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ABSTRACT: The hydration of hydrophobic solutes is intimately
related to the spontaneous formation of cavities in water through
ambient density fluctuations. Information theory-based modeling
and simulations have shown that water density fluctuations in small
volumes are approximately Gaussian. For limiting cases of
microscopic and macroscopic volumes, water density fluctuations
are known exactly and are rigorously related to the density and
isothermal compressibility of water. Here, we develop a theory
interpolated gaussian fluctuation theory (IGFT)that builds an
analytical bridge to describe water density fluctuations from
microscopic to molecular scales. This theory requires no detailed
information about the water structure beyond the effective size of a water molecule and quantities that are readily obtained from
water’s equation-of-statenamely, the density and compressibility. Using simulations, we show that IGFT provides a good
description of density fluctuations near the mean, that is, it characterizes the variance of occupancy fluctuations over all solute sizes.
Moreover, when combined with the information theory, IGFT reproduces the well-known signatures of hydrophobic hydration, such
as entropy convergence and solubility minima, for atomic-scale solutes smaller than the crossover length scale beyond which the
Gaussian assumption breaks down. We further show that near hydrophobic and hydrophilic self-assembled monolayer surfaces in
contact with water, the normalized solvent density fluctuations within observation volumes depend similarly on size as observed in
the bulk, suggesting the feasibility of a modified version of IGFT for interfacial systems. Our work highlights the utility of a density
fluctuation-based approach toward understanding and quantifying the solvation of non-polar solutes in water and the forces that
drive them toward surfaces with different hydrophobicities.

■ INTRODUCTION

The dissolution of non-polar solutes in water and attractive
forces between non-polar solutes mediated by waterso-
called hydrophobic hydration and interactionshave been of
interest for many reasons. An important motivation for
studying such solvation phenomena is their relevance to
many biophysical self-assembly processes,1−3 which has led to
a long and rich history of experimental, theoretical, and
simulation studies.4,5 In addition, the basic problem of
dissolving a simple non-polar solute, for example, a hard-
sphere, in water is in-and-of-itself interesting for it connects the
molecular-level behavior of liquidsstructure, density fluctua-
tions, and so forthto the thermodynamics of solvation. For
example, the reversible work, μA

ex, to insert a hard-particle
solute, A, in water is related to the probability, p0, of
spontaneous formation of a cavity of the size and shape of the
solute. An early work based upon the information theory6

viewed the formation of a cavity in a solute-sized observation

volume, ν, as one element of the broader distribution pn, the
probability of observing n water molecule centers within ν.
Further, Hummer et al.7,8 showed that water density
fluctuations in small volumes are nearly Gaussian and could
be modeled easily from the knowledge of the average and the
variance of pn, quantities directly related to the density and the
radial distribution function of water, thus providing a route
from two of the simplest measures of the water structure to the
thermodynamics of hydrophobic solvation. This perspective
focusing on water density fluctuations has been powerful and
has provided insights into hydrophobic solvation near
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chemically diverse surfaces,9 proteins,3 and in other complex
environments and has also motivated the development of new
computational methods for the measurement of density
fluctuations in larger volumes,10−13 which is not feasible in
typical equilibrium molecular simulations. Those studies show
that water density fluctuations in larger volumes (>1 nm
radius) display increasingly non-Gaussian behavior in the low-
n tails of the pn distribution,

14,15 indicative of the proximity of
water under ambient conditions to its liquid-to-vapor phase
transition and consistent with the corresponding signatures
observed in the length-scale-dependent hydration of hydro-
phobic solutes and the associated crossover.16

For solutes smaller than the crossover length, where density
fluctuations are effectively Gaussian, knowledge of the variance
of pn is particularly useful, for in conjunction with density, it
enables the prediction of the excess chemical potential of hard
particles in solution. In the information theory formalism, the
variance is obtained from the integration of water’s radial
distribution function, which in turn can be obtained either
from simulations or scattering experiments. Here, we focus on
the dependence of the variance on the size of select
observation volumes in water. Given that the variance of
solvent occupancy fluctuations in microscopic volumes
(approaching zero size) and macroscopic volumes (approach-
ing infinity) are known exactly from statistical mechanics, we
explore the development of a new theoretical approach
interpolated gaussian fluctuation theory (IGFT)to calculate
the normalized variance over the entire solute size range from
molecular to macroscopic. Our development is not unlike that
of the scaled-particle theory,17−19 which smoothly interpolates
between the known microscopic and macroscopic length-scale
solvation behavior to build a smooth bridge over all solute
sizes. We show that using only one parameter, the size of a
water molecule, in combination with the knowledge of water
density and compressibility, IGFT enables the prediction of
the spherical solute chemical potential over a broad range of
temperatures, reproducing the well-known entropy conver-
gence in hydrophobic hydration for a range of solutes with
sizes less than the crossover length scale. We also report data
from molecular simulations to study the size dependence of the
normalized variance in inhomogeneous systems containing
self-assembled monolayers presenting hydrophobic and hydro-
philic chemistries and discuss the challenges in developing an
analytical interpolative theory to describe the interactions with
extended surfaces. These simulations highlight interesting
differences between hydrophobic solvation in bulk and
interfacial environments. The approach described herein
provides an alternate perspective for describing the hydration
of non-polar entities that could be readily extended beyond
aqueous systems. Moreover, IGFT illustrates that the water
structure is not determinative of the characteristic thermody-
namics of small-solute hydrophobic hydration, but rather they
are embodied within the unique equation-of-state properties of
water.

■ THEORY

The excess chemical potential of hydrating a hard-sphere (HS)
solute (A), the contribution to the chemical potential above
and beyond the ideal gas contribution, is determined by the
probability of observing an empty cavity (p0) the same shape
and volume of the solute within the bulk solvent as a result of
ambient water density fluctuations

k T plnA
ex

B 0μ = − (1)

For a HS solute with a solvent-excluded radius (R) less than
half of the diameter of an individual water (w) molecule, R <
dww/2, at most one solvent molecule can fit within the bounds
of a solute-sized observation volume. In this case, p0 = 1 −
4πR3ρw/3, where ρw is the number density of water. Solutes
with a water-excluded radius equal to half of water’s diameter,
that is, R = dww/2, correspond to point-like solutes with a hard-
sphere radius equal to zero. However, to determine p0 for
larger solutes, it is necessary to consider two-, three-, and
higher-body water−water correlations, making the analytical
determination of the aqueous solubility of realistically sized
solute cavities increasingly difficult.
Given only water’s density and pair correlations, the

information theory predicts water occupation probabilities
within the solute-shaped observation volumes following the
functional form6

p n nexp( )n 0 1 2
2λ λ λ= + + (2)

Here, pn is the probability that n solvent molecule centers are
found within the observation volume, while the λi’s are fitted to
ensure the constraints
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are satisfied, where gww(r) is the water oxygen−oxygen radial
distribution function (RDF) and ν denotes the integration
domain over the spherical cavity volume. These constraints
ensure the probability is normalized and that its first and
second moments match the observation. Despite neglecting
three-body and higher-order correlations, eq 2 accurately
captures the thermodynamics of hydrophobic hydration for
atomic-sized solutes.6,8 Indeed, the inclusion of higher-order
moments in the information theory description of pn initially
leads to worse predictions until the inclusion of seventh-order
moments.20 Practical applications of the information theory to
understand hydration have subsequently limited the con-
straints applied to only two-body correlations.
The information theory expression for pn given above (eq 2)

is a discrete analog to the Gaussian distribution. Assuming that
eq 2 can be replaced by a continuous distribution, the solvent
occupation fluctuations can be approximated as7,8

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑ
p

n n1

2
exp

( )
2n 2

2

2
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(4)

where σ2 = ⟨n2⟩ − ⟨n⟩2 is the variance of the solvent
occupation distribution. In addition to assuming that n is
continuous, the normalization of this distribution assumes that
n can be less than zero. The probability that n is negative,
determined as pn<0 = ∫ −∞

0 pidi, is small and makes a negligible
contribution toward the evaluation of the chemical potential of
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atomic-sized HS solutes and therefore is neglected here. Using
eqs 4 and 1, the solute excess chemical potential is given by

k T n k T
2 2

ln(2 )A
ex B

2

2
B 2μ

σ
πσ=

⟨ ⟩
+

(5)

To develop an analytical description of solute hydration, we
recast this expression as

k T n k T
n

2 2
ln(2 )A

ex B Bμ
χ

=
⟨ ⟩

+ π⟨ ⟩χ
(6)

where χ = σ2/⟨n⟩ = (⟨n2⟩ − ⟨n⟩2/⟨n⟩) is the normalized
variance χ, which is determined by the integral of the water
pair correlation function

r r r rg
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1
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⟨ ⟩
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(7)

This Gaussian framework has been shown to accurately
describe solute hydration from point-like solutes up to those
comparable in size to xenon. Beyond this scale, the Gaussian
approximation gradually breaks down, especially in the low-n
tail of the pn distribution (which is key for determining p0!),
reflecting the proximity of water under ambient condition to its
liquid to vapor-phase transition and the associated cross-
over.14,18,19,21,22 Moreover, for a macroscopic solute, we expect
the free energy to scale as the bulk pressure multiplied by the
solute volume, while eq 6 predicts an effective pressure acting
on a macroscopic surface of 1/(2κT), where κT is water’s
isothermal compressibility, which is ∼10,000 bar. While such
effective pressures are reasonable on an atomic scale, it is
unreasonable on the macroscopic scale. Similar overpressure
corrections have been considered for integral equation and
density functional theory predictions.23−27

Although the Gaussian framework accurately reproduces the
hydration thermodynamics of atomic-scale solutes, χ must be
obtained either by the evaluation of the integral in eq 7 using
the known solvent RDF or by directly sampling density
fluctuations from simulations. Either way, the solute size
dependent χ is not known in the form of an analytical function.
Progress on developing an analytical approximation for this
thermodynamic variable, however, can be made by considering
its limiting microscopic and macroscopic behavior. For a
spherical observation volume, eq 7 can be re-expressed as
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For cavities smaller than the distance of closest approach
between two water molecules, dww, the pair correlation
function is zero and eq 8 yields

R d
R

( /2) 1
4

3ww

3
wχ

π ρ
< = −

(9)

In the limit of an infinitely large cavity, eq 8 effectively reduces
to the Kirkwood-Buff28 integral for the compressibility yielding

R k T( ) B w Tχ ρ κ→∞ = (10)

Similar to the philosophical approach of the scaled-particle
theory (SPT), which builds an interpolative formula for the
free energy of hard solutes based on known limits,17−19 our
goal then is to develop an expression that bridges χ from the
known microscopic (eq 9) and macroscopic (eq 10) limits to

describe solvent density fluctuations over all the length scales.
Our focus on density fluctuations here will allow us to predict
quantities such as cavity occupation distributions, which SPT
does not address, although the range over which we can
accurately predict hydration free energies is limited by the
range over which the Gaussian approximation can be applied
into the wings of the distribution. Considering a Laurent
expansion of eq 8 in terms of 1/R, the first three derivatives in
the limit of an infinite sphere (1/R → 0) are

R
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Therefore, while the first and third derivatives are determined
by integrals over water’s RDF, the second derivative is
identically zero. Like eq 8, the integrals in eqs 11a and 11c
are not analytical, although they are expected to be finite away
from the critical point. Considering the microscopic limit, χ
and its first derivative are continuous at R = dww/2. Based on
these mathematical observations, we then propose that χ for
cavities with R > dww/2 can be expressed as a cubic polynomial
in 1/R

k T
R RB w T

1 3
3χ ρ κ

σ σ
= + +

(12)

Rather than evaluating eqs 11a and 11c explicitly, the
coefficients σ1 and σ3 are fitted so that χ is smooth and
continuous at R = dww/2, while σ2 is zero as required by eq
11b. The resulting expression for χ over all the solute sizes is
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where η = πρwdww3/6. The solvation free energy of a HS solute
can subsequently be determined analytically by substituting eq
13 into eq 6. In addition, by evaluating the variance as σ2

=χ⟨n⟩, we can evaluate the cavity occupation probability
distribution from eq 4. We refer to this approach as the IGFT.
To the first approximation, IGFT finds that Gaussian
occupation fluctuations within a spherical volume are captured
by the macroscopic equation-of-state properties of water
(density and compressibility) and a molecular length scale
that describes the distance for which aqueous pair correlations
begin to contribute to occupation fluctuations (dww). Assuming
dww is temperature-independent, eq 13 leaves dww as a single
fitting parameter to describe HS solute hydration.
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We note that philosophically IGFT is directly related to the
extrapolation method proposed by Schnell and co-work-
ers29−32 to evaluate Kirkwood-Buff integrals from simulations
of finite, closed systems. In difference to that approach,
however, IGFT utilizes the known compressibility evaluated
from simulation fluctuations or experiment to construct a
functional description of fluctuations over all the size scales.
Molecular Simulations. Bulk Water Simulations. Molec-

ular dynamics (MD) simulations of pure water were performed
using GROMACS 5.33 Water was modeled using the TIP4P/
2005 force field,34 which accurately captures water’s liquid
equation-of-state properties. Non-bonded Lennard-Jones in-
teractions were truncated beyond a separation of 9 Å with a
mean-field dispersion correction for longer-range contributions
to the energy and pressure. Electrostatic interactions were
evaluated using the particle mesh Ewald Summation method
with a real space cutoff of 9 Å.35 Simulations of 909 water
molecules were performed at temperatures ranging from −20
to 325 °C in 5 °C increments at a pressure of 300 bar. This
elevated pressure was used to ensure water remained a liquid at
all temperatures. The temperature and pressure were regulated
using the Nose−́Hoover thermostat36,37 and the Parrinello−
Rahman barostat,38 respectively. Water was held rigid using the
SETTLE algorithm.39 Following 2 ns of equilibration, each
state point was simulated for 200 ns for the evaluation of
equilibrium averages. The equations of motion were integrated
using a time step of 2 fs. Simulation configurations were saved
every 1 ps (200,000 total configurations at each state point) for
post-simulation analysis of thermodynamic averages.
Mean and mean-square solvent number observation volume

occupation averages were evaluated by randomly inserting
spherical observation volumes within each solvent config-
uration. Spherical observation volumes up to 15 Å in radius
were considered. Fluctuation averages were evaluated by
performing 2000 random insertions in each solvent config-
uration.
The probability of observing i water oxygens in a spherical

observation volume of radius R was evaluated following
Widom’s test particle insertion formula in the isothermal-−
isobaric ensemble40,41

p R
V

V
( )i

i n, 0

0

δ
=

⟨ ⟩
⟨ ⟩ (14)

In this expression, n is the instantaneous number of water’s in
the observation volume, δi,n is the Kronecker delta, V is the
volume of the simulation box, and the angle brackets ⟨...⟩0
indicate the averages performed over pure solvent config-
urations. Averages were conducted by performing 12,000
random insertions in each saved solvent configuration. We
note that by performing simulations at 300 bar, the solute
hydration-free energies observed will be approximately Pν ̅A
greater than at atmospheric pressure, where νA̅ is the solute’s
partial molar volume. This perturbation, however, is less than
kBT for the largest solute considered (R = 3.6 Å) over the
entire simulated temperature range. We therefore expect the
free energies determined here to be a reasonable representa-
tion of those that would be evaluated at coexistence.
Inhomogeneous System Simulations. We simulated model

self-assembled monolayer (SAM) surfaces using a setup similar
to that previously described by Garde and co-workers.42,43 A
single SAM leaflet was prepared using 528 surfactant chains,
each chain comprising 10 carbon atoms attached to a sulfur

atom at the base and capped at the top with −OH or −CH3
head groups leading to a homogeneous hydrophilic or
hydrophobic surface, respectively. The alkyl thiol chains of
the SAM strands were modeled as united atoms,44 while the
−OH and −CH3 head groups were parameterized using the
generalized AMBER force field45,46 and AM1-BCC charges47

derived from methanol and ethane, respectively. The sulfur
atom of each chain as well as the seventh carbon atom from the
sulfur were fixed in their respective locations using a harmonic
potential of 1000 kcal/(mol Å2), as previously done. The
positions and orientations of the SAM chains correspond to an
alkyl thiol SAM immobilized on a gold (111) surface.48 Water
was modeled using the TIP3P potential.49 A periodic box size
of 109.78 Å × 103.68 Å × 100 Å included the SAM leaflet
solvated with ∼94,000 water molecules (−CH3 surface
94,503 waters; OH surface93,858 waters). MD simulations
were performed using GROMACS 2019.433 in the isother-
mal−isobaric ensemble. The Nose−́Hoover thermostat36,37

and the Parrinello−Rahman barostat38 were used to maintain a
temperature and pressure of 25 °C and 1 bar, respectively.
Electrostatic interactions were calculated using particle-mesh
Ewald summation.35 A cutoff distance of 9 Å was used for non-
bonded interactions. Bonds containing hydrogens were
constrained using the LINCS algorithm.50 Simulations were
run for 10 ns with a time-step of 2 fs, saving configurations
every 2 ps. The first 200 ps were used for equilibration, while
the final 9.8 ns were analyzed to obtain simulation averages
over a total of 4900 configurations.
While the TIP3P model used to examine SAM interfaces is

distinct from the TIP4P/2005 model used in our bulk
simulations, water density fluctuations near interfaces are
expected to be comparable for the two models. The
simulations of TIP3P water had been conducted prior to the
development of IGFT. Here, we reanalyzed those interfacial
simulations using TIP3P water. The trends observed and
conclusions drawn, however, should not depend significantly
on the water model used.

■ RESULTS AND DISCUSSION
Water’s Equation-of-State and Fluctuations in the

Bulk and at Surfaces. The density and normalized
compressibility (kBTρwκT) of TIP4P/2005 water as deter-
mined by simulation are reported as a function of temperature
from −20 °C to 325 °C at 300 bar in Figure 1, which are used
as inputs to IGFT (eq 13). These results are in excellent
agreement with those from the experiment (reported from 0 to
325 °C at 300 bar obtained from the NIST Chemistry
WebBook51), giving confidence that our simulations provide
an accurate description of water’s equation-of-state over the
state points considered. It is interesting to note that while the
experiments do not exhibit a temperature of maximum density
(Tmd) at this elevated pressure, the simulations predict a Tmd in
the supercooled regime at −0.4 ± 0.2 °C. This follows from
the expectation that the Tmd will drop below the freezing point
with increasing pressure.52

The normalized water occupation variance, χ, in spherical
observation volumes in bulk TIP4P/2005 water as a function
of R at 0, 100, 200, and 300 °C at 300 bar determined from
simulation is reported in Figure 2. Beginning at zero radius, χ
determined from simulation is one and decreases with
increasing solute size. Over the temperature range reported
in this figure, χ is an increasing function of temperature for all
cavity sizes. For observation volumes comparable in size to an
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individual water molecule (∼3 Å), a slight oscillation in χ is
observed in the simulation results, attributable to the packing
of water molecules in their mutual hydration shells on this
length scale. This oscillation is most prominent at 0 °C and
diminishes with increasing temperature as a result of the

reduction of the first packing peak in water’s oxygen−oxygen
RDF (Figure 2 inset). Beyond this length scale, χ decreases
monotonically with increasing observation volume size at 0,
100, and 200 °C, approaching the macroscopic value of
kBTρwκT for an infinitely sized volume. At 300 °C, however, a
shallow minimum in χ is observed at ∼9 Å from the simulation
after which χ monotonically increases toward its macroscopic
limit.
The IGFT predictions for χ in bulk water (eq 13) are

compared with simulation data in Figure 2 using a fitted dww of
2.647 Å. While this diameter is slightly smaller than that
typically used for water ranging from 2.7 to 2.8 Å, this length
corresponds approximately to the distance where the water
oxygen−oxygen RDF first crosses one for the first time (Figure
2 inset). We may then conclude that this length corresponds to
the point for which water−water pair correlations begin to
contribute to the fluctuation integral (eq 8). Overall, IGFT
provides an excellent description of χ, especially at 0−200 °C.
Given that IGFT includes only information about the size of a
water molecule, water density, and compressibility, it does not
capture the packing oscillation near R ∼ 3 Å. Nevertheless, the
theory threads the simulation results reasonably well. At 300
°C, however, the theory fails to capture the minimum in χ
observed from simulation. The theory does exhibit a minimum
in χ if a larger value of dww (on the order of 3 Å) is used;
however, this reduces the theory’s predictive utility if dww is
assumed to be a temperature-dependent parameter. For
simplicity, we then accept the errors in the predicted values
of χ and examine the consequences of assuming dww as
temperature-independent below.
When the observation volume is present near an interface,

the nature of aqueous fluctuations in its vicinity is expected to
depend on the proximity of the observation volume and the
chemical composition of that interface. Figure 3 shows
snapshots of a SAM terminated with the hydrophobic −CH3
head groups in contact with slabs of liquid water and highlights
a representative cuboid placed Z Å away from the surface.
While we have discussed the hydration of SAM surfaces in
detail elsewhere,9 we highlight some of the more salient
features that differentiate water at these surfaces from the bulk.
Water molecules display layering near both the −OH- and
−CH3-terminated SAMs. The local density of water as
characterized by the first peak of the water density distribution
along the z-axis normal to the SAM, however, does not
correlate with the hydrophobicity or -philicity of the SAM.
Notably, the first peak near the hydrophilic surface is smaller
than that next to the hydrophobic surface. Moreover, the
secondary peak is almost non-existent near the hydrophilic
surface, while the hydrophobic surface exhibits a stronger
secondary peak, indicative of more prominent layering of water
at the interface. Cues to the relative favorability of hydration of
these two surfaces are evident in the overlap between the
density distribution of the SAM units and those of water.
Specifically, the water density overlaps significantly with those
of the −OH-terminated surface (suggesting the intercalation of
water with the SAM head groups), while there is a nearly 2 Å
gap between the water and −CH3-terminated surface-density
distributions. The width of the gap between the water and
SAM layers in turn has been shown to correlate with the
surface contact angle,9 with the gap being wider for more
hydrophobic surfaces. As pointed out by Godawat et al., this
gapthe so called “width of the interface”is smaller than the
size of a water molecule, and it is neither practical to measure it

Figure 1. Comparison between the simulation and experimental
number densities and normalized compressibility of water as a
function of temperature from −20 to 300 °C at 300 bar. The
simulation results are for TIP4P/2005 water. The experimental
results, reported only from 0 to 325 °C, were obtained from the NIST
Chemistry WebBook.51 The figure symbols are defined in the figure
legend. The arrows indicate the corresponding y-axis for the density
and compressibility data sets. Simulation error bars are smaller than
the line thicknesses.

Figure 2. Normalized occupancy fluctuations as a function of the
cavity radius in TIP4P/2005 water. The main figure reports the
simulation and theoretical results (eq 13) for χ as a function of the
cavity radius at 0, 100, 200, and 300 °C (temperatures identified in
the figure) and 300 bar. The symbols are defined in the figure legend.
Simulation error bars are smaller than the figure symbols. The inset
figure shows details of the water oxygen−oxygen radial distribution
function in the neighborhood over which it first crosses one at 0 and
300 °C. The RDF curves are identified in the figure. The vertical black
solid line corresponds to dww = 2.647 Å, while the horizontal dashed
line corresponds to a value of one.
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nor use it as a measure of the local hydrophobicity of a surface,
especially that of a protein. Significant work over the past
decade has clarified the underlying physics of hydrophobic
surface hydration. Water dewets from an idealized hard-wall
surface forming a molecularly thick vapor layer near the wall.
Unlike that in the bulk, however, the density in this region is
highly sensitive to perturbations (e.g., small amount of

attractions with the surface). Realistic surfaces, such as the
−CH3-terminated surface, exert sufficient van der Waals
attractions pinning the liquid phase close to it, leading to an
apparent liquid-like local density and the layering of water. The
tendency of water to dewet the surface, however, remains and
is evident not in the average but in the fluctuations of water
density and associated quantities. Below, we explore how those

Figure 3. (a) Snapshot of the −CH3 SAM−water system in a 3D periodic box obtained from an MD simulation trajectory. A slab of SAM
(carbonscyan, hydrogenswhite, and sulfuryellow) is shown as hydrated in water (shown with a stick model). (b) Schematic of a L × L × 3
Å3 cuboid placed approximately 16 Å above the −CH3 SAM surface. Water molecules within the cuboid are shown using the space fill
representation (oxygensred and hydrogenswhite). (c,d) Number density profiles for the heavy atoms of the −OH and −CH3 SAMs,
respectively, as well as the water oxygen number density profiles for those two systems. For simplicity, we place the origin of the z-axis to coincide
with the first peak of the SAM heavy atom density profile. (c,d) also show the locations of the central plane of the cuboid in both systems, sampling
the region near the surface (shown with 9 and 11 vertical lines that are 0.5 Å apart, in −OH and −CH3 systems, respectively) as well as three
locations in the bulk at distances of 10, 15, and 20 Å from the surface (not shown in figure).

Figure 4. Normalized variance χ as a function of L for cuboidal observation volumes (L × L × 3 Å3) placed at different z locations from the −OH
(left) and −CH3 (right) SAM surfaces in TIP3P water. As described in the caption of Figure 3, there are 11 in (a) and 14 curves in (b) spanning
the region from the bulk to the interface.
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density fluctuations manifest themselves in the measurements
of χ in cuboidal volumes of increasing sizes near −CH3 and
−OH surfaces.
The normalized variance, χ, in cuboidal volumes with

dimensions of L × L × 3 Å3 next to SAM surfaces are shown in
Figure 4 as a function of the length L of the cuboid. We
maintained the width to be constant, equal to 3 Å, which is
approximately equal to the size of a water molecule. The
choice of such a thin cuboid as an observation volume allows
for calculations of water occupancy fluctuations near or farther
away from the SAM surface, thereby providing local and bulk
measurements of these quantities. The normalized variance
depends on the size and shape of the volume of interest even in
bulk water and therefore a direct comparison between the
numerical values of χ for a cuboid and a sphere is not useful.
Indeed, while the large radius limit for the spherical volume in
the bulk liquid corresponds to the bulk compressibility, in the
case of the cuboidal volume with a single fixed dimension (e.g.,
3 Å in the z direction), the effective compressibility in the
infinite volume limit can be distinct from the bulk
compressibility. Nevertheless, it is instructive to compare
how χ depends on the size of the observation volume in these
inhomogeneous environments.
For cuboids placed more than 20 Å or more away from

either −CH3 or −OH SAM surfaces (Figure 4), that is, when
the cuboid is effectively in bulk water, the variation of χ with L
is qualitatively similar to that observed for a sphere in bulk
water. Namely, χ(L =0) is one and subsequently decreases with
increasing L, asymptotically approaching an infinite volume
limit. As noted above, this asymptotic limit is not necessarily
kBTρwκT because the width of the cuboid is not infinity but
roughly the size of a water molecule. Rather, this effective or
local compressibility can be thought of as a susceptibility of the
water density within the observation volume to respond to
external forces applied to that volume.53

Probing the cuboidal volumes approaching the SAM surface,
however, both the variance and average of the water occupancy
distribution are expected to be influenced by the surface. For
cuboids placed 1, 1.5, and 2 Å from the origin (which is
defined by the peak of the −OH head group density peak),
although the qualitative behavior is χ versus L is similar to that
in the bulk, the normalized variance is enhanced relative to the
bulk. This does not indicate enhanced density fluctuations but
is a result of the complex interplay between reduction in the
density in the denominator and the bulk water-like correlations
between water molecules in the cuboid mediated by the
crystalline templating of the surface −OH group. In contrast,
next to the −CH3-terminated SAM, χ exhibits a significantly
different dependence on L. Namely, for cuboids placed in
contact with the hydrophobic surface (at distances of 1, 1.5, 2,
and 2.5 Å) fluctuations are greatly enhanced with no clear
convergence of χ with increasing L. The values of χ for a
cuboid of length 25 Å are many times greater than that in the
bulk solution. These observations suggest that an extended
hydrophobic surface has a more profound impact on density
fluctuations, causing greater consternation in the waters in
contact with the surface. These enhanced fluctuations are
attributable to long-range capillary fluctuations at surfaces that
help moderate large-scale hydrophobic interactions.54,55

The qualitative similarity of the dependence of water
occupation fluctuations on size in cuboidal and spherical
observation volumes in the bulk suggests that an interpolative
fluctuation formula may be constructed for non-spherical

volumes to bridge between the microscopic and macroscopic
limits, although the infinite volume-normalized variance may
depend on the details of the specific geometry. In this case, the
asymptotic value in the bulk may be determined following eq
7, utilizing the appropriate integration domain. As hydrophobic
interfaces are approached, however, it will be necessary to
account for the large-scale fluctuations that are quenched at
hydrophilic surfaces.

Interpolated Gaussian Fluctuation Theory Predic-
tions of the Cavity Solvation in Bulk Water. As laid out
above, IGFT has the potential to predict the hydration
properties of atomic-sized hard cavities in water. The inputs to
the theory are the density, compressibility, and effective
diameter of water (e.g., Figure 1), which enable the prediction
of χ over a broad range of temperatures and solute sizes
(Figure 2). Here, we assess the accuracy of IGFT at
reproducing the unique hydration thermodynamics of non-
polar species in water.
The cavity water occupation probabilities as a function of n

at 25 and 300 °C as determined from the simulation for
observation volumes with radii of 1.5, 2, 2.5, 3, and 3.5 Å are
compared with the predictions of IGFT in Figure 5. The
probabilities obtained from the simulations are effectively
parabolic on a log scale, that is, they are Gaussian. The
predictions of IGFT are in excellent quantitative agreement

Figure 5. Cavity occupation probability distributions, pn, in water, as
observed from the simulation and predicted by the IGFT and
information theory at 300 bar at 25 (a) and 300 °C (b). The figure
symbols for cavities with the solvent-excluded radii of 1.5, 2, 2.5, 3,
and 3.5 Å are defined in the legend in (a). Simulation error bars are
smaller than the line thicknesses.
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with simulation values, especially for the case of an empty
cavity (n = 0), although notable deviations are observed. At 25
°C, the probability of observing a single water molecule (n = 1)
in a spherical volume with R = 3 and 3.5 Å is lower than that
predicted by IGFT (Figure 5a). This behavior has been
previously noted and ascribed to the formation of a vapor−
liquid boundary layer about the solute for solvents near
coexistence.14 For larger cavities, this tendency is reflected in
the low-n fat tail observed in the solvent occupancy
distribution, where the probability distribution is highly non-
Gaussian especially for small values of n.10 This observation
foretells that while IGFT accurately captures the occupation
distribution for the cavities considered, it will break down as
their size increases. At 300 °C, on the other hand, IGFT
appears to over predict the occupation probabilities for n
values larger than ⟨n⟩ for the R = 3 and 3.5 Å. We ascribe this
deviation to the fact that IGFT slightly overpredicts the width
of the Gaussian distribution with increasing temperature
(Figure 2).
The size dependence of the hydration free energies of HS

solutes in water at 0, 150, and 300 °C as determined from the
molecular simulation and IGFT are reported in Figure 6 over

the range R = 1.4−3.6 Å. IGFT predicts the free energies of
these solutes over the reported size range at each temperature
remarkably well. The greatest deviations are found to occur
with increasing solute size, as might be expected because the
Gaussian approximation breaks down with increasing solute
size. Given that IGFT represents an approximate solution to
the information theory expression for the probability
distribution (eq 2) subject to simulation constraints on the
first and second moments of the cavity occupation distribution,
it is worthwhile to compare information theory’s predictions
for the HS solute chemical potentials against IGFT (Figure 6).

While not perfect, IGFT closely tracks the predictions of the
information theory and indeed appears to accurately reproduce
the simulation results. This result is all the more remarkable
given that the information theory contains information on the
pair correlations between water molecules, as embodied in
⟨n2⟩, while IGFT neglects this information beyond the
inclusion of the bulk compressibility.
Simulation results, IGFT, and information theory predic-

tions for the excess chemical potentials of HS solutes with radii
of 1.5−3.5 Å as a function of temperature are reported in
Figure 7. The free energies increase with increasing temper-

ature before passing through a maximum at elevated
temperatures above the normal boiling point of water. The
negative concavity of these curves is indicative of the large
positive heat capacity increment associated with non-polar
solute dissolution (i.e., because ∂

2μA
ex/∂T2|P = −cAex/T < 0, it

follows that cA
ex > 0, where cA

ex is the hydration heat capacity),
while the initial positive slope in the free energy near room
temperature indicates an unfavorable (i.e., negative) hydration
entropy, both of which are signatures of hydrophobic
hydration. Overall, the agreement between the simulation
and theoretical predictions is excellent, with a root-mean-
square difference of 0.2 kBT over all solute sizes and a
maximum difference of 0.4 kBT for the 3.5 Å solute. The largest
errors in IGFT’s predictions are observed for the R = 3.5 Å
solute, which is anticipated given that the Gaussian
approximation breaks down for solutes of increasing size.
Nevertheless, the theory accurately captures the temperature
dependence of the free energy. The agreement between IGFT
and information theory is nearly quantitative, although notable
differences are observed for the 3.5 Å solute. Nevertheless, for
the 3.5 Å solute, the information theory has a root-mean-
square difference with simulation of 0.4 kBT, comparable in

Figure 6. Hard-sphere solute excess chemical potential divided by kBT
as a function of the solute radius from 1.4 to 3.6 Å at 0, 150, and 300
°C at 300 bar. Simulation results, predictions of the information
theory, and IGFT predictions are reported in this figure. Symbols are
as defined in the figure legend. Simulation error bars are smaller than
the figure symbols.

Figure 7. Solute cavity excess chemical potentials as a function of
temperature at 300 bar for cavities of radii of 1.5, 2, 2.5, 3, and 3.5 Å
(sizes identified in figure). Simulation, IGFT, and information theory
results are reported. Symbols are as defined in the figure legend.
Simulation error bars are smaller than or comparable to the thickness
of the lines used.
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accuracy with the IGFT. Tracing the difference between the
IGFT and information theory predictions, we find that the
difference does not arise from the assumption that the
occupation fluctuations are continuous (eq 4) instead of
discrete (eq 2). Rather, the difference arises from the
interpolation formula used by the IGFT for χ (eq 13), as
opposed to using the occupation distribution moments
evaluated from the simulation, as used by the information
theory. The lower free energy predicted by IGFT with
increasing temperature compared to the information theory
can be directly traced to IGFT’s prediction of a greater
variance than observed from the simulation as the critical point
is approached (Figure 2).
The enthalpy, entropy, and heat capacity of hydrophobic

hydration can be determined by fitting the temperature-
dependent simulation results and theoretical predictions to the
expression
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where T0 is a reference temperature, taken here to be 298.15 K
(25 °C), and the ai’s are fitted constants. The form of this
expression assumes the hydration heat capacity has a parabolic
dependence on the temperature (i.e., cA

ex = −T∂2μAex/∂T2|P =
−a3 − 2a4T − 6a5T(T − T0)), which is reasonable for fitting
over a wide temperature range given that the hydration heat
capacity is expected to be a decreasing function of temperature
at lower temperatures and an increasing function of temper-
ature as the critical point is approached.56−59 The hydration
enthalpy (hA

ex = −T2
∂(μA

ex/T)/∂T|P) and entropy (sA
ex = −∂μAex/

∂T|P) similarly follow from appropriate temperature derivatives
of eq 15.
The hydration enthalpies determined from the simulation

and IGFT for HS solutes 1.5−3.5 Å in radius are reported in
Figure 8a. Overall, the hydration enthalpies are increasing
functions of temperature that are initially negative at the lowest
temperatures examined and become positive near the normal
freezing point of water. These observations are consistent with
a large positive hydration heat capacity increment (cA

ex = ∂hA
ex/

∂T|P). The temperature at which the enthalpy is zero reflects
the point the solubility of the HS solutes is a minimum as
determined by
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where ρA
w and ρA

ig are the concentration/number density of the
solute in the aqueous and ideal gas phases, respectively, and
Keq is the Ostwald solubility coefficient. The solubility
minimum of HS solutes near water’s freezing point falls well
below that observed for solutes such as methane, which
experimentally occurs at 80 °C.60 This difference reflects the
neglect of van der Waals interactions in the HS model, which
shifts the solubility minimum up from the freezing point to
more realistic temperatures.19,61 IGFT provides an excellent
prediction of the simulation enthalpies over the entire
temperature range considered. The largest differences are
observed for the 3.5 Å solute at elevated temperatures.
Notably, all the predicted enthalpies also appear to cross zero
at slightly different temperatures than from simulation,

although they all fall in a similar temperature range. These
differences are discussed in more detail below.
The product of the temperature and hydration entropies

determined from the simulation and IGFT for HS solutes 1.5−
3.5 Å in radius are reported in Figure 8b. As with the enthalpy,
the entropies are increasing functions of temperature as a result
of their positive hydration heat capacities (cA

ex = T∂sA
ex/∂T|P).

Below 100 °C, all of the hydration entropies are negative,
indicative of cavity solute hydration being entropically
unfavorable. With increasing temperature, however, the
entropies ultimately become positive. Over the temperature
range 100−200 °C, the entropies of all the solutes examined
appear to cross one another. The temperature at which the
entropies of any two solutes are equal is referred to as their
entropy convergence temperature.7,19,62−66 IGFT accurately
reproduces the hydration entropies of all the solutes, although
more significant, positive differences are observed for the 3.5 Å
solute at elevated temperatures. The positive differences in the

Figure 8. Hydration enthalpies (a), entropies (b), and heat capacities
(c) as a function of temperature at 300 bar for cavities of radii of 1.5,
2, 2.5, 3, and 3.5 Å (sizes identified in figure). Both simulation results
and theoretical descriptions are reported. The lines are defined in the
figure legend in (a).
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entropy appear to compensate for the positive differences in
the enthalpy for the 3.5 Å solute (Figure 8a), giving rise to a
reasonable prediction for the excess chemical potential of this
solute over the entire temperature range (Figure 7).
The hydration heat capacities determined from the

simulation and IGFT for HS solutes of 1.5−3.5 Å radius are
reported in Figure 8c. As anticipated above, these heat
capacities are large and positive. Moreover, they exhibit a non-
monotonic temperature dependence as observed experimen-
tally,56−59 passing through a minimum above the normal
boiling point of water. The agreement between the simulation
and IGFT is excellent for solutes of 3 Å radius and smaller. In
the case of the 3.5 Å solute, IGFT predicts heat capacities that
are greater than that observed from the simulation by about
35% on average. This difference is reflected in the more
significant temperature dependence of the enthalpy and
entropy observed for this solute (Figure 8a,b).
As noted above, the temperature at which the hydration

enthalpy is zero (hA
ex = 0) corresponds to the point at which the

Ostwald solubility, embodied in Keq, is a minimum. In Figure
9a, we compare the IGFT predictions of the solubility
minimum temperature as a function of the solute size against
simulation results for the HS solutes. While the simulation
results and IGFT predictions appear to converge to one
another as the solute size gets smaller, IGFT fails to predict the
non-monotonic dependence of the solubility minimum

temperature as a function of the solute size determined from
the simulation. Specifically, our simulations find the solubility
minimum appears to increase from temperatures close to
freezing for the smallest solute examined (R = 1.5 Å) to a
maximum near a solute ∼2 Å in radius. After this point, the
solubility minimum temperature falls with the increasing solute
size, ultimately dropping below the freezing point of water for
solute radii larger than ∼2.7 Å. Above the solubility minimum
temperature, the hydration enthalpy is positive and opposes
dissolution. Given that the enthalpy for creating an air/water
interface is similarly positive over all temperatures, it might not
be surprising to find that the solubility minimum temperature
drops below the freezing point of water with increasing solute
size, although it is surprising to find this signature for interface
formation occurring for such small solutes. This should be
coupled, however, with the observation that the hydration
entropy (Figure 8b) is also negative at 0 °C. The entropy of
forming a macroscopic interface is positive, on the other hand,
so that the surface tension is a decreasing function of
temperature.
A second behavior of interest is the observation that the

entropies of solutes of different sizes cross one another at a so-
called entropy convergence temperature. This is not a unique
temperature for HS solutes but is distinct for each potential
pair of solutes. The convergence temperature can be more
practically defined as the temperature at which the excess
hydration entropy of a given solute and one differentially larger
are equal19,63

s R T s R R T( , ) ( , )A
ex

conv A
ex

convδ= + (17)

This condition is satisfied when ∂sA
ex/∂R|P = 0. The entropy

convergence temperatures as a function of R determined from
the simulation and IGFT are reported in Figure 9b. In both
cases, the convergence temperatures are decreasing functions
of the solute size. For solutes 2−3 Å in radius, the simulation
and IGFT predictions appear to converge to one another,
dropping over this range from 150 to 100 °C. For solutes
larger than 3 Å, the simulations and theory appear to diverge
from one another, although the difference between the two is
no larger than 12 °C up to 3.5 Å. Below 2 Å, however, the
IGFT predictions rise outside the bounds of the temperatures
simulated, while the simulation results are well behaved.
Indeed, following the exact results that the chemical potential
is μA

ex = −kBTln(1 − 4πR3ρw/3) for R < dww/2, the convergence
temperature for a solute with R = 0 occurs when Tα = 1, where
α is the thermal expansion coefficient of the solvent. For
TIP4P/2005 at 300 bar, we find Tconv(R = 0) = 268 °C, which
is a reasonable extrapolation for the simulation results shown
in Figure 9b. We ascribe the unphysically large rise in the
convergence temperature predicted by IGFT as R decreases to
the theory’s incorrect treatment of the hydration free energy of
sub-point-like solutes. Nevertheless, real atomic solutes such as
helium through xenon have effective solvent-excluded radii in
the range of 2.7−3.5 Å, for which IGFT does an excellent job.

■ CONCLUSIONS
Here, we constructed an analytical approximation to describe
the variance in the occupancy of water within a spherical
observation volume within the liquid. This approximation is
based on the known functional form of the variance for
microscopically small volumes and the macroscopic limit
determined by the bulk solvent compressibility. We con-
structed a polynomial bridge that interpolates between these

Figure 9. Solute solubility minima and entropy convergence
temperatures as a function of the solute cavity radius, as determined
from the simulation and theory. Figures (a,b) report the solubility
minimum temperature (determined as hA

ex = 0) and the entropy
convergence temperature (determined as ∂sA

ex/∂R = 0), respectively.
The lines are defined in the figure legend in (a).
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two limits and describes occupation fluctuations in volumes of
intermediate size. When coupled with the information theory
conclusion that the probability of observing n waters within the
observation volume is effectively Gaussian, we were able to
derive an analytical expression for the free energy of hydration
of the hard-sphere atomic-sized solutes that relies only on the
density, compressibility, and effective diameter of liquid water.
The free energies derived from this interpolated Gaussian
fluctuation theory were shown to accurately reproduce the free
energies, enthalpies, entropies, and heat capacities determined
from the simulation of solutes up to 3.5 Å in radius,
comparable in size to xenon. Moreover, the interpolated
Gaussian fluctuation theory does a reasonable job of describing
solubility minima and entropy convergence temperatures,
although it does not capture all the nuances of the simulation
results for these higher-level effects. Nevertheless, the agree-
ment between the simulation and theoretical results is
remarkable given the simplicity of the information required
by the theory to predict a wide range of signatures of
hydrophobic hydration.
One take away from IGFT is that the distribution of

atomically sized cavities that could host a non-polar solute
does not necessitate information on the structure of liquid
water beyond its effective diameter. This may be rather
surprising given the frequently invoked idea that the water’s
hydrogen bonding network is fortified by the dissolution of
non-polar solutes, giving rise to unfavorable clathrate-like
structures.67 IGFT, on the other hand, does not speak to this
structural stabilization despite the fact that hints of these
clathrate structures have been noted from both the experi-
ment68−70 and simulation.71−74 We may ask then, what role
might these compelling structures play in the non-polar
hydration process? Given that non-polar solute hydration is
well described by a Gaussian theory, we may conclude any
potential structuring of water about atomic-scale non-polar
solutes is explored over the course of their ambient liquid-state
fluctuations.75 Given that these fall within the bounds of
Gaussian density fluctuations suggests that the work to form
them is not onerous, as it would be in the case of a much larger
cavity fluctuation in which the hydrating waters begin to
resemble a macroscopic interface. The fact that the knowledge
of water’s equation-of-state is sufficient to describe these
Gaussian fluctuations suggests that the spontaneous formation
of structures about voids in water is a constituent of the
equation-of-state itself and not a direct consequence of the
introduction of an actual solute into solution.
IGFT is not limited to spherical solutes, although the details

of the interpolating polynomial are geometry dependent.
Specifically, the limiting second derivative of χ being zero (eq
11b) is a consequence of the integration domain of the χ
integral being spherical (eq 8). Application of the theory to
alternate geometries would subsequently necessitate the
inclusion of the second-order term in eq 12, which could
have consequences on the application of the theory beyond
spherical geometries. In addition, while the theory does an
excellent job at describing the hydration of individual solutes,
we do not expect it to be able to describe hydrophobic
interactions between solute pairs because the packing of water
certainly plays a role in the oscillations in the potentials-of-
mean force between solutes. Notably, IGFT cannot predict
features such as the solvent-separated minimum observed in
the potential-of-mean force between methanes in water due to
the neglect of solvent correlations.6 The observation here that

the normalized density fluctuations within cuboidal volumes is
qualitatively similar to those found in spherical volumes
supports the potential for extending IGFT to diverse shapes,
although the variance of those fluctuations near distinct
surfaces highlights the challenges in extending the theory to
predict interactions.
Finally, it is of interest to examine the application of IGFT

to non-aqueous solvents or coarse-grained models of water and
other solvents.76 We expect the greatest utility will be for
effectively monoatomic solvents such as water (its hydrogens
are typically neglected when considering non-polar solute
hydration). Intramolecular bonding in polymers, for instance,
introduces significant deviations from Gaussian behavior,
although the lumping of groups can alleviate this difficulty.77
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