible triads could be added together to form a bank of grid-cell
nodes. Then, all those grid cells could be added together to form
the place cell. This two-part process is equivalent to adding all
of the VCOs together. In addition, variants of grid-like cells have
been observed in the EC (Krupic et al., 2012). Just like traditional
grid cells, these cells share the property that their spatial activation
maps are composed of a small number of Fourier components.
That is, their Fourier transforms consist of only a few non-
zero Fourier coefficients. Perhaps there is something intrinsically
beneficial in combining small sets of Fourier components.

Additionally, grid cells might emerge as a by-product of a
phase coupling mechanism. Some research has shown that the
distributed nature of grid-cell encoding offers better accuracy
than the same number of sparse place cells (Mathis and Herz,
2012). But this theory still does not address why grid cells appear,
since the bank of VCOs already offers a distributed representation
of location. Another theory, and one that we plan to investigate,
is that grid cells are a by-product of the coupling mechanisms
that maintain the phase relationships within the bank of VCOs.
It seems intuitive that place cells could offer a stable and accurate
representation of location as long as the underlying network that
feeds into the place cells encodes location in a stable and accurate
manner. Coupling between nodes harnesses the redundancy in
the network and enables wide-spread resources to be focussed on
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lower-dimensional data, such as location. The coplanar-coupling
nodes assess the linear consistency among three or more other
nodes. In general, a linearity constraint in 2-D will always require
input from at least three VCOs (in addition to the implicitly-
included DC node). We plan to investigate more general imple-
mentations of the coplanar constraint and observe whether these
mechanisms inherently generate grid-cell behaviors.

Couching the behavior of the EC in terms of Fourier theory
opens up new vistas of interpretations and predictions. It gives
us the mathematical machinery to contemplate other neurophys-
iological observations. For example, how might sensory feedback
be incorporated into the EC? If an animal is given a visual cue
of its location, that sensory data might excite the correspond-
ing place cell, which—in turn—could feed back through to the
phase-step nodes to adjust the slope of the phase ramp so that
it matches the animal’s location. It would seem that this fea-
ture would be accompanied by a phase-resetting mechanism that
allows the VCOs to rapidly realign their phases (or take on some
other phase-ramp state). A similar phase-resetting method was
able to correct phase drift using error feedback (Monaco et al.,
2011). In that work, each landmark has its own phase signature
for the VCOs, and as the animal approaches the landmark, its
VCOs receive corrective adjustments to bring them into the corre-
sponding phase state. While this approach uses phase adjustments
similar to our phase-coupling mechanisms, their method cor-
rects the absolute phase and requires that the entire set of VCO
phases be recorded. Their method does not improve the stability
of the path-integration process itself. Future work on our Fourier
EC model could incorporate these sensory-based error correction
mechanisms.

It is well known that different environments elicit different
spatial representations in the hippocampus and EC (Barry et al.,
2007; Fyhn et al., 2007). While place cells can show entirely differ-
ent activation maps, grid cells all seem to alter their orientation,
scale and phase in concert (Fyhn et al., 2007). Orientation and
scale can be accounted for in our model by rotating and scaling
the input velocity vector. A phase shift can be implemented by
setting the bank of VCOs with an initial phase ramp. As a future
investigation, we could consider allowing arbitrary initial VCO
phases, similar to the method outlined by Monaco et al. (2011), in
which they assign random initial phases to generate independent
phase codes for different environments.

The network we have built involves 119 neural populations,
and contains a total of 67,800 LIF neurons. Our implementa-
tion is an important step in demonstrating the capabilities and
behaviors of our model. However, an obvious question remains,
how might such a system get established? What self-organizing
principles might apply, and where? Spatial maps of place cells
have been learned using Hebbian learning (Rolls et al., 2006).
Grid cells can emerge spontaneously in a topographically con-
nected network with local excitation and lateral inhibition (Fuhs
and Touretzky, 2006; McNaughton et al., 2006). However, these
“Turing grids” are not found in adults, leading researchers to sug-
gest that they form during a developmental stage and are used to
guide the formation of grid cells in the non-topographical, adult
EC network. Even a random selection of grid cells can produce
place cells (Solstad et al., 2006; de Almeida et al., 2009). We plan

to investigate unsupervised and supervised learning algorithms
to derive neural oscillators. We also plan to investigate learn-
ing mechanisms that could result in the proper phase-coupling
between two or more VCOs.

A recent study found that the dynamics of grid-cell subthresh-
old membrane potentials not only exhibit theta oscillations, but
also systematic depolarizations (so called “ramps”) that coincide
with grid fields (Domnisoru et al., 2013). That paper proposes
that these depolarizations explain grid fields better than theta
interference patterns, posing a challenge to simple oscillator-
interference models. The version of our model presented here
does not attempt to address those observations; the LIF neuron
model we use does not have a facility to change the resting (reset)
potential. However, grid cells are not an essential part of our
model, and we merely show that they can easily be constructed
from the model’s raw materials. In the future, it will be interest-
ing to try to incorporate these new observations into an expanded
Fourier model of the EC.

5. CONCLUSION
Our Fourier model of the EC path-integration system extends
the bank-of-oscillators model proposed by Welday et al. (2011).
Using the rich field of Fourier theory, our model suggests the sep-
aration of navigation into two components: location, and spatial
maps. An animal’s location is encoded by the collective phases
of the VCOs, which Fourier theory tells us should be arranged
in a linear ramp. The slope of the ramp indicates position. The
spatial maps that stem from these oscillators can be thought of
as inverse Fourier transforms, where the connection weights dic-
tate the corresponding Fourier coefficients. This division of labor
allows the EC to maintain a single, dynamic representation of its
location, while enabling the construction of many different spatial
maps.

The fact that the VCOs all have to maintain a linear ramp in
the address space means that this large set of oscillators is actually
a distributed encoding of a small piece of data, location. Coupling
can keep the VCOs in ramp formation, but allow the slope of
the ramp to change freely. We have demonstrated this coupling
feature in a system model that uses populations of spiking LIF
neurons.

Knowledge about other properties of the Fourier transform
can help to guide further development of the model, and assess
how it may (or may not) be extended to explain or predict other
observations.
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APPENDIX
A. FOURIER THEORY BASICS
We will develop the theory using the Discrete Fourier Transform
(DFT), but point out that analogous properties exist for the
continuous-domain Fourier transform (Oppenheim and Schafer,
1999).

An efficient way to write the Fourier transform is to use com-
plex numbers. Recall that we have two ways of denoting a complex
number: using the Cartesian form a + ib, or the polar form
r exp(iφ). In the Cartesian form, we refer to a as the real part, and
b as the imaginary part. In the polar (or exponental) form, we call
r the modulus, and φ the phase angle. The polar notation carries
with it several advantages. Multiplying r1 exp(iφ1) and r2 exp(iφ2)

is consistent with the algebraic rules for multiplying exponential
functions, giving r1r2 exp (i(φ1 + φ2)). In words, you multiply
their moduli, and add their phases.

We will start our review of the Fourier transform with a 1-D
function. Consider a sampled function f with N samples indexed
n = 0, . . . , N − 1,

f = [
f0, f1, · · · , fN − 2, fN − 1

]
.

The DFT (Oppenheim and Schafer, 1999) of f is

Fk =
N − 1∑
n = 0

fn exp

(
−2πi

nk

N

)
, k = 0, . . . , N − 1.

Each complex number Fk is called a Fourier coefficient. We can
also denote the transform using F = DFT(f ). In essence, the DFT
is a frequency decomposition; it takes a spatial signal and rep-
resents it as a sum of wave fronts of various frequencies (and
orientations, in higher dimensions). Each Fourier coefficient cor-
responds to a different location in the frequency domain. Each
location in the frequency domain represents a different wave
front. The value of a Fourier coefficient, Fk, represents the con-
tribution of the corresponding wave front. The coefficient F0 has
a special name; it is called the DC, and it always corresponds to
the zero frequency and is located at the origin of the frequency
domain.

The Fourier basis functions are N-periodic. That is,

exp

(
−2πi

(n + N)k

N

)
= exp

(
−2πi

nk

N

)
.

In other words, it is perfectly valid to refer to F−1, since F−1 =
FN − 1. Because of this periodicity, we can shift our array of
Fourier coefficients and visualize them as being centered on the
DC. For example, if N is 33, then we list our Fourier coefficients
using [F−16, . . . , F−1, F0, F1, . . . , F16]. Likewise, use of the DFT
implicitly assumes that f is also periodic and can be indexed in
the same manner. Thus, an equivalent formulation of the DFT is

Fk =
Ñ∑

n = −Ñ

fn exp

(
−2πi

nk

N

)
, k = −Ñ, . . . , Ñ ,

where we assume for simplicity that N is odd4 and use the symbol
Ñ to represent

⌊N
2

⌋
, where the delimiters �·� denote rounding

toward zero. We will use this equivalent, centered version of the
DFT throughout this paper.

As an example relevant to our purposes, suppose we have a rat
that moves along a small corridor, and that we have broken the
corridor into N blocks, indexed n = −Ñ, . . . , Ñ. We can repre-
sent the location of the rat using an array, δ, indicating where the
rat is by placing a 1 in the element corresponding to the rat’s loca-
tion, and setting all the other elements to zero. As the rat moves
along the corridor, the array δ changes so that the location of the
1 reflects which block the rat occupies. By this definition, δ is the
Kronecker Delta,

δxn =
{

1 if n = x

0 if n 	= x

where the subscript x represents the index of the block containing
the rat, and the subscript n indexes the elements of the array δx.

The DFT of δ has special properties. The Fourier coefficients of
δ0 are Fk = 1, all unit-modulus with zero phase. However, when
the rat is at position x, the DFT of δx is,

Gk =
Ñ∑

n = −Ñ

δxn exp

(
−2πi

nk

N

)

= exp

(
−2πi

xk

N

)
.

These Fourier coefficients all have a modulus of 1, and their
phases vary linearly with k (the frequency index). That is, if
Gk = rk exp(iφk), then rk = 1 and

φk = −2π
xk

N
. (A1)

The modulus and phase of δ2 are shown in Figure A1. Notice
that the phases in Figure A1 form a line (or ramp) as you move
along the frequency axis, although the phases are wrapped into
the range [−π, π]. The slope of the line is (−2πx/N), so the
larger x is, the steeper the slope. The sign of the slope reflects
whether x is positive or negative (which direction the rat moved
along the corridor).

This property of the DFT is similar to a more general concept
known as the Fourier Shift Theorem. The Fourier Shift Theorem
tells us how shifting (translating) a signal influences its Fourier
coefficients. Suppose that Fk are the Fourier coefficients of a signal
fn. Consider a shifted version, fn − x, and its Fourier coefficients,
Gk. What is the relationship between Gk and Fk? The Fourier
coefficients of fn − x can be written

Gk =
Ñ∑

n = −Ñ

fn − x exp

(
−2πi

nk

N

)
.

4If N is even, then we sum over n = −Ñ, . . . , Ñ − 1.
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Using the change of variables m = n − x, we get

Gk =
Ñ − x∑

m = −Ñ − x

fm exp

(
−2πi

(m + x)k

N

)
.

Both exp(·) and f are periodic (by assumption, for f ), so we can
shift the summation range without changing its value. Moreover,
the exponential function can be split into two components, one
containing m, while the other can be pulled out of the summation,

Gk = exp

(
−2πi

xk

N

) Ñ∑
m = −Ñ

fm exp

(
−2πi

mk

N

)

Gk = exp

(
−2πi

xk

N

)
Fk, k = −Ñ, . . . , Ñ . (A2)

This is the Fourier Shift Theorem, and it tells us that the Fourier
coefficients of the shifted signal, fn − x, can be derived from the
coefficients of the original signal by simply multiplying each coef-
ficient by a phase-shift, where the amount of the phase-shift is a
linear function of the frequency index k.

Looking back at our example, our rat started at location 0
and the Fourier coefficients of δ0 were Fk = 1, k = −Ñ, · · · , Ñ.
However, when the rat moved to location x, the Fourier coeffi-
cients still had unit modulus, but their phases formed a ramp,
exp (−2πixk/N). That is, Gk = exp (−2πidxk/N) Fk. Applying
such a phase ramp can shift any function, not just our δ functions.

The DFT is an invertible transform, and the inverse
DFT (IDFT) yields back the original function. For example,
IDFT (DFT (δx)) = δx. With this in mind, we can represent any
shifted version of δ0 by multiplying its Fourier coefficients by a
phase ramp of the desired slope. In other words, the slope of the
phase ramp in the Fourier coefficients indicates the shift applied
to δ0. In this way, the phases of the Fourier coefficients encode the
position of the rat.

What if the slope (−2πx/N) of the phase ramp along k cor-
responds to a value of x that is not an integer? We cannot expect
the IDFT to give us δx exactly, since that is only defined for inte-
ger values of x. As it turns out, non-integer values of x yield
δ-like signals. The operation is called “Fourier interpolation,”
and corresponds to summing the continuous-domain wave fronts

FIGURE A1 | Fourier transform of δ2. The moduli (left) of the 33 Fourier
coefficients are all 1. The phase (right) is linear; the dashed red line shows a
linear function, while the blue dots show the same linear function wrapped
into the range [−π, π].

and sampling the resulting function. Figure A2 illustrates a non-
integer shift, and how the samples computed by the IDFT relate
to the underlying continuous-domain Fourier reconstruction.

All of this theory extends trivially to 2-D domains (and
higher). A Kronecker delta (or any function, for that matter) on a
2-D domain can be shifted by multiplying its Fourier coefficients
by a phase ramp in 2-D.

B. NEURAL ENGINEERING FRAMEWORK
To build our neural network, we used the Neural Engineering
Framework (NEF) (Eliasmith and Anderson, 2003), a power-
ful and versatile platform that has proven useful for large-scale
cognitive modeling (Eliasmith et al., 2012).

The NEF is comprised of three main principles: (1) neu-
ral encoding and decoding, (2) neural transformations, and (3)
neural dynamics.

B.1. NEURAL ENCODING AND DECODING
In this framework, data is stored in the collective activities of a
population of LIF neurons. The neurons have a range of parame-
ters so that their tuning curves span a wide range of possibilities.
A population of N neurons (a “node”) can encode a value x in its
neural activities using

an(t) = Gn (x(t) · enαn + βn) (B1)

where en is the encoding vector (preferred direction vector), and
αn and βn are scalar gain and bias terms that account for the neu-
ral climate of the neuron. The input to the function Gn(·) can be
thought of as the input current driving neuron n. The function Gn

translates the input current to neural activity, either in the form
of a firing rate, or a series of spikes. In the case of firing rate, Gn is
the steady-state LIF tuning curve,

Gn(J) =
⎧⎨
⎩

1

τref − τm ln
(

1 − Jth
J

) for J > Jth

0 otherwise

where τref is the refractory period, τm is the membrane time con-
stant, and Jth is the threshold current, below which the neuron has

FIGURE A2 | Fourier interpolation of δ0 shifted to the right by 3.2 units.

The dotted red line shows the continuous-domain reconstruction from the
phase-shifted Fourier coefficients. The blue circles show the samples
produced using the IDFT.
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a firing rate of zero. On the other hand, if using spikes, then the
output of Gn is represented as a sum of time-shifted Dirac delta
functions (Oppenheim and Schafer, 1999),

Gn(Jn(t)) =
∑

p

δ(t − tnp),

where tnp is the time of the pth spike from neuron n. The
membrane potential, v, is governed by the differential equation,

τm
dv

dt
= RJn(t) − v,

where Jn(t) is the input current, and R is the membrane resistance.
Once the membrane potential reaches its threshold, the neuron
spikes, the timing of the spike is recorded, and the membrane
potential is reset to zero.

If we wish to decode the neural activities of a population of
neurons, we can compute the optimal linear decoders. We do this
by collecting a sampling of inputs, X, and corresponding neu-
ral activities, A. That is, each row of matrix X stores a sample
input, and each row of matrix A stores the corresponding neu-
ral activities for all N neurons (usually stored as firing rates).
To decode from our population, we seek the linear weights D
that solve

min
D

‖AD − X‖2
2.

Thus, the weights in D perform a linear transformation from the
space of neural activities to the space of input values. This is a lin-
ear least-squares problem, and there are multiple ways to compute
D numerically. Once we have D, we can decode neural activities
to get an estimate of the value being encoded. Moreover, we can
decode arbitrary functions of our encoded data by finding the
decoders that solve

min
D

‖AD − f (X)‖2
2,

where f (X) is a function of the encoded values.

B.2. NEURAL TRANSFORMATIONS
We can use our neural encoders and decoders to transform data
from one population P, to another population Q. To do this, we
essentially decode the desired function from P and re-encode the

result into Q. Collapsing those processes together gives the N ×
M weight matrix

W = DPEQαQ,

where DP is the matrix that decodes the neural activities from
the N neurons in P, and EQαQ is the matrix of M encoders for
the neurons in Q. The weight matrix simply combines the linear
decoders and encoders into a single matrix.

B.3. NEURAL DYNAMICS
The neural coding and transformation principles above can be
built into a dynamic framework by including the temporal action
of synapses. When a spike arrives at a synapse, it induces a current
on the post-synaptic neuron. We model this post-synaptic current
using exponential decay5. That is, we convolve an incoming spike
train with the post-synaptic filter, h(t),

h(t) = 1

τs
exp

(−t

τs

)
, (B2)

where τs is the decay time constant. The total current entering a
neuron is a weighted sum over all incoming spike trains so that
the total input current arriving at neuron m is

Jm(t) = h(t) �

⎡
⎣∑

n

wnm

∑
p

δ(t − tnp)

⎤
⎦ ,

where � represents convolution, and ωnm is the connection weight
from neuron n to neuron m.

We can use a recurrently-connected population of neurons to
implement a dynamic model of the form

dx

dt
= f (x)

by choosing the recurrent connection weights so that they decode
and feed back τsf (x) + x, where τs is the post-synaptic time
constant (Eliasmith and Anderson, 2003).

With these three principles in place, one can implement a
dynamical system using spiking LIF neurons by assigning popula-
tions to state variables, and connecting them with the appropriate
transformations and time constants. A good example of such
a dynamical system is the neural simple harmonic oscillator,
described in section 2.3.

5The NEF offers other post-synaptic filters.
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