
Special Issue: Cerebral Small Vessel Disease: Recent Trends

Validation and comparison
of two automated methods
for quantifying brain white
matter hyperintensities of
presumed vascular origin

Jennifer M.J. Waymont* , Chariklia Petsa* ,
Chris J. McNeil, Alison D. Murray and
Gordon D. Waiter

Abstract

Objectives: White matter hyperintensities (WMH) are a common imaging finding indicative of

cerebral small vessel disease. Lesion segmentation algorithms have been developed to overcome

issues arising from visual rating scales. In this study, we evaluated two automated methods and

compared them to visual and manual segmentation to determine the most robust algorithm

provided by the open-source Lesion Segmentation Toolbox (LST).

Methods: We compared WMH data from visual ratings (Scheltens’ scale) with those derived

from algorithms provided within LST. We then compared spatial and volumetric WMH data

derived from manually-delineated lesion maps with WMH data and lesion maps provided by

the LST algorithms.

Results: We identified optimal initial thresholds for algorithms provided by LST compared with

visual ratings (Lesion Growth Algorithm (LGA): initial j and lesion probability thresholds, 0.5;

Lesion Probability Algorithm (LPA) lesion probability threshold, 0.65). LGA was found to perform

better then LPA compared with manual segmentation.

Conclusion: LGA appeared to be the most suitable algorithm for quantifying WMH in relation

to cerebral small vessel disease, compared with Scheltens’ score and manual segmentation. LGA

offers a user-friendly, effective WMH segmentation method in the research environment.
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Introduction

White matter hyperintensities of presumed
vascular origin (WMH) are a common
magnetic resonance imaging (MRI) finding
in older adults, indicative of cerebral
small vessel disease and associated with
age and vascular and metabolic risk
factors. Increased WMH burden has also
been associated with cognitive decline, gait
disturbance, increased risk of stroke,
dementia, and death.1

The development of computed
tomography imaging enabled the first
in vivo visualization of WMH, which was
further improved by the development
and progression of MRI technologies.2

For example, 7 T MRI has recently allowed
for increasingly sensitive imaging of brain
lesions, such as those arising from multiple
sclerosis (MS),3 while the development
of techniques such as magnetic resonance
angiography has allowed visualization of
the cerebral vasculature.4 However, the
increasing ability to acquire more detailed
images of the brain and WMH is accompa-
nied by the need for efficient and reliable
methods of quantifying these lesions.

To date, most studies of WMH have used
semi-quantitative visual rating scales to deter-
mine WMH severity. These visual rating
scales, such as Fazekas and Scheltens’
scales,5,6 aim to quantify the lesion burden
based on visual assessment of the size and
location of the lesions. However, this
approach is time-consuming, requires
significant training, and is prone to inter-/
intra-rater variability and floor/ceiling

effects.7,8 Semi- and fully automated lesion
segmentation algorithms have thus been

developed in recent years to compensate for
some of the issues associated with visual
rating scales.

An open-source, fully automated

segmentation toolbox, developed and eval-
uated against manual segmentation of brain
white matter lesions arising from MS,9 has
proved popular in recent lesion segmenta-
tion analyses. This Lesion Segmentation
Toolbox (LST) software is an extension
of the Statistical Parametric Mapping: The
Analysis of Functional Brain Images (SPM)
MATLAB-based toolbox. MATLAB is a

software environment and programming
language commonly used in biomedical
imaging, with applications including data
analysis, signal processing, machine learn-
ing, and computer vision. Many widely
used brain image analysis toolboxes have
been developed for SPM and MATLAB,
including applications for region of interest
analysis, brain atlases, and functional MRI
analysis.

Previous studies evaluated the perfor-
mance of the LST toolbox against already
well established automated algorithms
including k-Nearest Neighbor with Tissue

Type Priors, and Lesion Topology preserv-
ing Anatomical Segmentation, and showed
that the Lesion Probability Algorithm
(LPA) provided by LST performed better
in spatial and volumetric analyses than
other tested methods.10 Further studies
compared supervised learning algorithms
(Support Vector Machine, Random
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Forest, Deep Boltzmann Machine, and

Convolution Encoder Network) with the

fully automated algorithms in LST and

found that the performance of the algo-

rithms was comparable, indicating that

WMH quantification is a challenging prob-

lem with many possible solutions.11 LST

has also shown potential for evaluating

fluid-attenuated inversion recovery

(FLAIR)-detected brain lesions in patients

with amyotrophic lateral sclerosis12 and in

patients with diabetes.13

In this study, we aimed to validate two

algorithms, the Lesion Growth Algorithm

(LGA) and LPA provided by the LST.

We first determined the optimal threshold

values required to obtain comparable

results for total lesion volume (TLV)

derived from the LST-based algorithms

and Scheltens’ scores. We then compared

spatial and volumetric results between the

LST-based algorithms and manual (i.e.,

hand-drawn) WMH segmentation.

Materials and methods

Subjects

Participants were included in this study if

they had MRI, visual rating scores, and

manually segmented lesion data readily

available from previous studies in the

Aberdeen Biomedical Imaging Centre.

Participants were not newly recruited for

the present study. WMH lesion scores

from Scheltens’ scale were compared with

TLV from the LST algorithms based on

MRI results obtained from participants at

age 68 years and again at 72 years, and

imaging data from both scanning sessions

were included in this analysis.
Regarding spatial and volumetric com-

parisons, MRI results were used to deter-

mine the optimal LST algorithm compared

with spatial and volumetric data derived

from manual (i.e., hand-drawn) lesion maps.

All participants provided written

informed consent, and the studies were

approved by the North of Scotland

Research Ethics Committee.

MRI

For comparisons with Scheltens’ visual

score, brain MRI was performed using a

1.5 T NVi system (General Electric,

Milwaukee, WI, USA). Three-dimensional

T1-weighted structural images were

obtained using a spoiled gradient recalled

acquisition sequence (repetition time (TR)/

echo time (TE)¼ 20/6ms; flip angle (FA)¼
35�; number of slices¼ 24; slice thickness¼
1.6mm, matrix¼ 256� 192; in-plane

resolution ¼ 1� 1mm). Axial FLAIR

images were obtained to evaluate WMH

(TR/TE¼ 9002/1.33ms; inversion time

(TI)¼ 2200; slice thickness¼ 5mm, space¼
1.2mm).

For spatial and volumetric comparisons,

brain MRI was carried out using a 3T

Philips Achieva TX-series system (Philips

Healthcare, Best, The Netherlands). Three-

dimensional T1-weighted (TR¼ 8.2ms;

TE¼ 3.8ms; TI¼ 1031ms; FA¼ 8�; field of

view (FOV)¼ 240mm; matrix¼ 240� 240;

voxel size¼ 1.0� 1.0� 1.0 mm3) and axial

FLAIR sequences (TR¼ 8000ms; TE¼
349ms; TI¼ 2400ms; FOV¼ 240mm;

matrix size¼ 240� 238; voxel size¼
0.94� 0.94� 1.00 mm3) were used.

Visual lesion rating

WMH visual ratings were assessed by expe-

rienced neuroradiologists using Scheltens’

scale.5 WMH within different brain regions

was rated from 0 to 2 or from 0 to 6, based

on the location, lesion size, and number of

observable lesions (greater scores indicated

greater lesion burden). Regional WMH

data were measured and collated into a

global total Scheltens’ score for each

participant.
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Manual lesion segmentation

For spatial and volumetric comparisons,

visual lesion maps were created using the

Medical Image Processing, Analysis, and

Visualization (MIPAV14) application to

manually delineate and fill WMH in axial

FLAIR images. Outputs were assessed by

experienced analysts upon completion.

The manual lesion maps allowed for spatial

comparison with lesion probability maps

obtained using LST. TLVs (mL) of WMH

segmented in the manual lesion maps were

calculated in MATLAB, allowing volumet-

ric comparisons between manual and auto-

mated lesion segmentation approaches.

Automated lesion segmentation

Automated lesion segmentation was per-

formed using the LGA and LPA algorithms

provided by LST.9 LGA requires T1 and

FLAIR images, and LPA requires only a

FLAIR image. The outputs of both algo-

rithms were lesion probability maps, TLV

(mL), and total lesion number.
LGA segments the T1 image into three

main tissue classes: white matter, gray

matter, and cerebrospinal fluid. This infor-

mation is combined with a co-registered

FLAIR image to provide a lesion belief
map for each class. An initial binary
lesion map obtained by imposing a prede-
termined initial threshold (j) on the inde-
pendent maps is then grown along
hyperintense voxels in the FLAIR image.

LPA uses a binary classifier approach.
This classifier was trained using data from
53 patients with MS with high lesion bur-
dens. LPA uses a lesion belief map and a
spatial covariate that accounts for voxel-
specific changes in lesion probability.
Information from this training data (i.e.,
parameters of the model fit) are used to seg-
ment lesions in novel images (i.e., previous-
ly ‘unseen’ images) by providing a lesion
probability estimate for each voxel. LPA
does not require the use of an initial
threshold.

LGA in SPM8 (LST version 1.2.3) and
LPA in SPM12 (LST version 2.0.15) were
used to obtain the lesion maps compared
with the visual ratings (Scheltens’ score).
The automated lesion maps used for spatial
and volumetric comparisons with the
manual lesion maps were derived from
LGA/LPA in SPM12 (LST version
2.0.15). Figure 1 provides examples of
manually segmented (Figure 1b), LGA
(Figure 1c), and LPA (Figure 1d) lesion

Figure 1. Original FLAIR image (a), hand-drawn lesion map (b), LGA lesion map (c), and LPA lesion map (d).
FLAIR, fluid-attenuated inversion recovery; LGA, lesion growth algorithm; LPA, lesion probability algorithm.
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maps overlaid onto their corresponding
FLAIR scans/slices.

Image analysis

TLVs derived from both LST algorithms
(LGA and LPA) were compared with
Scheltens’ visual rating scores. LGA uses
an adjustable initial threshold j. Here, j
was increased from 0.3 to 0.7 in intervals
of 0.05. Spearman’s Rho correlations
between the TLV values and Scheltens’
scores were calculated to determine the
optimal j value. j was then set at this deter-
mined value throughout the remaining
analyses.

The optimal lesion probability thresh-
olds for LGA and LPA were assessed by
increasing the threshold from 0 to 1 in inter-
vals of 0.05. Spearman’s Rho correlations
between the TLV and Scheltens’ scores were
again calculated to determine the optimal
lesion probability thresholds for LGA and
LPA, respectively.

Once the optimal j and lesion probabil-
ity thresholds had been determined,
Spearman’s Rho correlations and the
Bland–Altman method15 were used to
determine which algorithm (LGA or LPA)
was most comparable to Scheltens’ score.

Spatial and volumetric comparisons
were performed between the LST-
produced lesion probability maps (from
LGA and LPA) and manually delineated
lesion maps. TLVs were derived from each
segmentation method (LGA, LPA, manual)
in MATLAB. Image acquisition differed in
the two experiments, and the initial thresh-
old (j) for LGA in this experiment was
therefore set to the default value (0.3), and
the lesion probability threshold for all
methods (LGA, LPA, manual) was also
set to the default value (0.5).

Spatial comparisons and volumetric
comparisons were assessed using the Dice
similarity coefficient (DSC). Volumetric
comparisons were made using Pearson’s

correlations, intraclass correlation coeffi-
cients (ICC; single-rater, absolute-agree-
ment, two-way mixed-effects model), root
mean square error (RMSE), and the
Bland–Altman method.

The optimal algorithm was defined as the
one that performed better in our spatial and
volumetric comparisons, i.e. largest DSC,
largest correlations (Pearson’s and ICC),
lowest RMSE, lowest bias, and narrower
limits of agreement in Bland-Altman anal-
ysis. A P-value of <0.05 was considered
significant.

Results

Comparison with visual lesion rating

Visual lesion scores and LST algorithms
were compared based on the MRI results
for 243 participants (48% female). All par-
ticipants were healthy, community-dwelling
older adults belonging to the 1936
Aberdeen Birth Cohort.

LGA initial threshold (j). The initial threshold
(j) was increased from 0.3 to 0.7 in incre-
ments of 0.05. A boxplot of Spearman’s
Rho correlations between the results
obtained at incremental j values and
Scheltens’ score (Figure 2a) showed a pla-
teau for j values >0.55. Increasing the y
scale in Figure 1a from 0 to 1 demonstrated
a relatively large increment for j values
<0.5, and relatively small increment for
j values >0.5. Given that 0.5 was the
point where the increment changed, this
led to a plateau, and we therefore decided
to use j¼ 0.5 as our initial threshold for
further analysis and comparisons with the
visual ratings. The mean (� standard devi-
ation) Spearman’s Rho for j¼ 0.5 across
lesion probability thresholds was 0.81
(� 0.002).

Lesion probability threshold. Optimal lesion
probability thresholds for LGA and LPA

Waymont et al. 5



were determined by increasing the threshold
values from 0 to 1 in increments of 0.05.
Spearman’s Rho correlations between
Scheltens’ score and TLV were calculated
at each increment. For LGA, Spearman’s
Rho approached a plateau for values
>0.55 (Figure 2b). Because there were no
large changes in score after this point,
we determined the optimal lesion probabil-
ity threshold for LGA compared with
Scheltens’ score as 0.5 (rs¼ 0.808,
P ¼ 0.001). For LPA, Spearman’s Rho
increased until the lesion probability thresh-
old reached 0.65, and then decreased
(Figure 2c). We therefore determined the

lesion probability threshold for LPA
compared with Scheltens’ score as 0.65
(rs¼ 0.818, P< 0.001).

Optimal algorithm compared with Scheltens’

scores. Scheltens’ scores and TLV data
from LGA and LPA were log-transformed
with Pearson’s correlations showing a
strong correlation (r ¼ 0.81, P< 0.05)
(Figure 3a), with a similar result for
Scheltens’ scores and LPA (r ¼ 0.82,
P< 0.05) (Figure 3b).

A comparison of Bland–Altman plots
showed narrower limits of agreement for
LGA compared with the visual rating

Figure 2. (a) Boxplot of initial threshold (j) values for LGA and Spearman’s Rho. (b) Scatterplot of lesion
probability threshold values for LGA and Spearman’s Rho. (c) Scatterplot of lesion probability threshold
values for LPA and Spearman’s Rho.
LGA, lesion growth algorithm; LPA, lesion probability algorithm; TLV, total lesion volume.
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(Figure 4a) than for LPA compared with

the visual rating (Figure 4b) (Table 1).

These results indicated that LGA showed

better agreement with Scheltens’ score

than LPA.

LST comparisons with manual lesion

segmentation

Regarding spatial and volumetric compari-

sons, the optimal algorithm was determined

based on MRI findings in 39 participants

(51% female; mean age 52.95�
13.52 years, range 21–77 years). These par-

ticipants were a combination of healthy

participants and participants with vasculi-

tis, selected due to the availability of

manual lesion segmentation data, and for

their broad range of WMH burdens.

WMH TLVs used for spatial and volumet-

ric comparisons were derived from manual

(hand-drawn) lesion maps (mean 5.33�
5.05mL), LGA (3.13� 4.59mL), and LPA

(5.12� 6.97mL). An overview of the

descriptive statistics is shown in Table 2.

Default thresholds provided by LST were

maintained for these comparisons (j¼ 0.3,

lesion probability threshold for LGA, LPA,

and manual segmentation¼ 0.5).

Spatial comparison. The mean DSC for

manual/LGA was 0.34 (�0.21) and for

manual/LPA was 0.41 (�0.18). A paired-

samples t-test indicated that the mean

DSC for manual/LGA was significantly

lower than for manual/LPA (t (38)¼
�5.09, P< 0.001).

Volumetric comparison. The ICC for manual/

LGA was 0.739 (95% CI, 0.346 to 0.884),

and for manual/LPA was 0.663 (95% CI,

0.441 to 0.808). Pearson’s correlations

revealed significant positive correlations

for manual/LGA (r ¼ 0.82, P< 0.001) and

for manual/LPA (r ¼ 0.69, P< 0.001). The

RMSE for manual/LGA was 3.655 and for

manual/LPA was 4.979. Bland–Altman

analysis for manual/LGA (Figure 5a) indi-

cated a bias estimate of 2.21 (95% CI, 1.23

to 3.16), a lower limit of agreement of

�3.58 (95% CI, �5.23 to �1.93), and an

upper limit of agreement of 7.99 (95% CI,

6.34 to 9.64). For manual/LPA (Figure 5b),

the bias estimate was 0.22 (95% CI,

Figure 3. Scatterplots depicting the relationship between log-transformed automated and visual lesion
ratings. (a) LGA vs. total Scheltens’ score. (b) LPA vs. total Scheltens’ score.
LGA, lesion growth algorithm; LPA, lesion probability algorithm; TLV, total lesion volume.
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Figure 4. Bland–Altman plots of log-transformed LGA and Scheltens’ score (a) and log-transformed LPA
and Scheltens’ score (b).
LGA, lesion growth algorithm; LPA, lesion probability algorithm.

Table 1. Lesion Segmentation Toolbox vs. visual rating: Bland–Altman results.

Method 1 Method 2

Bias

(95% CI)

Lower LoA

(95% CI)

Upper LoA

(95% CI)

LGA Total Scheltens 0.357

(0.292 – 0.423)

�0.906

(�1.018 – �0.795)

1.621

(1.509 – 1.733)

LPA Total Scheltens 0.598

(0.53 – 0.666)

�0.713

(�0.829 – �0.597)

1.909

(1.793 – 2.025)

Figure 5. Manual segmentation vs. automated segmentation Bland-Altman plots. (a) Manual and LGA,
(b) manual and LPA.
LGA, lesion growth algorithm; LPA, lesion probability algorithm.
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�1.42 to 1.85), the lower limit of agreement

was �9.66 (95% CI, �12.48 to �6.85), and

the upper limit of agreement was 10.09

(95% CI, 7.28 to 12.91).

Optimal algorithm compared with manual lesion

segmentation. LPA TLV had a significantly

greater DSC with manually segmented TLV

than LGA. However, visual inspection of

the lesion maps suggested that LPA may

over-estimate the lesion size, resulting in

an increased DSC. LGA performed better

in terms of correlations (Pearson’s and

ICC) and RMSE comparisons. Bland–

Altman analysis showed that LPA had a

lower bias than LGA, but that the lower

and upper limits of agreement were more

widely distributed for LPA. The difference

between the upper and lower limits of

agreement for LGA was 11.57, compared

with 19.75 for LPA, and we therefore

considered that LGA performed better in

relation to this measure. Overall, we consid-

ered that LGA performed better than LPA

in these comparisons. An overview of the

results of each comparison test together

with the better-performing LST-based algo-

rithm for each test can be found in Table 3.

Discussion

Previous studies on the identification of

WMH have mainly been related to

MS.3,10,16 Although the gold standard

method for WMH analysis has typically

involved the use of visual rating scales and

semi-quantitative methods,5,6 fully auto-

mated methods have performed well com-

pared with visual and manual methods.

Given potential intra/inter-rater variability

in visual segmentation and ratings, auto-

mated methods should be fully assessed

with the aim of replacing manual segmen-

tation as the gold standard. In the present

study, we determined if WMH segmenta-

tion algorithms provided by LST produced

comparable results to two ground-truthing

measures: Scheltens’ visual rating scale and

Table 2. White matter hyperintensity descriptive
statistics: Lesion Segmentation Toolbox vs. manual.

Manual_TLV LGA_TLV LPA_TLV

n 39 39 39

Mean 5.33 3.13 5.12

Median 3.46 1.33 2.18

Standard

deviation

5.05 4.59 6.97

Minimum 0.33 0.04 0.09

Maximum 22.22 23.97 29.99

LGA, lesion growth algorithm; LPA, lesion probability

algorithm; TLV, total lesion volume.

Table 3. Lesion Segmentation Toolbox vs. manual segmentation methods for white matter hyperintensity.

LGA vs. manual LPA vs. manual

Best-performing

algorithm

DSC (mean� SD) 0.34� 0.21 0.41� 0.18 LPA

Pearson’s correlation r¼ 0.82; P< 0.001 r¼ 0.69; P< 0.001 LGA

ICC (3,1) absolute agreement 0.739 0.663 LGA

RMSE 3.655 4.979 LGA

Bland-Altman

Bias (95%CI) 2.21 (1.23, 3.16) 0.22 (�1.42, 1.85) LGA

Lower LoA (95%CI) �3.58 (�5.23, �1.93) �9.66 (�12.48, �6.85)

Upper LoA (95%CI) 7.99 (6.34, 9.64) 10.09 (7.28, 12.91)

LGA, lesion growth algorithm; LPA, lesion probability algorithm; SD, standard deviation; DSC, Dice similarity coefficient;

RMSE, root mean square error; ICC, intraclass correlation coefficient; CI, confidence interval; LoA, limit of agreement.
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manual lesion segmentation. We then deter-
mined if the LGA or LPA algorithm per-
formed better compared with Scheltens’ scale
and manual segmentation for identifying
lesions with a vascular origin.

We first compared TLVs to Scheltens’
score using incremental initial threshold
(j) values for LGA, and found that a j
value of 0.5 provided the most comparable
TLV. Similarly, we tested incremental
lesion probability thresholds for LGA and
LPA and found that thresholds of 0.5 for
LGA and 0.65 for LPA compared best with
Scheltens’ score. Regarding which of the
two algorithms was most comparable to
Scheltens’ score, LGA showed the better
agreement. Although this was in line with
previous studies suggesting that LGA per-
formed better,16 LGA must be used with
caution when determining the initial thresh-
old (j) and the lesion probability threshold.
The values indicated in the first experiment
may not apply for comparisons with other
experiments, visual rating scales, or data
obtained from different (or multiple) scan-
ning sites, and these values may depend on
the origin of the lesions. A previous study
comparing the performance of automated
methods with manual segmentation for
MS lesions showed that a combination of
j¼ 0.3 and a probability threshold of 0.4
performed best for LGA.16 However, in
the current analysis, where the origin of
the lesions was vascular, the combination
of j¼ 0.5 and a probability threshold of
0.5 appeared to perform better.

Second, we conducted spatial and volu-
metric comparisons between manual seg-
mentation and LST algorithms. Here, the
initial threshold (j) was 0.3 and the lesion
probability thresholds for LGA and LPA
were 0.5. In the spatial comparison, LPA
had a greater DSC than LGA compared
with manual segmentation, while volumet-
ric comparisons revealed that TLV pro-
duced by LGA was more comparable to
TLV produced by manual segmentation

than that produced by LPA. Visual inspec-
tion determined that LPA appeared to
overestimate the lesion size, resulting in a
greater DSC. We therefore determined
that LGA was the optimal algorithm com-
pared with manual segmentation, in accor-
dance with the result of comparisons with
the visual ratings.

Previous studies comparing qualitative
with quantitative methods showed a
strong correlation between the two meth-
ods, suggesting that either could be used
in research.17 However, other studies
found that different visual scales correlated
differently with semi-automated volumetric
methods,18 indicating that quantitative
methods were more sensitive for detecting
small group differences.19 The performance
of the LST toolbox using the default set-
tings has previously been evaluated against
other automated methods and against
manual methods, and both LPA and LGA
were shown to perform well and to be suit-
able for clinical measurements and research
purposes for MS lesions10,12 and lesions of
vascular origin.11 The initial and probabili-
ty thresholds may be redefined to improve
the performance of the LGA algorithm,
depending upon the dataset being ana-
lysed.16 However, the current study demon-
strated that the default values provided a
good level of agreement for lesions with
vascular origin.

Conclusion

This study demonstrated a good level of
agreement between manual segmentation
and the LGA algorithm using default
threshold values, indicating the suitability
of LGA for future work with minimal
user intervention. Although the LGA algo-
rithm was initially developed to evaluate
lesions resulting from MS, the current
results suggest that it is also an efficient
and effective segmentation tool for WMH
of presumed vascular origin, with strong
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agreement with manual segmentation using

the default threshold settings. The LGA

algorithm thus represents a user-friendly

method that is well-suited for a research

environment.
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