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Abstract
In this work, a hierarchical search algorithm is proposed to efficiently compute the distance between similar tractography 
streamlines. This hierarchical framework offers an upper bound and a lower bound for the point-wise distance between two 
streamlines, which guarantees the validity of a proximity search. The proposed streamline representation enables the use 
of space-partitioning search trees to increase the tractography clustering speed without reducing its accuracy. The resulting 
approach enables a fast reconstruction a sparse distance matrix between two sets of streamlines, for all similar streamlines 
within a given radius. Alongside a white matter atlas, this fast streamline search can be used for accurate and reproducible 
tractogram clustering.
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Introduction

In classical anatomy, the study of white matter fascicles 
and bundles connecting different brain regions required 
dissection. The non-invasive analysis of these connec-
tions has been greatly facilitated by the use of diffusion 
weighted MRI  (Catani et al., 2002; Jones, 2008). From 
diffusion weighted MRI, tractography algorithms can be 
employed to investigate the white matter structure and con-
nectivity (Wakana et al., 2007; Descoteaux, 2015; Jbabdi & 
Johansen-Berg, 2011). Representing white matter pathways, 
these tractography streamlines are often grouped in bundles 
for further analysis, such as tractometry (Bells et al., 2011; 
Chamberland et al., 2019a; Chamberland et al., 2019b).

Streamlines reconstructed from a tractography algorithm 
are composed of an ordered list of points, depicting local 
white matter position and trajectory. Each streamline is 
a polygonal chain, a set of connected line segments (also 

named polyline in computer graphics), with some specific 
characteristics that depend on the tractography algorithm. 
For example, most tractography algorithms reconstruct 
streamlines with a fixed step size (segment length) and a 
maximum turning angle (Tournier et al., 2012; Côté et al., 
2013; Behrens et al., 2014).

Multiple tractography applications require a grouping of 
similar streamlines for analysis. These streamlines can be 
clustered based on shape similarity and proximity. Numer-
ous algorithms and definitions of distance have been studied 
to improve the accuracy and efficiency of streamlines clus-
tering (Guevara et al., 2011; Siless et al., 2013; Garyfallidis 
et al., 2012; Garyfallidis et al., 2016; Olivetti et al., 2017; 
Vázquez et al., 2020). Searching for the nearest streamline 
in a pre-segmented set of streamlines (called a bundle atlas) 
can be used to automatically dissect a tractogram into dif-
ferent bundles and white matter pathways (O’Donnell & 
Westin, 2007; Garyfallidis et al., 2018; Wang & Shi, 2019; 
Bertò et al., 2021). However, current approaches rely on 
space embedding techniques or subsampling without any 
distance-preserving guaranties, resulting in approximate 
distance.

In parallel, similar proximity search algorithms have been 
proposed in the data-mining field to analyze and compare 
time series data (Liao, 2005; Fu, 2011; Wang et al., 2013; 
Kotsakos et al., 2013). A multivariate time series could also 
be represented as a polygonal chain. Nonetheless, current 
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distance measures for tractography streamlines do not 
directly fit in this framework. Interestingly, some bounded 
dimensionality reduction techniques employed for time 
series can be adapted to an existing streamline distance 
measure (Yi & Faloutsos, 2000; Keogh et al., 2001; Chan 
et al., 2003; Wang et al., 2013). One of these techniques, the 
piecewise aggregate approximation (Keogh et al., 2001), can 
be adapted to estimate Euclidean-based streamline distance, 
offering a lower bound which guarantees no false dismissal. 
In other words, this approximation never overestimates the 
given distance; thus, it never wrongly rejects streamlines in 
a radius search.

In this work, we focus on a streamline representation/
simplification that conserves important distance properties. 
The resulting hierarchical representation enables the use of 
standard binary search trees to increase the clustering speed. 
In addition, the theoretical upper and lower bounds are used 
to ensure the accuracy of the proximity search. The resulting 
formulation can be applied to efficiently compute an exact 
nearest neighbor (NN) or k-nearest neighbors (KNN) search 
within a maximum distance.

Methods

This section describes the proposed hierarchical approach 
to efficiently evaluate streamlines distance. For this, we first 
detail the mathematical framework to compute the distance 
between two streamlines. Followed by interesting mathemat-
ical properties used to optimize streamline representation 
and construct the proposed hierarchical search. Afterward, 
this approach is employed to search for the nearest stream-
line in a pre-segmented white matter bundle atlas, described 
in the "Experiments" section.

Distance Between Two Streamlines

A tractography streamline S = [�1, ..., �m] is defined as an 
ordered series of m points, where each of those points lives 
in a three-dimensional space �i ∈ ℝ

3 , i ∈ {1, ...,m} . The 
distance between two points in n-dimensions ( �, � ∈ ℝ

n ) 
is generally defined by the Minkowski distance ( Lp-norm).

This distance is a generalization of both the Manhattan 
( L1 ) and the Euclidean ( L2 ) distance. It satisfies the triangle 
inequality for any p ≥ 1 , resulting in a valid metric. This can 
be extended to define the maximum norm ( L∞ ) as p → ∞ , 
dual to the L1 norm in finite-dimensional spaces. This 
research focuses on the L1 and the L2 norms. Nonetheless 

(1)distLp(�, �) ∶= ||� − �||p =
( n∑

j=1

|xj − yj|p
) 1

p

the L∞ provides some bounding capacity and is sometimes 
used in binary search trees.

The proposed method utilizes the sum (or average) of 
Lp-norm to compute the distance between two streamlines 
( U = [�1, ..., �m],W = [�1, ...,�m]).

The “mdistLp(⋅, ⋅) ” is employed to compute the average 
point-wise distance. This is done to normalize the distance 
by the number of points. When computed for both ascend-
ing ( W = [�1, ...,�m] ) and descending ordered points 
( W � = [�m, ...,�1] ), the average L2 distance is equivalent to the 
minimum-average direct flip (MDF) proposed by Garyfallidis 
et al. (2012). The minimum-average direct flip is often used for 
streamlines clustering, similarity search and registration (Olivetti 
et al., 2017; Garyfallidis et al., 2018). For tractography, each 
point is in a tridimensional space, but this measure could be used 
in higher dimensions. The “distLp(⋅, ⋅) ” between two stream-
lines is depicted in Fig. 1, equivalent to the sum of the norm of 
directed vectors ( �i = �i − �i ). This sum of the norm is also 
known as the Lp,1 entry-wise matrix norm.

Sum of Norm Properties

In this subsection, a few interesting properties of the sum 
of L1 and L2 are described. These characteristics are used to 
modify the streamline representation while keeping impor-
tant distance properties. These mathematical remarks are 
further detailed in Appendix A.

(2)distL∞(�, �) ∶= ‖� − �‖∞ =
n

max
j=1

�
�xj − yj�

�

(3)

distLp(U,W) ∶=

m∑

i=1

||�i − �i||p =
m∑

i=1

( n∑

j=1

|ui,j − wi,j|p
) 1

p

(4)mdistLp(U,W) ∶=
1

m
distLp(U,W)

(5)
distMDF(U,W) ∶= min

(
mdistL2(U,W) , mdistL2 (U,W �)

)

d1
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Fig. 1  Pair-wise distance between two tractography stream-
lines (U, W) from an ordered list of points ( m = 4 ), where 
distLp (U,W) ∶=

∑m

i=1
���i − �i��p =

∑m

i=1
���i��p
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Remark 1 When using Manhattan ( L1 ) distance, com-
paring two lists composed of m n-dimensional points 
( �i,�i ∈ ℝ

n, i ∈ {1, ...,m} ) is equivalent to computing 
the L1 distance between two m × n dimensional points 
( �,� ∈ ℝ

m×n).

Remark 2 The L1 distance in n-dimensions can be used as an 
upper and a lower bound obtained from Hölder’s inequality.

From this general equation, the Euclidean ( L2 ) dis-
tance can be bounded with L1 with the previous inequal-
ity ( q = 1, p = 2 ). Figure 2 illustrates this inequality with 
bounded volume ( ‖�‖p ≤ r).

The sum of distances (p-norm) follow the same rules, 
since all summed values are positive.

(6)distL1 (U,W) =

m�

i=1

���i − �i
��1 = ‖� − �‖1

(7)‖�‖p ≤ ‖�‖q ≤ n(1∕q−1∕p)‖�‖p , for 0 < q < p

(8)
1
√
n
‖�‖1 ≤ ‖�‖2 ≤ ‖�‖1 ≤

√
n‖�‖2

(9)
1
√
n

m�

i=1

���i − �i
��1 ≤

m�

i=1

���i − �i
��2 ≤

m�

i=1

���i − �i
��1

Remark 3 If � =
1

m

∑m

i=1
�i is the mean position of a stream-

line, then the distance between the mean position of two 
streamlines is always smaller or equal to the average point-
wise distance.

Thus, averaging points together can be used to reduce 
the number of points to compare, without increasing the 
distance. This type of aggregation of points is used exten-
sively for time series analysis, such as the piecewise aggre-
gate approximation (Keogh et al., 2001), or Haar wavelet 
transform (Chan et al., 2003).

Streamlines Representation & Simplification

Resampling Some form of resampling is required when 
comparing streamlines with different numbers of points 
with a point-wise distance. Tractography generates stream-
lines with a fixed step size, resulting in individual segments 
of equal length. Thus, to compare streamlines from start to 
end, each segment can be subdivided according to the least 
common multiple of the number of segments. This subdi-
vision ensure an uniform distribution of points along each 
streamline for the point-wise distance without changing its 
geometry (see Fig. 3-a).

Downsampling Subsampling is often used to reduce stream-
line complexity, but in the general case, it does not offer any 
bounding property. Therefore, removing points before the 
comparison of streamlines can reduce or increase the aver-
age distance between them. This is illustrated in Fig. 3-b, 
where keeping the filled-in points will increase the distance, 
and keeping the hollow points will decrease it. Thus, some 
neighbors could be missed when doing a proximity search 
using subsampled streamlines, resulting in an approximate 
search.

(10)

distLp(�,�) =
‖‖� − �‖‖p ≤

1

m

m∑

i=1

‖‖�i − �i
‖‖p = mdistLp(U,W)

||x||1 ≤ r

||x||2 ≤ r

||x||1/√n ≤ r

||x||∞ ≤ r

-r r

r

-r

Fig. 2  Illustration of norm inequality from remark 2 (Eq. 8). In 2D, 
the Euclidean distance ( L2 ), displayed in red, is bounded between 
L1∕

√
2 and L1

a) b) c)

Fig. 3  a  Uniformly resampling streamlines can be used to make 
two streamlines, with unequal number of points, directly compa-
rable using a point-wise distance; for equal length segments, this 
can be computed with the least common multiple of the number of 

segments. b Subsampling points can reduce (gray dashed lines) or 
increase (red dotted lines) the average point-wise distance between 
two streamlines. c Averaging points (green dashed lines) never 
increases this distance - it can only reduce it
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Averaging As demonstrated earlier in remark 3, averag-
ing points together never increases the average distance 
(“mdistLp(⋅, ⋅)”). Therefore, when searching for all similar 
streamlines in a given radius (r) using averaged points, it is 
guaranteed that the distance remains inside that radius. Con-
sequently, computing the barycenter, or multiple mean points 
(“sub-barycenters”), is an effective way to reduce the number 
of comparisons (i.e. to reduce dimensionality) for tractogra-
phy streamline proximity search. This concept of aggregating 
points will be used to a generate a hierarchical comparison 
method, similar to a multiscale approach. Fig. 3-c illustrates 
this simplification by averaging together 3 points along each 
streamlines, resulting in 2 mean points to compare.

Proposed Hierarchical Streamline Representation

Based on previous remarks, we propose a new hierar-
chical approach for tractography streamlines proximity 
search (exact NN or KNN) within a maximum distance. 
In this subsection, the framework is detailed in three pro-
cedures: barycenter binning, simplification by averaging, 
and distance refinement. When this approach is employed 
to search for the nearest streamline in a template (pre-
segmented white matter bundle atlas), these procedures are 
used for both: the template construction (Fig. 4), and the 
resulting hierarchical streamlines search (Fig. 5).

Barycenter Binning First, the barycenter of a streamline 
can be used as an initial proximity search. Because the dis-
tance between two barycenters is never greater than the 
“mdistLp(⋅, ⋅) ” (see remark 3), it can be used to limit the 
proximity search (Fig. 5-c). Coordinates for all barycenters 
can be grouped together on a regular grid. When searching 
for all similar streamlines within a specified range (r), only 
the current grid and its neighbors (within distance r) need to 
be examined. The binning size can be optimized based on 
the amount of streamlines and the radius (r) of the proxim-
ity search; smaller bins will increase the preprocessing and 
construction time, but reduce the subsequent search time. 
Moreover, this barycenter binning provides independent bins, 
enabling efficient multithreading and the reduction of memory 
usage. Consequently, each bin can be separated and processed 
individually, only requiring the current and neighboring bins. 
When searching in a template, bins can be generated with an 
overlap to avoid to look at neighboring bins (see Fig. 4-D).

Simplification by Averaging  Second, streamline points can 
be aggregated to create a simplified version with � mean 
points (Fig. 5-b). This is done to reduce the number of dimen-
sions when using a binary search tree, thereby “avoiding” 
the curse of dimensionality (Marimont and Shapiro, 1979; 
Verleysen and François, 2005; Pestov, 2013). When the num-
ber of mean points ( � ) is a divisor of the initial number of 

A) Template streamlines

C) Barycenters D) Binning (with overlap)

E) Bins F) Tree structureB) Simplification (2 mpts)

Fig. 4  Template construction for the proposed hierarchical fast 
streamline search. A Streamlines in a given template, B template 
simplification by averaging resulting in � mean points (mpts) per 
streamline, C barycenter (1 mean point) per streamline, D-E organiz-

ing streamlines using barycenter bins with an overlap greater or equal 
to the search radius, F  space-partitioning tree structure for each bin 
using � mean points

1096 Neuroinformatics (2022) 20:1093–1104
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points (m) the remark 3 remains true; otherwise a continuous 
averaging needs to be done. Afterwards, each streamline’s 
mean points are vectorized in a � × n vector, to employ both 
remarks 1-2. This vectorization enables the use of standard 
space-partitioning tree structure, which greatly increase 
the search speed (see Fig. 5-d). For the distance between 
streamlines “mdistLp(⋅, ⋅) ”, with the L2 norm per points, the 
searching range need to be increased by the square root of the 
spatial dimensionality ( 

√
n ). Since the distance between sim-

plified streamlines using � mean points is always smaller than 
or equal to the tractography streamline point-wise distance 
(remark 3), this aggregation enables the search for all simi-
lar streamlines within a certain radius, without missing any 
streamlines (Fig. 5-e). This results in a radius search with no 
false dismissals (no false negatives), where remaining false 
positives can be rectified with a refinement step.

Distance Refinement Finally, the resulting similar stream-
lines with their respective distances, obtained from the prox-
imity search using simplified streamlines, can be refined by 

computing the complete distance (without simplification). 
When searching for all similar streamlines within a radius 
(i.e. proximity search), streamlines with a complete distance 
larger than the desired radius need to be filtered out (Fig. 5-
f). KNN search, within a maximum radius, can be done 
by computing refined distances and extracting the first K 
streamlines.

Experiments

Dataset

Tractography For the evaluation, we utilized 44 sub-
jects from the Human Connectome Project (HCP) data-
set  (Van  Essen et  al., 2013). Tractography streamlines  
were reconstructed using probabilistic particle filtering  
tractography  (Girard et al., 2014) implemented in Dipy   
(Garyfallidis et  al., 2014). Resulting streamlines were 

a) Streamlines b) Simplification (2 mpts) c) Barycenters binning

d) Template tree search e) Mean-points distance f) Refined distance

Fig. 5  Streamlines nearest neighbor search to a previously generated 
template (see Fig. 4): a given streamlines to cluster, b simplification 
by averaging resulting in � mean points (mpts) per streamline, c bar-
ycenter (1 mean point) per streamline, binned using template bins 
(without overlap), d-e for each given streamline compute the distance 

to template streamlines in the same bin within the search radius using 
� mean points employing the space partitioning tree, f recompute the 
complete point-wise distance for all neighbors pair, given by the pre-
vious step, and return the nearest

1097Neuroinformatics (2022) 20:1093–1104
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aligned to the MNI space (ICBM 2009a, Fonov et al., 2011) 
using ANTs affine registration (Avants et al., 2008). This 
registration was computed from the T1-weighted image of 
each subject (already aligned with the distortion corrected 
diffusion space) to the MNI template.

Bundle Atlas The bundle atlas employed for the experiment 
is detailed in Garyfallidis et al. (2018); Yeh et al. (2018). 
Streamlines from this atlas were already aligned to the MNI 
space (ICBM 2009a, Fonov et al., 2011), which is composed 
of 33 bundles (9 inter-hemispheric, 12 intra-hemispheric) 
with a total of 210K streamlines.

Streamlines All streamlines were defined with 32 points 
( m = 32 ), to limit the variability in our testing, and make 
the proposed proximity search comparable to RecoBun-
dles (Garyfallidis et al., 2018), because RecoBundles down-
samples all streamlines to a fixed number of points (12). For 
the proposed approach, all streamlines from the atlas were 
compared with both ascending and descending (flip) order, 
resulting in 420K streamlines. This makes the employed dis-
tance “mdistL2(⋅, ⋅) ” equivalent to RecoBundles’ minimum-
average direct flip distance.

Evaluation

The proposed hierarchical streamline search was quan-
titatively evaluated by measuring the computation time. 
Each streamline search method was computed twice per 
subject to avoid aberrant run time, keeping the smallest 
time for each subject (except for longer run without bin-
ning or without mean points). This computation time is 
afterward averaged over all 44 subjects to compare the effi-
ciency of the proposed method with various parameters. 
This computation time did not include any file loading or 

saving time. The proposed approach was evaluated with 
and without the barycenter binning at various bin_size 
(4mm, 8mm, 12mm). The simplification by averaging 
was compared at different numbers of mean points (2, 4, 
8). Without barycenter binning and simplification, this is 
equivalent to a brute force search with quadratic time.

For each subject, multiple sets of streamlines were used to 
vary the total amount of streamlines (500K, 1M, 2M, 4M). 
The proximity search radius was evaluated from 2mm to 
12mm, in 2mm steps. The proximity search was applied to 
44 subjects using all 33 bundles from the atlas.

The proposed algorithm was also compared to RecoBun-
dles  (Garyfallidis et  al., 2018) with various number of 
streamlines. RecoBundles was run with its default param-
eters from Scilpy(v1.1.0): subsampling streamlines to 12 
points, a pruning distance of 8mm, and a clustering thresh-
old of 12mm (Garyfallidis et al., 2014; Garyfallidis et al., 
2016; Rheault, 2020). It should be noted that the proposed 
fast streamline search is not equivalent to RecoBundles; 
RecoBundles subsamples streamlines and relies on the 
QuickBundles clustering algorithm, resulting in an approxi-
mate search. Moreover, RecoBundles/QuickBundles prune 
clusters using an adapted clustering threshold for each bun-
dle. The goal of this evaluation is to give an idea of the 
clustering speed of the proposed streamline search method, 
compared to a state-of-the-art similarity-based clustering 
method (RecoBundles). Computation times were measured 
from a single core on Intel’s 2.4GHz Skylake 6148 proces-
sor. The proposed method employs Scipy(v1.6.3) cKDTree 
for space-partitioning (Virtanen et al., 2020).

Streamline simplification errors were evaluated to com-
pare the conventional subsampling and the proposed mean 
points averaging. In addition, inaccuracy was estimated 
using false positive and false negative rates compared to 
an exact brute force search from 500K streamlines. For this 
accuracy test, RecoBundles results were averaged from 30 

Fig. 6  Streamlines proximity 
search ( L2 ≤ 8mm ) time com-
parison with various param-
eters, for all 33 bundles in the 
atlas. Computation times were 
averaged over 44 subjects from 
the HCP dataset
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runs, using different random seed, to avoid outliers with this 
stochastic approach. All distance values and estimated errors 
are reported in millimeters.

Results

Computation Time

Figure 6 details the computation time for streamline proximity 
search within 8mm (mdistL2(⋅, ⋅) ≤ 8mm ) at various numbers 
of streamlines (500K, 1M, 2M, 4M), searching for similar 
streamlines in a bundle atlas of 210K streamlines. When using 
both barycenter binning and simplification, the resulting clus-
tering speed is comparable to RecoBundles. Figure 7 pre-
sents the computation time as a function of the search radius 
(from 2mm to 12mm) for 4 million streamlines. When using 
barycenter binning, a simplification with 4 mean points (nb_
mpts=4) performs slightly better for any number of stream-
lines (from 500K to 4M) and search radius (from 2mm to 
12mm). Using less mean points (nb_mpts=2) decrease the 
tree search time but increase even more the distance refine-
ment computation time. This is reversed with more mean 
points (nb_mpts=8), since it reduces the distance refinement 
time but further increases the search time. It can be observe 
from Figs. 6, 7, that the optimal barycenter binning size var-
ies in function of the number streamlines and search radius.

Quantitative Comparison

Distance errors from downsampling streamlines are pre-
sented in Table 1. Overall, the proposed mean points 
results in a smaller mean absolute/squared error. Table 2 
depicts the number of false positives and false negatives 
for each method at various resampling. Since the mean 
points approach did not increase the distance between 

two streamlines (from a positive minimum difference in 
Table 1), it resulted in zero false negatives when using 
a brute force approach. Without refinement, the fast 
streamline search is equivalent in accuracy to an exhaus-
tive search with simplified streamlines. It can be noted 
that the proposed fast streamline search with refinement 
and mean points simplification results in an exact search, 
based on the “mdistL2(⋅, ⋅) ” measure. Thus, only computa-
tion time varies when changing the bin size or the number 
of mean points, resulting distances and clustered stream-
lines do not change.

Qualitative Comparison

Figure 8 shows streamlines extracted using both the pro-
posed method (radius of 4mm, 6mm or 8mm) and RecoBun-
dles. Both clusters were obtained from the Corticospinal 
tract (CST) in the bundle atlas. Results for other bundles are 
displayed in Appendix B (Figure 9, 10 and 11).

Fig. 7  Clustering time 
comparison using 4 million 
streamlines for different search 
radii ( L2 ≤ r ), for all 33 bundles 
in the atlas. Computation times 
were averaged over 44 subjects 
from the HCP dataset

Table 1  Distance errors when using subsampling or mean points at 
various number of points (4, 8, 16). Comparing the estimated dis-
tance to the exact distance (with 32 points), from 500K streamlines 
to the left Corticospinal tract (CST) bundle in the atlas. The average 
error for each approach is presented with both mean absolute error 
(MAE) and mean squared error (MSE). The minimum and maximum 
differences are obtained from the exact distance minus the distance 
with resampled streamlines. All distance values and estimated errors 
are in millimeters

resampling nb. points MAE MSE min diff. max diff.

subsample 16 0.7529 0.6730 -3.0529 1.4244
subsample  8 2.4034 6.7801 -9.3363 3.4591
subsample  4 6.4656 48.6004 -26.4175 12.9009
mean points 16 0.0360 0.0015 0.0006 0.5940
mean points  8 0.1773 0.0362 0.0019 2.7803
mean points  4 0.7210 0.6087 0.0043 8.1184
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Discussion

Overall, the proposed approach using 4 mean points results in 
the fastest computation time on average. Streamlines simplifi-
cation with 4 mean points is a good trade-off between distance 
refinement computation time and tree search speed. In addition, 

the optimal barycenter binning size varies in function of the 
search radius, the number of streamlines and also from one 
subject to another. Nonetheless, not using this barycenter bin-
ning generally results in slower performance (green lines in 
Figs. 6 and 7) and is highly dependent of the bin size. Directly 
using all streamlines points (32), without simplification 

Table 2  Number of false positive (left) : false negative (right) using 
a brute force search, Recobundles and the proposed fast streamline 
search (FSS) without or with refinement. The 8mm radius search was 
done using 500K streamlines and the left Corticospinal tract (CST) 

atlas. Each method was compared with multiple number of points (4, 
8, 16, 32), using both the conventional subsampling (normally used 
by Recobundles) and the proposed mean points simplification

resampling nb. pts brute force Recobundles FSS no refine FSS refined

none 32 0 : 0 0 : 1465 0 : 0 0 : 0
subsample 16 0 : 22 0 : 1465 0 : 22 0 : 22
subsample 8 0 : 75 4 : 1264 0 : 75 0 : 75
subsample 4 1 : 152 6 : 1346 1 : 152 0 : 152
mean points 16 2 : 0 0 : 1461 2 : 0 0 : 0
mean points 8 12 : 0 14 : 1181 12 : 0 0 : 0
mean points 4 40 : 0 18 : 1284 40 : 0 0 : 0

Fig. 8  Results of the proximity 
search for the left Corticospinal 
tract (CST) from single HCP 
subject: a the bundle atlas from 
Garyfallidis et al. (2018); Yeh 
et al. (2018), b RecoBundles 
result, c RecoBundles result 
(in green) showing in purple 
streamlines missing in 
RecoBundles (false negatives) 
but present in the proposed 
technique with an exact 
search of 6mm radius. The 
proposed proximity search, 
mdistL2 (⋅, ⋅) ≤ r , using a radius 
of: d 4mm, e 6mm, and f 8mm. 
Streamlines are colored based 
on the local orientation (x,y,z to 
RGB) with the exception of c)

a) b) c)

d) e) f)
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(orange line in Fig. 6), results in a poor computation time and 
heavy memory usage for the binary search tree. Bins of 8mm 
and 12mm without simplification are not displayed since they 
were significantly slower than binning at 4mm.

Depicted in Tables 1-2, the proposed framework (bar-
ycenter binning, simplification by averaging and distance 
refinement) accurately find all similar streamlines without 
any false positives or false negatives. Results are visually 
comparable (Fig.  8) to existing approaches that use an 
approximate similarity search (RecoBundles), where further 
comparison are displayed in Appendix B.

Despite this comparison, some part of this fast stream-
lines search algorithm could be directly integrated inside 
QuickBundles and RecoBundles to further improve their 
clustering speed when matching bundle centroids. Addition-
ally, mean points could be employed in other tractography 
approaches, instead of subsampling, to reduce simplification 
errors when computing the distance between streamlines.

The proposed lower and upper bound definitions could be fur-
ther improved using specific properties of tractography stream-
lines, such as the step size and maximum curving angle. How-
ever, these values would change from one tractography algorithm 
to another. As mentioned previously, tractography streamlines 
normally have a fixed segment length, however some researchers 
compress streamlines with the Ramer–Douglas–Peucker algo-
rithm (Hershberger & Snoeyink, 1992) or a similar variant for 
tractography (Presseau et al., 2015) to save disk space. It should 
be noted, that compression algorithms modify streamlines thus 
they will change the original distance.

Other approaches could be used to further reduce the num-
ber of points (or dimensions) required when employing a search 
tree (O’Donnell & Westin, 2007; Olivetti et al., 2012; Wang & 
Shi, 2019; Legarreta et al., 2021). Nevertheless, those dimen-
sionality reduction techniques on tractography streamlines do 
not preserve distances nor guarantee any lower/upper limits on 
distance, resulting in an approximate neighbor search.

Fig. 9  Results for the left Arcu-
ate Fasciculus (AF): a the bun-
dle atlas, b RecoBundles result, 
c RecoBundles result (in green) 
showing in purple streamlines 
missing in RecoBundles (false 
negatives) but present in the 
proposed technique with an 
exact search of 6mm. The 
proposed proximity search, 
mdistL2 (⋅, ⋅) ≤ r , using a radius 
of: d 4mm, e 6mm, and f 8mm

a) b) c)

d) e) f)

Fig. 10  Results for the central 
portion of the Corpus Cal-
losum (CC3): a the bundle 
atlas, b RecoBundles result, 
c RecoBundles result (in green) 
showing in red a few stream-
lines missing in RecoBundles 
(false negatives) but present 
in the proposed exact search 
at 4mm radius, and in pur-
ple, streamlines missing in 
RecoBundles but present in the 
proposed search at 6mm radius. 
The proposed proximity search, 
mdistL2 (⋅, ⋅) ≤ r , using a radius 
of: d 4mm, e 6mm, and f 8mm

a) b) c)

d) e) f)
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Applications This proposed approach would be useful in a clin-
ical setting when the search accuracy is critical, especially when 
missing streamlines (from false negatives) could significantly 
alter the analysis. This type of hierarchical search will become 
necessary when working with large tractograms, because com-
puting an exhaustive search would be unfeasible. Still, before 
comparing streamlines, validating the tractography reconstruc-
tion and brain registration is crucial for clinical applications.

Limitation & Future Work  This proposed method and stream-
lines simplification were specifically designed for the sum (or 
average) of Minkowski p-norm. This hierarchical approach 
might be adaptable to other streamlines similarity measures 
described by Olivetti et al. (2017), however it would requires 
a redefined simplification algorithm along with new upper 
and lower bounds.

Conclusion

The proposed framework efficiently and accurately search for 
all similar tractography streamlines inside a given radius. This 
method can be used to cluster streamlines into bundles, based 
on an given white matter atlas. The use of simplification by 
averaging (mean points) combined with a space-partitioning 
search tree significantly reduces the query time, with no false 
dismissals. Furthermore, barycenter binning provides inde-
pendent bins, enabling efficient multithreading and the reduc-
tion of memory usage. Finally, this proposed method guaran-
tees accurate results and is comparable in speed to existing 
approaches using approximate similarity search.

Information Statement Sharing

The datasets employed in this experiment is available at 
Human Conne ctome. org, from the Human Connectome 
Project (HCP) (Van Essen et al., 2013). The bundle atlas is 
available at zenodo. org/ record/ 36136 88 (Garyfallidis et al., 
2018; Yeh et al., 2018). 

Resulting streamlines generated during the current study 
are available from the corresponding author on reason-
able request. Where both the tractography algorithm and 
RecoBundles segmentation were computed with Dipy at 
dipy. org (Garyfallidis et al., 2014). An open source imple-
mentation of the proposed Fast Streamline Search is avail-
able in Dipy.

Appendix

A. Sum of Norm Properties with Detailed Equations

Proof (Remark 1) The distL1(U,W) is equivalent to comput-
ing the L1 distance between two m × n dimensional points 
( �,� ∈ ℝ

m×n).

  ◻

distL1(U,W) =

m∑

i=1

||�i − �i||1

=

m∑

i=1

n∑

j=1

|ui,j − wi,j|

= ||� − �||1

Fig. 11  Results for the left 
Uncinate Fasciculus (UF): a the 
bundle atlas, b RecoBundles 
result, c RecoBundles result 
(in green) showing in red a 
few streamlines missing in 
RecoBundles (false negatives) 
but present in the proposed 
exact search at 4mm radius, and 
in purple, streamlines missing 
in RecoBundles but present in 
the proposed search at 6mm 
radius. The proposed proximity 
search, mdistL2 (⋅, ⋅) ≤ r , using a 
radius of: d 4mm, e 6mm, and 
f 8mm

a) b) c)

d) e) f)
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Proof (Remark 2) The L1 distance in n-dimensions can be 
used as an upper and a lower bound the L2 distance, from 
Hölder’s inequality ( � ∈ ℝ

n).

  ◻

Proof (Remark 3) The distance between the mean position 
( � =

1

m

∑m

i=1
�i ) of two streamlines is always smaller or equal 

to the average point-wise distance. This can be obtained 
from Lp-norm properties (1 ≤ p < ∞ , �, � ∈ ℝ

n , 𝜆 ∈ ℝ).

Using �i,�i ∈ ℝ
n, i ∈ {1, ...,m} , such that �i = �i − �i

  ◻  

B. Streamline Search Comparison
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