
1

Vol.:(0123456789)

Scientific Reports |         (2022) 12:2845  | https://doi.org/10.1038/s41598-022-06776-6

www.nature.com/scientificreports

Weak antilocalization, spin–orbit 
interaction, and phase coherence 
length of a Dirac semimetal 
Bi0.97Sb0.03
Yusuff Adeyemi Salawu1, Jae Hyun Yun2, Jong‑Soo Rhyee2, Minoru Sasaki3 & 
Heon‑Jung Kim1,4*

The present study develops a general framework for weak antilocalization (WAL) in a three-
dimensional (3D) system, which can be applied for a consistent description of longitudinal resistivity 
ρxx (B) and Hall resistivity ρxy (B) over a wide temperature (T) range. Compared to the previous 
approach Vu et al. (Phys Rev B 100:125162, 2019), which assumes infinite phase coherence length 
(lϕ) and a zero spin–orbit scattering length (lSO), the present framework is more general, covering 
high T and the intermediate spin–orbit coupling strength. Based on the new approach, the ρxx (B) 
and ρxy (B) of the Dirac semimetal Bi0.97Sb0.03 was analyzed over a wide T range from 1.7 to 300 K. The 
present framework not only explains the main features of the experimental data but also enables 
one to estimate lϕ and lSO at different temperatures. The lϕ has a power-law T dependence at high T 
and saturates at low T. In contrast, the lSO shows negligible T dependence. Because of the different 
T dependence, a crossover occurs from the lSO-dominant low-T to the lϕ-dominant high-T regions. 
Accordingly, the hallmark features of weak antilocalization (WAL) in ρxx (B) and ρxy (B) are gradually 
suppressed across the crossover with increasing T. The present theory describes both low-T and high-T 
regions successfully, which is impossible in the previous approximate approach. This work offers 
insights for understanding quantum electrical transport phenomena and their underlying physics, 
particularly when multiple WAL length scales are competing.

The quantum interference effects of electron waves in a system with linear dispersion have been of great interest 
in modern condensed matter physics. Recently, several device applications have been proposed that rely on the 
interference effect in 3D systems1–3. The traditionally, well-known technique for detecting this effect has been 
the measurement of the spin coherence and phase coherence length of the electron wave function. In disordered 
materials, weak localization (WL) arises from constructive interference between time-reversed partial waves 
of the charge carriers. This leads to an enhanced probability of carrier backscattering, enhancing resistivity4–7. 
This interference effect is relevant for diffusive orbits up to the length scale of the phase-coherence length lϕ. At 
the same time, the spin dynamics of the carriers, which in systems with strong spin–orbit interaction (SOI) is 
coupled to their orbital motion, introduce interference of time-reversed paths with consequences beyond the WL 
effect. As the spin experiences a sequence of scattering events along its path, the spin orientation is randomized 
on a characteristic length scale of spin–orbit scattering length lSO. The stronger the SOI is, the smaller the lSO

4,5,8
. 

Here, the interference of time-reversed paths reduces the backscattering probability below its classical value at 
zero magnetic field. This is the weak antilocalization (WAL) effect, readily observable when lSO ≪ lϕ.

An external magnetic field destroys interference conditions, resulting in a magnetoresistance carrying quan-
titative information about phase coherence length and spin scattering length4. Even though there are several 
tools to investigate the influence of quantum interference, magnetotransport measurement has become a very 
effective method to experimentally study this phenomenon. While the influence of quantum interference effects 
on ρxx(B) is well investigated and understood, that on ρxy(B) is rarely studied9. Because of this, we examined 
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the role of ρxy(B) on quantum interference phenomena by using a general framework for weak antilocalization 
in three dimensions (3D), which applies to the consistent description of both ρxx(B) and ρxy(B) over the wide 
temperature ranges.

At low temperatures, the magnetoconductivity with quantum correction �σ of two-dimensional (2D) systems 
is modeled by the Hikami–Larkin–Nagaoka (HLN) theory8,10,11. In this theory, four fundamental length scales 
which determine the B dependence of �σ exist; the mean free path l, which measures the average distance that 
an electron travels before its momentum is changed by elastic scattering, the phase coherence length lϕ, which 
denotes the average distance over which an electron can maintain its phase coherence, the magnetic length lB, and 
the spin–orbit scattering length lSO, which represent the strength of the magnetic field and spin–orbit coupling, 
respectively. These four length scales are necessary to describe the quantum interference effect quantitatively. The 
phase coherence is usually destroyed by inelastic scattering between electron and phonon or among electrons. 
To apply the quantum interference effect to experimental data, however, a limiting case is usually taken because 
the full formula may not exist or be too complex. For instance, the quantum diffusive regime and strong SOI 
are two widely used limiting cases. In the quantum diffusive regime, where lϕ/l >  > 1, electrons conserve the 
phase coherence even after being scattered many times. With strong SOI, i.e. lSO/l < 1, the electron wavefunction 
acquires an additional π phase without losing phase coherence after the electron adiabatically completes a closed 
trajectory, because of strong coupling between the spin and orbital parts of the wavefunction. This additional π 
phase is the origin of WAL in a system with strong SOI.

One of the interesting issues in the WL and WAL is the influence of the quantum interference on Hall resis-
tivity ρxy . In a previous study9, a method to consistently describe the B dependence of ρxx and ρxy within the 
quantum interference framework was suggested. However, this approach deals with a limiting case of infinite lϕ 
and zero lSO. Because of this limit, the previous method has limited applications, that is, only at low temperatures 
and for strong SOI cases. Therefore, to extract the temperature dependence of lϕ and lSO and to fully understand 
the underlying physics, one needs a theory that properly considers the finite lϕ and lSO. In this study, we extend 
the previous two-band model with WAL correction by incorporating the effects of finite lϕ and lSO. This naturally 
allows for quantifying the strength of SOI by estimating the value of lSO and provides clues to distinguish different 
transport regions based on extracted length scales.

The quantum interference effects have been less studied in three-dimensional (3D) systems compared to 2D 
ones4,5,8,12–15 because these effects are weaker in 3D systems. Thus, for a systematic investigation, it is essential to 
uncover a 3D material that exhibits pronounced quantum interference effects. It is well known that a material 
with strong SOI has great potential for such a study because strong SOI allows the quantum interference effects 
to be easily observable.

To examine the detailed effects of lϕ and lSO on transport properties here, the Bi1−xSbx (x ~ 3–4%) single crystal 
was chosen. It is a suitable system among the recently identified candidates for topological semimetals; it not only 
has both electrons and holes carriers, but it also possesses strong SOI. When the concentration of antimony is 
around x ~ 3–4%, massless Dirac fermions emerge near the L point in the reciprocal space. This critical concentra-
tion is a topological phase transition from a “band” to a topological insulator, also identified as a Dirac semimetal. 
Accordingly, negative longitudinal magnetoresistance and violation of Ohm’s law were observed, resulting from 
the chiral anomaly16–21. In this study, we would like to systematically explore the quantum interference effects of 
a Bi0.97Sb0.03 single crystal over a wide temperature range, offering clues to the relation between band topology 
and quantum interference effects.

We measured ρxx(B) and ρxy(B) of the Bi0.97Sb0.03 single crystal at different temperatures for − 9 T ≤ B ≤ 9 T. At 
low B and T, we observed a sharp dip or a concave-downward increase in ρxx(B) , which is a clear manifestation of 
WAL. This dip, which is distinguished from the conventional B-quadratic behavior of ρxx(B) , becomes suppressed 
when the temperature is raised. At the same time, ρxy(B) is nonlinear in B with an S-shape, which is attributed to 
the combined effects of two bands and the WAL correction. To quantitatively analyze ρxx(B) and ρxy(B) over wide 
temperature ranges, we formulated a modified two-carrier model that incorporates all the fundamental length 
scales of the quantum interference effect. The main features of the experimental data are successfully described 
by this model for the wide temperature ranges. Also, the key parameters of the system, such as the carrier density, 
mobility, phase coherence length, etc. are estimated and compared with the values estimated from Shubnikov-
de Haas (SdH) oscillations and the previous approximate two-band model, particularly at low temperatures.

Experiments, results, and discussion
We grew Bi1−xSbx single crystals at x ~ 3–4% using a Bridgeman method, as previously reported22. Energy dis-
persive X-ray analysis was used to measure the concentrations of antimony. The temperature dependences of 
resistivity ρ(T) for the Bi0.97Sb0.03 single crystals were measured from 1.7 to 300 K using a six-probe method. The 
ρxx(B) and ρxy(B) measurements were carried out using a cryogen-free magnet system (Cryogenic Inc.) under a 
magnetic field B ranging from − 9 to 9 T. The B was applied along the trigonal axis with the current perpendicular 
to B [binary direction (B ⊥ I)].

A.	 The electrical resistivity, magnetoresistance, and Hall resistivity

Figure 1a displays the temperature dependence of resistivity ρ(T) curves for a Bi0.97Sb0.03 single crystal both 
in the absence and presence of external B. The zero-field resistivity of the Bi0.97Sb0.03 sample exhibits a weak 
semiconducting behavior below T ~ 100 K. Applying B perpendicular to the current direction dramatically 
changes the ρ(T) curve. Upon the application of B, a pronounced peak is developed at Tm when B > 1 T. Here Tm 
is the temperature at which the peak occurs. The peak becomes larger with increasing B. Tm appears to signify an 
“insulator-to-metal” transition. It shifts to higher temperatures as B increases. Here, a negative slope dρ/dT < 0 
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at high temperatures corresponds to an insulating-like region and a positive slope dρ/dT > 0 at low temperatures 
is a metallic-like region. Such behavior is driven by B, which is consistent with previous literature18. Possibly, 
this observation suggests a certain role of Landau level formation particularly at low T, but the origin of this 
transition-like behavior is still elusive.

The result of transverse magnetoresistance MR of Bi0.97Sb0.03 as a function of B at different temperatures is 
shown in Fig. 1b. Here, MR is defined as MR=�ρxx/ρxx=(ρxx(B)− ρxx(0))/ρxx(0)× 100(%) , where ρxx(B) and 
ρxx(0) are the resistivity values at B = B and 0 T, respectively. Unexpectedly, MR reaches almost 7000% at B = 9 T 
and T = 150 K. Conventionally, the extremely large MR in a semimetal has been attributed to the almost perfect 
compensation of the hole and electron carriers22,23. However, the analysis based on the two-band model with the 
WAL correction verifies several orders-of-magnitude differences in electron and hole carrier densities, pointing 
to the fact that a simple compensation scenario is not adequate here. As previously reported, it has already been 
proposed that the magnetic field in a Dirac semimetal will induce the breaking of the time reversal symmetry, 
rearranging the Dirac Fermi surface (FS)17. This scenario with the high mobility of the Dirac carriers could give 
rise to extreme MR and is believed to be responsible for the effect observed in our material.

Another notable feature is the B dependence of MR. According to the semi-classical theory22,24,25, the MR 
should increase due to the orbital motion of charge carriers, following MR ≈ µhµeB

2 . However, the experimental 
MRs deviate from this behavior. As shown in Fig. 1b,c, we observed a complete absence of quadratic dependence 
of ρxx(B) at very low B and low temperatures. Instead, a sharp dip or concave-downward increase of ρxx(B) near 
the zero-field is present, which is a hallmark of WAL. The presence of the dip strongly implies that the B depend-
ence of ρxx(B) is not determined solely by the conventional orbital motion of charge carriers. This sharp dip is 
the strongest at low temperatures, gradually turning into parabolic shapes at higher temperatures.

Figure 1d shows the B dependence of Hall resistivity ρxy(B) at different temperatures. At low T, the ρxy(B) 
curves of the Bi0.97Sb0.03 single crystal possess a positive slope at high B, which indicates the existence of hole 
carriers in the sample. However, ρxy(B) becomes highly nonlinear, particularly at low B, as presented in Fig. 1e. 
This nonlinear ρxy(B) at low B implies the contribution of the electron carriers, which supports the previous study 
that reported Bi0.97Sb0.03 is a two-band system9. Interestingly, with increasing temperature, the characteristic B at 
which the slope of the ρxy(B) curve turns positive moves to a higher B. Eventually, at sufficiently high tempera-
tures, the ρxy(B) curve has an overall negative slope. This evolution suggests that certain transport parameters 
change with temperatures. It is noted that in Fig. 1a, we observed the “insulator-to-metal” transition at about 
T = 150 K and B = 9 T. At this temperature, the nonlinearity in ρxy(B) is most pronounced, extending to a high B.

B.	 A new modified two-band model

Figure 1.   (a) Temperature dependences of resistivity ρ in a magnetic field perpendicular to the electric current 
for the Bi0.97Sb0.03 single crystal. (b) Magnetic field dependence of transverse resistivity ρxx(B) of the Bi0.97Sb0.03 
single crystal at different temperatures. (c) Enlarge image of transverse resistivity data in low magnetic field at 
different temperatures (d) Hall resistivity ρxy(B) of the Bi0.97Sb0.03 single crystal at various temperatures from 1.7 
to 300 K (e) Hall resistivity ρxy(B) of the Bi0.97Sb0.03 single crystal at T = 1.7 K, 50 K, and 70 K.
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The experimental ρxx(B) and ρxy(B) data are known to be well described by the so-called two-band model 
when electron and hole carriers coexist in a system22,26,27. However, this model does not include quantum inter-
ference effects such as WAL or WL. Due to the presence of characteristic features that can be ascribed to WAL 
in the present experimental ρxx(B) and ρxy(B) curves of Bi0.97Sb0.03 single crystals, we developed a new modified 
two-band model that takes the WAL effects into account. Since we want to explain all features from low to high 
temperatures, we need a more general theory that does not explicitly assume the limiting values of lϕ and lSO. In 
natural units (� = 1 and c = 1) , ρxx(B) and ρxy(B) in the conventional two-band theory is given by

here σxx and σxy are magneto-conductivity and Hall conductivity, respectively, and µe(h) , ne(h) , and De(h) are the 
mobility, carrier density, and diffusion coefficient of electron (hole), respectively. The relation between mobility 
µe(h) and the diffusion coefficient De(h) is given by the equation µe(h) = eDe(h) . In the conventional two-band 
model, the diffusion coefficient is determined solely by the elastic scattering rate because a single scattering 
event is dominant. According to the Drude model, the Drude conductivity σD is expressed as σD = ne(h)e

2De(h) , 
depending on the type of the charge carrier.

The quantum interference effect modifies the diffusion coefficient. In the present case, we assume the modifi-
cation of the diffusion coefficient of the electron-doped L band as in the previous study9. The previous study lim-
ited the analysis to the low-temperature region, i.e. in the limit of a very long phase-coherence length 

(

lφ → ∞
)

 
and strong SOI (lSO → 0) . However, in the present case, we need to consider finite phase-coherence length 
because it is reduced at high temperatures by electron–phonon or electron–electron interactions1,4. Therefore, 
for a quantitative estimation of the WAL effects, we should rely on the full HLN quantum interference theory 
in 3D3,5,11, which fully incorporates four fundamental length scales in the formula. In this framework, the WAL 
part of conductivity is given by

here N is the number of independent interference channels, D0 is the diffusion coefficient of the classical diffusive 
motion ( D0 ∝ B2 ), and ζ is the Hurwitz zeta function, which has the following two asymptotic forms;

Equation (5) links the WAL part of conductivity with the diffusion coefficients. When the WAL effects are 
predominant, Eq. (5) can be used, and inserted into Eqs. (3) and (4). In this extended framework, all of the length 
scales, including the magnetic length lB =

√
�/4eB , the mean free path l  , the phase coherence length l� , and the 

spin–orbit scattering length lSO are properly dealt with. Equation (5) is an extension of the previous formalism, in 
which a very long phase-coherence length 

(

lφ → ∞
)

 and strong SOI (lSO → 0) were assumed. Because of these 
approximations, the previous formula cannot be applied to high temperatures and a system with intermediate 
SOI. We can now use Eqs. (1–4), along with the diffusion coefficient [Eq. (5)] to analyze the ρxx(B) and ρxy(B) 
data of the Bi0.97Sb0.03 single crystal over the entire temperature range from 1.7 to 300 K.

C.	 Shubnikov-de Haas (SdH) oscillations and Fermi surface parameters

Another interesting feature of electrical transport in Bi0.97Sb0.03 is the very pronounced SdH oscillations. The 
presence of the SdH oscillations implies that the Landau level (LL) passes through the Fermi level sequentially 
with increasing B. In Fig. 1b, we trace the SdH oscillations for Bi0.97Sb0.03 at B larger than 2 T. These are the data 
observed at 1.7 K and show a damping with increasing temperatures. The SdH oscillations are also detected in 
the Hall resistivity, even though its amplitude is much smaller compared to the transverse MR, as presented in 
Fig. 1c. The oscillating components of the transverse magnetoresistivity �ρxx(B) and Hall resistivity �ρxy(B) are 
extracted from the measured ρxx(B) and ρxy(B) , respectively, by subtracting a suitable background curve. The 
SdH oscillation has periodic peaks and valleys as a function of the inverse magnetic field B-1, which indicates the 
existence of a well-defined Fermi surface and high carrier mobility. Figure 2a shows �ρxx as a function of inverse 
magnetic field B-1 at various temperatures. In the inset in Fig. 2a, we also show �ρxy at T = 1.7 K.
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To extract the main frequencies of the SdH oscillations ( �ρxx and �ρxy ), a fast Fourier transformation (FFT) 
analysis was carried out. Here we detected only one oscillation frequency for the �ρxx and �ρxy as shown in 
Fig. 2b and its inset, respectively. This implies that only a single extremal orbit from a single Fermi pocket exists. 
We observe that the estimated value of frequency for �ρxx (fα = 8.30 T) is almost the same as that of �ρxy 
(fα = 8.28 T). The extremal cross-sectional area SF of the Fermi surface (FS) and the Fermi wave vector are evalu-

ated using the Lifshitz-Onsager relation SF = 2πe
�
F and the formulae kF =

√

(

SF
π

)

 , respectively. The estimated 

values of SF and kF are 8.65 × 10−4 Å−2 and 0.0166 Å−1, respectively. These values are in reasonably good agreement 
with the previous report21. To estimate the approximate value of carrier density (nSdH), we further used SF to 
calculate it by assuming a spherical Fermi surface. The carrier density lies in the range of ~ 1.54 × 1023 m−3 which 
is almost the same as the value of the hole carrier density estimated using the new modified two-band model.

The nature of the charge carriers participating in the SdH oscillations can be understood by further analyzing 
the SdH oscillations based on the Lifshitz-Kosevich (L-K) formula28–31, which is expressed by

Here, r is the orbit index, Fr is the frequency in the orbit r, and γ = 1
2 − β

2π  is the Onsager phase factor. This 
phase originates from the Bohr-Sommerfeld quantization rule for the extremal orbit in the momentum space 
surrounding the area Sn. There are three coefficients in front of the cosine term in Eq. (6), i.e. the thermal damp-

ing factor RT =
2π2rkBT
�ωc

sinh

(

2π2rkBT
�ωc

) , the Dingle factor RD = exp
(

− 2π2rkBTD
�ωc

)

 , and the spin factor RS = cos
(

g πm∗

2m0

)

 , 

where ωc is the cyclotron frequency, m* is the cyclotron mass, TD is the Dingle temperature, m0 is the bare mass 
of an electron, kB is the Boltzmann constant, and ħ is the Planck constant divided by 2π. The damping by RT and 

(6)
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Figure 2.   (a) Shubnikov-de Haas (SdH) oscillations in the transverse magnetoresistance of a Bi0.97Sb0.03 single 
crystal at different temperatures. Insets of (a) show the SdH oscillations in the Hall resistivity of a Bi0.97Sb0.03 
single crystal at T = 1.7 K. (b) Fast Fourier transform (FFT) of the SdH oscillations in �ρxx(B) at different 
temperatures shows a single oscillation frequency. Inset of (b) shows FFT of the SdH oscillations in �ρxy(B) at 
T = 1.7 K. (c) The amplitudes of the SdH oscillations are shown as a function of temperature. A comparison is 
made between these amplitudes and the Lifshitz-Kosevich equation. (d) The amplitude of SdH oscillation versus 
the inverse magnetic field is plotted to estimate the Dingle equation. (e) A Landau fan diagram is constructed 
from the maximum and minimum of the SdH oscillations. (f) The direct fitting of SdH oscillations from the MR 
data to the Lifshits-Kosevich formula. The inset of (f) shows the direct fitting of SdH oscillations from the Hall 
resistivity to the Lifshits-Kosevich formula.
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RD occurs due to Landau level broadening caused by the Fermi–Dirac distribution and the electron scattering, 
respectively. The spin factor RS stems from the Zeeman splitting.

The temperature dependence of the SdH oscillations can be understood based on the thermal damping fac-
tor RT in the L-K formula. Here, the fit of the temperature dependence of the SdH oscillation amplitude to the 
thermal damping factor RT can give rise to the value of m* as shown in Fig. 2c. We tracked the peak amplitudes of 
FFT as a function of temperature and these data were compared to the thermal damping factor. For the Bi0.97Sb0.03 
single crystal, the effective mass m* of the charge carriers is approximately 0.067m0.

The B dependence of the SdH oscillation amplitude is described by the Dingle factor RD
32–38. Figure 2d dis-

plays the so-called Dingle plot for the data at various temperatures. The slope of the Dingle plot is determined by 
the Dingle temperature TD, which is 6.7 K for the Bi0.97Sb0.03 single crystal. Based on the formula τ = �

2πkBTD
 and 

the Dingle temperature TD, the scattering time τ was estimated to be τ = 1.80 × 10−13 s. The mobility was further 
calculated using µQ = e�/2πm0kBTD . The value of μQ is ~ 0.59 m2/Vs, consistent with the values estimated from 
the MR and Hall fitting based on the new two-band model with the WAL correction.

It is worth noting that the SdH oscillations and low-field transport features cannot be explained by transport 
through a surface state because surface carrier density is known to be on the order of 1012 cm−233,38,39, which is 
much smaller than the estimated values using the SdH oscillations, and magnetoresistance and Hall resistance. 
Hence, we concluded that the SdH oscillations certainly result from the 3D bulk carriers.

As shown in Fig. 2f, the experimental data for �ρxx(B) and �ρxy(B) are well fitted to the L-K formula with 
the parameter values obtained above. These results present more reliable information on the Fermi surface of 
our system. In particular, the extracted parameter values confirm that the hole carriers dominate (~ 1023 m−3) in 
the SdH oscillations at low temperatures.

Next we attempted to estimate phase factors from the SdH oscillations. Under the influence of B, a closed 
o r b i t  i s  q u a n t i z e d  f o l l o w i n g  t h e  L i f s h i t z - O n s a g e r  q u a n t i z a t i o n  r u l e ,  i . e . 
Sn

�

eB = 2π
(

n+ 1
2 − β

2π − δ

)

= 2π(n+ γ − δ) , where β is Berry’s phase, δ is a phase shift that depends on the 
dimensionality of the system and γ − δ = 1

2 −
β
2π − δ32,37,39,40. The Landau fan (LF) diagram can be constructed 

using the maxima and minima of the SdH oscillations, which are assigned to the integer (n) and half-integer 
(n+ 1/2) indices of the Landau levels, respectively. A linear extrapolation of n as a function of 1/Bn leads to the 
x-intercept determined by γ − δ and the slope given by the frequency Fr. Thus, the LF diagram is a useful tool 
for estimating γ − δ and Fr. The main source of the error in this estimation is the uncertainty in determining the 
maxima and minima positions of the oscillations. The system has π Berry’s phase (β = π) when the x-intercept 
in the LF diagram is ± 1/8 for a 3D system and 0 for a 2D system. For the 3D case, the sign of δ depends on 
whether the probed extremal cross-sectional area of the FS is maximal ( +) or minimal (−)35–37,39. In contrast, a 
trivial Berry’s phase β = 0 is acquired when the x-intercept takes − 1/2 ± 1/8 for 3D and − 1/2 for 2D. Here we plot 
the LF diagram at T = 1.7 K. Figure 2e shows the γ − δ value of the Bi0.97Sb0.03 single crystal, which is estimated 
to be − 0.1 ± 0.03. The Berry phase of this sample is determined to be 1.45 ± 0.06π (δ = − 1/8) or 0.95 ± 0.06π 
(δ = 1/8), which is clearly nontrivial.

D.	 Analysis and Discussion

In the analysis, we simultaneously fit the ρxx(B) and ρxy(B) data with one common set of parameters, as 
shown in Fig. 3. Based on the new modified two-band model with the WAL correction, we successfully fit the 
experimental data of ρxx(B) and ρxy(B) . We limit the fitting in the range for − 1 T < B < 1 T because the model 
is valid only in the low-field region. Here, the fitting parameters of the analysis are the electron density ne , the 
hole density nh , the hole mobility µh , and the phase coherence length l� , the spin–orbit scattering length lSO , 
and the mean free path l  of the electron carriers. At low T, the experimental data are excellently simulated by 
both the new modified two-band theory and the previous model (PM) as shown in Fig. 3a and inset in Fig. 3a, 
respectively. This demonstrates the reliability of the new method. It is worth noting that by using the new modi-
fied two-band model, high-quality fitting for hall resistivity can be easily achieved, not only at low T but also at 
high T (See Fig. 3b–d).

However, the PM fails to reasonably describe the ρxx(B) curves at high T (see inset in Fig. 3c–d). Moreover, 
when the PM is utilized, any reasonable parameter values and their T trend are not obtained over the wide range 
of temperatures. This result may be because PM can in principle be applicable only at low temperatures. Since 
pure Bi is known to have equal numbers of electrons and holes in the range of ne = nh ∼ 1023 m−3, the estimated 
nh value is reasonable. But it is worth noting that ne in the Dirac band is small, indicating that the Fermi energy 
is close to the Dirac node. The Fermi level of our sample is believed to be closer to the Weyl/Dirac nodes com-
pared to previous reports21,41 as revealed by the smaller electron density. In addition, the mobility of the Dirac 
band in our sample is only 1/100 of the value reported21,41. We believe that the present value is more reasonable 
because it is deduced based on a more complete theory. The electron density ne , the hole density nh , and the hole 
mobility µh at different temperatures are extracted from fitting, as presented in Fig. 4. In the low-temperature 
regime, ne and nh obtained in the new modified two-band model are in the range of 1019 and 1023 m-3, as shown 
in Figs. 4a,b, respectively.

An important feature of ne is its weak temperature dependence below 150 K. On the other hand, nh increases 
continuously with increasing temperature. At low temperatures, we expected the charge carriers to be trapped in 
the crystalline defects. However, these trapped charge carriers in the crystalline defects can be thermally excited 
at higher temperatures, inducing change in the Fermi surface, which causes the increase of both ne and nh with 
increasing temperature. In addition, we observed that the µh increases with decreasing temperature and reaches 
an extremely high value of µh ≈ 0.63 m2/Vs at T = 1.7 K, Above 150 K, however, the temperature dependence of 
µh is weaker. At low temperatures, the values of nh and µh estimated based on the new modified two-band model 
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are in quantitative agreement with those estimated from the PM and the SdH analysis. This again confirms the 
reliability of the new modified two-band model for estimating the parameter values.

It is obvious that the present framework not only captures all the essential features of the experimental data 
but also determines the two primary parameters ( l� and lSO ) that characterize the quantum interference regimes. 
The values of l� and lSO as a function of temperature extracted from the fitting are shown in Fig. 4d,f, respectively. 
The l� decreases from 75 to 19 nm monotonically as the temperature increases from 1.7 to 300 K. It is well known 
that the temperature dependence of l� reflects a dephasing mechanism. Based on theory1–3, it follows l� ∝ T−p/2 
(τϕ ∝ T−p), where p depends on the dephasing mechanism. In 3D, p = 3/2 and p = 3 when the electron–electron 
and electron–phonon interactions are dominant, respectively. From Fig. 4d, it can be seen that l� increases with 
decreasing T with the exponent p = 3/2 at high T. This suggests that electron–electron interaction is the main 
dephasing mechanism at high T. The electron–electron interaction is thought to be high because of small car-
rier density of the electron-doped Dirac band. We also observed saturation of the l� values at low T (~ 30 K). 
Saturation of l� has been widely observed in 2D samples, nanostructures, and 3D systems1,3,5,7,8. Here, the l� in 
our system is believed to be limited by the scattering caused by unscreened Coulomb fluctuations of the charged 
impurities. These fluctuations are weakened below 30 K, which may be correlated with the saturation of l�.

In contrast, the value of lSO was found to be nearly independent of temperature, as shown in Fig. 4d, and it is 
also noted that the lSO ( lSO = 25–29 nm) is the smallest length scale at low temperatures among l� , lSO , and l  . This 
result is understandable because Bi0.97Sb0.03 is a system with strong SOI. The stronger the SOI is, the smaller lSO is. 
Since lSO is the smallest length scale at low temperatures, the features of the WAL, such as the sharp dip in ρxx(B) 
near zero-field, are stronger at low temperatures. On the other hand, because the condition of lSO ≪ lϕ does not 
hold any longer at high temperatures, all the features related to WAL become weakened. Bi0.97Sb0.03 undergoes a 
crossover from lSO-dominant low-T to lϕ-dominant high-T regions when the T dependences of l� and lSO cross.

In addition, extrinsic spin–orbit scattering, or the spin–orbit disorder can give a nontrivial effect on WL and 
WAL of massless Dirac fermion systems as reported42,43. This effect could tend to suppress the weak localization 

Figure 3.   (a–d) Magnetic field dependence of transverse resistivity ρxx(B) and Hall resistivity ρxy(B) of the 
Bi0.97Sb0.03 single crystal at T = 1.7 K, 50 K, 100 K, and 150 K, respectively. The solid lines represent theoretical 
curves obtained by fitting ρxx(B)and ρxx(B) simultaneously, based on the new modified two-band model. 
The insets of (a–d) show theoretical curves obtained by fitting ρxx(B)and ρxx(B) simultaneously, based on the 
previous model.
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(WL) channel, extending the region of weak antilocalization (WAL). Therefore, the spin–orbit disorder will act 
as increasing the WAL tendency and decrease the lSO values in the present case.

The mean free path l  of the electron band extracted from the fit is plotted in Fig. 4f. The value of l  decreases 
from 640 to 90 nm monotonically with increasing T. From this, we estimate the electron mobility µe , which gives 
µe = 17.5–3.7 m2/Vs. The value of the electron mobility is larger than that of the hole mobility. l� is one order 
of magnitude smaller than l  . This indicates that an electron’s phase is randomized before a few elastic collision 
events occur. The present formula was formulated to explain all the possible diffusive regimes that may present 
in our system. In this case, it is believed that our system does not reach quantum diffusive regime, but it is close 
to this region.

Finally, we discuss the position of the Fermi level EF at the L and T band as shown in Fig. 5. In this system, 
the Fermi energy lies between the Dirac node and the top of the valence band as shown in Fig. 5. Because of this, 
we use both the hole and electron carrier densities to estimate the location of the Fermi level. Based on the rela-
tion ne =

4/3πk3F
(2π/L)3

= 1
6π2Vk

3
F
 , we can calculate the Fermi vector kF of the Dirac band at L point. Here, ne was 

estimated to be 0.54 × 1018 m−3 from the new modified two-band model. The Fermi energy EF also satisfies the 
relation, EF = v�kF for the linear band dispersion. Thus EF = v�kF = 0.007 eV with the Fermi velocity of 
v = 106 m/s21. We also estimated the Fermi level of the hole band at T point from the top of the valence band. In 
a quadratic band, we have the following formula: np = 2

4/3πk3F
(2π/L)3

= 1
2π2Vk

3
F
 and EF = �

2k2

2m∗  . Using the effective 
mass of m* = 0.068me estimated from the SdH analysis, EF is calculated to be 0.015 eV. The energy difference 
between the nodal point and the top of the valence T band is 0.022 eV, which is slightly larger than the value in 
the previous report21,44. This means that the Fermi level is closer to the nodal point, and the density of states from 
the T band is larger compared to the previous case44. This is very consistent with the fact that the negative lon-
gitudinal MR and the violation of Ohm’s law are quite pronounced in the present sample. Overall, our estimated 
EF position is remarkably consistent with the reported value21 and so it proves the validity of the MR, Hall, and 
SdH analysis. The closeness of EF to the Dirac node is thought to be the main reason for why the topological 
transport phenomena are easily observed, such as negative longitudinal MR and violation of Ohm’s law in this 
Bi0.97Sb0.03 single crystal.

Conclusion
In this study, we conducted a comprehensive investigation into the magneto-transport properties of a Bi0.97Sb0.03 
single crystal at temperatures up to 300 K and with B up to ± 9.0 T. At low T, MR does not show conventional 
B-quadratic behavior, but a sharp dip appears at low B in this system, whose origin is ascribed to weak antilocali-
zation. This sharp dip is the strongest at low temperatures, becoming parabolic shaped at higher temperatures. 

Figure 4.   (a) The electron density ne (b) the hole density nh and (c) the hole mobility µh as a function 
of temperatures obtained from the analysis of the new modified two-band model, previous model, and 
Shubnikov-de Haas (SdH) oscillations. (d) the phase coherence length l� , (e) the spin–orbit scattering length 
lSO , and (f) the mean free path l  of the electron carriers as a function of temperatures estimated from the 
analysis based on the new modified two-band model.
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On the other hand, Hall resistivity is nonlinear in B with an S-shape, which is caused by the combined effect of 
two bands and the WAL correction. To analyze the experimental data beyond low temperatures and to describe 
the experimental data even at high temperatures, we employed a new approach of including a WAL correction. 
The experimental data were excellently simulated by these theoretical curves and all the main features that were 
not captured by the previous modified two-band theory are also described successfully. This strongly suggests 
the reliability of the new approach and the interplay of WAL and two distinct charge carriers in the Bi0.97Sb0.03 
single crystal. Also, we complement the measurement of these transport quantities by using Shubnikov-de Haas 
oscillations of the MR and Hall resistivity.
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