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Prostate cancer is currently associated with higher morbidity and mortality in men in the United States and Western Europe, so it is
important to identify genes that regulate prostate cancer. The high-dimension gene expression profile impedes the discovery of
biclusters which are of great significance to the identification of the basic cellular processes controlled by multiple genes and the
identification of large-scale unknown effects hidden in the data. We applied the biclustering method MCbiclust to explore large
biclusters in the TCGA cohort through a large number of iterations. Two biclusters were found with the highest silhouette
coefficient value. The expression patterns of one bicluster are highly similar to those found by the gene expression profile of the
known androgen-regulated genes. Further gene set enrichment revealed that mitochondrial function-related genes were
negatively correlated with AR regulation-related genes. Then, we performed differential analysis, AR binding site analysis, and
survival analysis on the core genes with high phenotypic contribution. Among the core genes, NDUFA10 showed a low
expression value in cancer patients across different expression profiles, while NDUFV2 showed a high expression value in
cancer patients. Survival analysis of NDUFA10 and NDUFV2 demonstrated that both genes were unfavorable prognostic markers.

1. Introduction

Prostate cancer has a very high morbidity and mortality rate
in men in the United States and Western Europe. Approxi-
mately 29% of patients who die of prostate cancer are 30-40
years old, and approximately 64% of them are 60-70 years
old [1]. Therefore, the identification of genes related to the
development and progression of prostate cancer is of great
significance for the treatment of prostate cancer. Androgen
and androgen receptor (AR) play an important role in the
growth of the prostate, the maintenance of efficacy, and the
occurrence and progression of prostate cancer [2].

The principle of the biclustering algorithm is to select a
subset of rows and columns from a data set and utilize spe-
cific measures to maximize the quality of a bicluster, which
was first applied to gene expression by Cheng and Church
[3]. A gene expression profile typically contains around
20,000 genes and dozens to hundreds of samples. Based on

the gene expression profile, the coexpression analysis method
was used to detect gene modules related to prostate cancer.
Genes that are highly similar to the known androgen regula-
tion genes are regarded as prostate cancer-related genes.
Therefore, a clustering method is needed to identify the coex-
pressed gene modules. At present, it has been found that
biclustering has been proven to be a NP-hard problem [4].
A huge number of existing biclustering algorithms involve
disparate quality measures and search heuristics to explore
gene modules [5]. Mean square residual score is used by var-
ious biclustering methods [3], such as MSB [6], FLOC [7],
and BiHEA [8]. To serve as a measure of quality, traditional
biclustering methods indeed detect biologically related
biclusters but only find small rather than large gene coexpres-
sion modules [9]. So far, there are many pattern-based biclus-
tering methods, such as PM [10], BicNET [11], and BicPAMS
[12]. Most existing algorithms of biclustering perform well in
finding various tiny biclusters involving relatively few genes


https://orcid.org/0000-0002-5773-6444
https://orcid.org/0000-0001-7234-8135
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/5512624

which are highly coexpressed among all the samples, but they
have limited ability to acquire a large number of synergistic
regulatory genes in a subset of samples.

Bentham et al. developed MCbiclust to identify large
biclusters, which provides a novel model-centered unsuper-
vised method to search for a huge number of significant cor-
egulatory genes in a small subset of samples [13]. They have
shown that the patterns discovered by this method have bio-
logical relevance and significance, which can be used to dis-
cover large networks controlled by master transcriptional
regulators that may determine basic cellular phenotypes [13].

In this paper, we applied MCbiclust to the RNA sequenc-
ing data of prostate cancer in a TCGA cohort. We success-
fully identified two gene modules by MCbiclust. We then
relate the first bicluster to pathological and clinical informa-
tion which contains biochemical recurrence, new tumor
event after initial treatment, number of lymph nodes, and
Gleason score. Next, we compared the two biclusters with
the biclusters detected using known androgen regulatory
genes. Fortunately, we found that the expression patterns of
one bicluster were highly similar to those acquired through
known ARGs. Moreover, we carried out gene enrichment
analysis for the two biclusters. Finally, we identified the core
genes with negative correlation in mitochondrial functions
by GSEA. Further, differential analysis, survival analysis,
and ChIP-seq analysis revealed that both NDUFV2 and
NDUFA10 were involved in AR regulation.

2. Materials and Methods

2.1. Gene Expression Profile. The data used in this paper was
RNA-seq data for prostate cancer from a TCGA cohort, with
a total of 20,424 genes and 437 samples. Those genes whose
expression value was smaller than one in at least one sample
were filtered out. Consequently, 6,755 genes were used for
further analysis. Then logl0 transformation and Z-score
standardization were performed to obtain the normalized
expression profile. The known androgen-regulated genes we
used were obtained from ARGDB [14]. We mapped these
genes to the gene expression profile from the TCGA cohort,
and eventually, we obtained a gene expression profile con-
taining 859 matched genes and 437 samples.

2.2. Seed Sample Selection. The first step in using MCbiclust,
as shown in Figure S1A, is to look for the subset of the
samples that has the highest correlation for the selected
genes, which is achieved by calculating the absolute average
of the correlation values. Mathematically, for the gene
expression profile measuring multiple gene probes across
multiple samples, let X represent the set of all gene probes
and Y represent the set of all samples. Then, define the
subsets of X and Y, suchas I c X and J c Y. Subsets I and |
form a bicluster, the strength of which is measured by the
correlation between paired probes in set I. The correlation
between probe i€l and probe kel in sample set | is
denotable as C{, . In addition, |I| stands for the number of
genes in set I. The intensity of biclustering is represented by
score a, as shown in
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o = %ZZabs(Ci{k), (1)
|I | i€l kel

where the abs function represents the absolute value, and the
« function represents the mean value of the absolute gene-
gene correlation calculated from the matrix of gene probe
set I and the sample set J. The high a value indicates that
the gene probe in I is becoming a strong regulator in
sample set J. The value of a is calculated using the absolute
value of CZ{  and these probes can be positively or negatively
correlated. This was achieved by first obtaining a sample seed
containing relatively small samples of very high a] values.
This step is implemented by initially selecting a random
subset of samples and repeating multiple times. During the
iterations, a subset of samples with higher a] value will
substitute the original samples. According to MCbiclust, good
results can be obtained from 1,000 iterations. We used 1,500
iterations to ensure a good result. Finally, the results can be
presented by calculating the correlation matrix and drawing
the heat map.

2.3. Identifying Gene Modules (Bicluster). Once the seed sam-
ples have been selected, as shown in Figure S1B, it is possible
to screen all the relevant modules through principal
component analysis (PCA). The first principal component
(PC1) is calculated as the component that explains the
largest variance in the data. Therefore, PC1 will be the
variable to summarize this correlation among the discovered
biclusters with strong correlation. Then, we performed
sample selection based on the last 10% of the sorted samples,
which are assumed not to belong to the bicluster. Once such
a threshold of PC1 for biclusters is found, it is important to
align the PC1 vector and the correlation values (CV) correctly.

The steps described above are based on a single cycle. At
the same time, in order to optimize the calculation effect, we
performed 1,500 iterations for each cycle to get a better seed.
In addition, we performed 1,000 cycles to obtain different
good seeds for subsequent classification.

2.4. Verifying the Correlation between Biclusters and the
Regulation of Prostate Cancer. Through the silhouette coeffi-
cient, the biclustering result is the best with two biclusters.
Next, we also performed biclustering based on the expression
profile of the known androgen regulatory genes, which
obtain a bicluster related with androgen regulation.

2.5. GO Enrichment Analysis of the Genes in the Biclusters.
We performed gene set enrichment for the genes in the
biclusters, utilizing the built-in function GOEnrichmentAna-
lysis in MCbiclust. This function also used the average CV as
an input parameter. GO terms were ranked according to the
p value adjusted by the Bonferroni method.

2.6. Assessing the Contribution of Genes to Phenotypes by
GSEA. Then, we used GSEA [15, 16] for gene set enrichment
analysis to assess the distribution trend of genes from a
predefined gene set in a gene list ordered by phenotype
relevance. Then, we determine their contribution to the
phenotype and define the genes with high phenotypic
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F1GURE 1: Two biclusters identified by multiple runs with the highest silhouette coefficient. (a) The red part represents low correlation, and the
white part represents high correlation. The horizontal and vertical coordinates of the heat map represent the 1st cycle and the 1000th cycle. (b)
Mean silhouette width under different numbers of biclusters. (c) The silhouette coefficient of two biclusters. The two red parts below show the

distribution of two clusters, and the average silhouette width is 0.89.

contribution as core genes. The input data consists of two
parts: one is the gene set obtained by biclustering, and the
other is the gene sorted according to CV.

2.7. Differential Analysis of Candidate Genes. We used the
M-W U test for differential analysis of candidate genes reg-
ulated by AR across multiple expression profiles. We set the
threshold of p value at 0.05, and extracted the genes with sig-
nificant differences in multiple expression profiles for fur-
ther analysis.

2.8. Analyzing AR Binding Sites in Candidate Genes by ChIP-
Seq. ChIP-seq was used to determine whether the candidate
genes contained the AR binding sites. ChIP-seq data
(GSE28951 from the GEO database) were aligned to the refer-
ence human genome (UCSC, hg19). Binding peaks were deter-
mined using Control-Based ChIP-seq Analysis Tools with
reference to a set of input reads as negative control [17]. Peaks
were defined with a stringent cutoff (FDR < 0.005).

3. Results

3.1. Two Biclusters Were Identified with the Highest Silhouette
Coefficient. MCbiclust was developed to explore biclusters
with a large number of genes. However, its computation effi-

ciency decreases when the gene number exceeds 1,000.
Therefore, we take the run on a subset of 1,000 genes as an
example. The CV of the seeds found by 1,500 iterations is
0.596 and that of the random seeds is 0.362. The difference
can be observed between Figure S2A and Figure S2B. In
Figure S2B, there are two distinct positive correlation
blocks (white) and two distinct negative correlation blocks
(red), which are very intuitive. Compared with Figure S2A,
the seeds detected by 1,500 iterations in Figure S2B have
better performance, and it can be seen that there are two
obvious positive correlation blocks along the diagonal. It is
clear that the seeds generated from multiple iterations are
much better. It is demonstrated in Figure S2C that after
using hierarchical clustering to optimize the seeds, the
color inside the block is the purest, which proves that by
using optimized seeds, we can get a gene cluster with high
correlation. Among them, the more obvious blocks the
heat maps have, the better are the seeds that are chosen
(Figure S2)).

To improve computing efficiency, we divided the expres-
sion profiles of 6,755 genes into seven subsets that contained
no more than 1,000 genes. We run on each subset in the
multiple-run simulation. 2,988 genes were randomly selected
by screening the absolute correlation value of more than 60%
expression value which was greater than or equal to 0.9.
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FiGuRre 2: Pathological and clinical information of the first bicluster. The abscissa represents the positive and negative values of PC1 of the
sample. Positive PC1 is defined as the upper fork, and negative PC1 is defined as the lower fork. (a) The number of patients with different
biochemical recurrence status. Blue represents no recurrence, and orange represents recurrence. (b) The number of patients with different
tumor activities after initial treatment. Blue represents inactive, and orange represents active. (c) The number of patients with different levels
of tumor sizes. Blue represents the tumor size of T3 level, and orange represents the T2 level. (d) The number of patients with different
lymph nodes. Blue represents no lymph nodes, and orange represents the N1 level. (e) The number of patients with a different Gleason score.
Blue represents a Gleason score no greater than seven, and orange represents a Gleason score greater than seven.

After a simulation with multiple runs of up to 1,000 times
with 1,500 iterations per time, it was obvious that this heat
map had a strong local correlation. In Figure 1(a), the red
part represents weakly positive correlation, and the white
part represents highly positive correlation. This heat map is
different from that in Figure S2 which was based on gene-
gene correlation. In Figure 1(a), the rows and columns were
changed to the number of cycles. We can see from the heat
map (Figure 1(a)) that the results of a multiple-run can be
mainly divided into two patterns, and we also observe the
small blocks inside the big blocks.

Then, we need to determine the number of biclusters and
identify the best number of biclusters. In Figure 1(b), the
maximum number of biclusters is set to 20, and as the num-
ber of bicluster increases, the silhouette coefficient gradually
decreases, which means that when we set the number of
biclusters to two, we can obtain the highest score. In
Figure 1(c), we can see that the silhouette coefficient value
of the two biclusters is 0.90 and 0.83, respectively. The aver-
age silhouette coefficient value is 0.89.

3.2. Associating the First Bicluster with Pathological and
Clinical Information. Two biclusters were detected. Then,
we associated the biclusters with pathological and clinical
information. In order to infer the biological significance of
the results, we analyzed the sampling unit distribution in
the bicluster discovered by principal component analysis
(PCA). Obviously, although we get two biclusters, the fork
graph of the second bicluster is highly deviated (Figure S3),
so only the fork graph (Figure S4) of the first bicluster is
discussed here. Pathological information including tumor
size, number of lymph nodes, Gleason score, tumor activity
after initial treatment, and recurrence were analyzed.

As shown in Figures S3 and S4, we can obtain a forked
pattern based on PC1 and CV. Then, we use a stack bar
diagram (Figure 2) to analyze it directly, in which samples
are divided into groups with high or low PC1 values. These
PC1 values are mainly defined by the average expression
level of gene sets.

Figure 2(a) shows that the number of samples without
recurrence was larger than that with recurrence, both on
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F1GURE 3: Comparing two biclusters with the bicluster found from known AR genes. In the scatter plot, the horizontal and vertical coordinates
are correlation coefficients. Blue represents ARGs, and red represents non-ARGs. R1 and R2 are two biclusters found by a random seed, and

P1 is the bicluster identified by known ARGs.

the upper and the lower forks. In the upper fork, samples
with no recurrence accounted for 84.5% (223/264), and in
the lower fork, the proportion was 91.5% (108/118). In
Figure 2(b), in the samples after initial treatment, the number
of samples with no tumor activity was higher than that with
tumor activity. In the upper fork, the proportion of nontumor
active samples was 82.2% (236/287), and in the lower fork, the
proportion was 82.5% (94/114). As shown in Figure 2(c), in
general, the number of samples with T3 grade tumors was
larger than that with T2 grade tumors. In the upper fork, the
proportion of T3 grade tumor samples was 59.5% (175/294),
and in the lower fork, the proportion of T3 grade tumor
samples was 59.5% (75/126). In Figure 2(d), the proportion
of lymphocyte NO in all samples was the largest. In the
upper fork, the number of NO samples accounted for
82.0% (219/267), and in the lower fork, the number of
NO samples accounted for 82.1% (87/106). We also associ-
ated genes in the first bicluster with the Gleason score. As
can be seen from Figure 2(e), samples with a Gleason
score < 7 account for the majority. 58.4% (180/308) of the
samples in the upper fork have aGleason score <7, while
61.2% (79/129) of the samples in the lower fork have
aGleason score < 7.

3.3. The Biclusters Are Related with Androgen Regulation. To
further validate the biclusters, known AR-regulated genes
(ARGsS) of prostate cancer were introduced. Gene expression
profiles of known ARGs were comprised of 859 genes and
437 samples. Similar to the processing of 2,988 genes, we per-
formed 10,000 iterations for the known ARGs. Then, the two
biclusters previously obtained from multiple iterations were
compared with the bicluster obtained from the ARGs.

As shown in Figure 3, the horizontal and vertical coordi-
nates are correlation coefficients, where R1 and R2 are two
biclusters obtained from multiple random runs, and P1 is
the bicluster calculated from the known ARGs. It can be seen
from Figure 3 that R1 is highly similar to P1, which proves
that we have successfully acquired the set of highly correlated
prostate cancer-related genes through randomly selecting
sample seed, and it is highly similar with the known regula-
tory genes.

3.4. Mitochondrial-Related Genes Negatively Correlate with
AR Regulation. To further analyze the function of genes in
the bicluster R1, we used a built-in function in MCbiclust
and set adjusted p value filtering (p < 0.05) to carry out gene
enrichment.
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F1GURE 4: Gene enrichment of the first bicluster. (a) The adj.p.values of seven of the most significant GO terms. (b) The average CV for genes in
each of the seven terms. (c) The adjusted p value of the negative regulation terms. (d) The average CV for genes in the negative regulation terms.

Through the analyses of Figures 2 and 3, we can see that
the first bicluster has a better performance; therefore, we
mainly discuss the gene enrichment results of the first
bicluster. For the genes in the first bicluster R1, there are
265 significant functions (adjusted p value < 0.05). We
selected the top seven BP terms with an adjusted p value
smaller than 1.0e-09 for discussion (Figure 4(a)). The seven
functions (Figure 4(b)) are regulating a metabolic process
with nuclease (positive correlation), regulating metabolic
processes with nuclease (positive correlation), control of the

macromolecular biosynthesis cells (positive correlation),
RNA metabolism regulation (positive correlation), mito-
chondrial respiratory chain complex assembly (negative cor-
relation), macromolecular biosynthesis regulation (positive
correlation), and negative control of the metabolic process
with nuclease (positive correlation), respectively.

In the seven functions (Figure 4(b)), we discovered that
only the mitochondrial function has a negative correlation.
We found that only 15 of the 172 BP functions are negative
correlation functions (Figure 4(c)), and among them, 53.3%
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Figure 5: Continued.
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FIGURE 5: Gene set enrichment analysis of the three terms with negative CV. We can see the enrichment scores of the three terms with
negative CV. The genes are ranked according to their CV in descending order.

(8/15) of the functions were related with mitochondrial reg-
ulation (Figure 4(d)).

3.5. GO Terms with High Negative Enrichment Signal
Strength Were Validated by GSEA. Since we noticed that
mitochondrial functions have a negative CV, we then focused
on all the GO terms which have a negative CV (Figures 4(c)
and 4(d)). We selected all of the eight GO terms related to
mitochondrial function from the negatively correlated GO
terms, and extracted the matched genes from each GO term
to form a predefined database of gene sets. As shown in
Figure 5 and Figure S5, all the eight gene sets exhibited
significant performance, among which the ES values of
Figures 5(a)-5(c) are less than or equal to -0.46 and the
FDRgvalues of terms are both less thanl.0e-08. In the
following, we use differential analysis and ChIP-seq to
further analyze the core genes in these three gene sets.

3.6. Six Candidate Genes Identified by Differential Analysis
and ChIP-Seq Data. Core genes in the three terms which
were mentioned in Figure 5 were screened to form a new
gene expression profile, and 29 differential genes with signif-
icant expression changes between normal and tumor samples
were screened by U test in the TCGA cohort (p <0.05). We
then focused on the transcription of differentially expressed
genes in the process of AR regulation by using ChIP-seq,
and finally screened out six genes that have AR binding sites
(SAMM50, NDUFA10, SDHAF4, OXA1L, NDUEFS5, and
NDUFV2). We then introduced six new prostate cancer-

related datasets from the GEO database and screened the
candidate genes for differential analysis in each dataset.

NDUFV2 had significant expression differences in the
four cohorts. OXA1L, NDUFA10, and SAMM50 were signif-
icantly different in the two cohorts. The expression values of
NDUFV2 in normal samples were lower than that in tumor
samples (Figures 6(a)-6(d)). OXAIL showed inconsistent
trends in the tumor and metastatic samples (Figures 6(e)
and 6(f)). The expression values of NDUFA10 in normal
samples were higher than that in tumor samples
(Figures 6(g) and 6(h)). NDUFS5 was significantly different
in ERP000550 (Figure 6(i)). SAMMS50 (Figures 6(j) and
6(k)) showed higher expression values in normal samples
than in cancer samples.

In the above analysis, we conclude that the expression
values of NDUFV2 were higher in prostate cancer and
NDUFAI10 and SAMMS50 expression values were lower in
tumor samples than in normal samples. The discovery may
lead to a new direction in targeted therapy for prostate cancer.

3.7. NDUFA10 and NDUFV2 Are Candidate Prognostic
Markers. The binding sites of NDUFV2, NDUFA10, and
SAMMS50 during AR regulation can be obtained by ChIP-
seq. We can see that NDUFV2 (Figure 7(a)) and NDUFA10
(Figure 7(b)) bind to AR at two hours. SAMMS50 weakly
binds to AR regulation at two hours and 18 hours
(Figure 7(c)).

Next, NDUFA10 and NDUFV2 were analyzed for their
prognostic potential using GEPIA2. We found that patients
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with the high NDUFA 10 expression group had a significantly
lower recurrence-free survival (RFS) rate (p=0.011) than
(Figure 8(a)) the low NDUFA10 expression group. In addi-

tion, the high NDUFV2 expression group has shorter overall
survival (OS) (p =0.025) than the low NDUFV2 expression
group (Figure 8(b)).
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4. Discussion

MCbiclust is a novel biclustering method for a large-scale
expression matrix which is superior for biclustering large
numbers of genes. In general, MCbiclust is an algorithm
involving iterations, and the more times it is run and iterated,
the better will be the obtained result. WGCNA [18] can be
applied to scenes with data of high dimensions. However,
WGCNA searches for global coexpression of genes across all
samples, while MCbiclust [13] is aimed at screening the coex-
pression of genes in subsets of samples. The goals of dimen-
sion reduction methods, such as PCA, ICA [19], or t-SNE
[20], are fundamentally different from that of MCbiclust.
Although MCbiclust is not particularly friendly to high-
dimensional genes, it can also perform a good biclustering
of sample subsets through a random grouping process

and threshold screening. It can pick out the sets of genes
that are highly correlated with prostate cancer from a ran-
dom seed selection which can reduce the error caused by
manually selected parameters.

The MCbiclust algorithm mainly consumes time to
explore the theoretically best sample seed, and there are no
other parameters that can be invoked for parallel computa-
tion in this process. To improve the efficiency of seed search-
ing, we divided the gene expression profile into seven subsets.
The gene expression profiles were obtained by extracting
subsets of locally highly expressed genes from seven random
subsets. Then, a seed sample with good performance was
obtained by running the algorithm 1,000 times with 1,500
iterations per time for the extracted gene expression profile.
Next, we calculated the value of the contour coeflicient
under different numbers of biclusters. The biclustering effect
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FIGURE 8: Survival analysis of NDUFA10 and NDUFV2. The abscissa is the time (month), and the ordinate is the RFS or OS. (a) The RFS of
NDUFALIQ in the TCGA cohort. (b) The OS of NDUFV2 in the TCGA cohort. Blue represents the patient group with a low expression value,

and red represents the group with a high expression value.

is at its best with two biclusters. We subsequently associated
the first bicluster with clinicopathological information which
contains a biochemical recurrence, a new tumor event after
initial treatment, a number of lymph nodes, and a Gleason
score. We found that, in a biochemical recurrence, the propor-
tion was higher in the upper fork than in the lower fork and
the proportion of samples with a Gleason score of less than
seven in the upper fork was lower than that in the lower fork.
Then, we introduced the known ARGs and detected the
expression pattern of one of the biclusters (R1) that we
acquired, which was highly similar to that of the bicluster we
obtained through the known ARGs. Therefore, we believe that
the genes contained in R1 are also genes related to the function
of ARGs, which can be candidates for future study. Through
gene enrichment, we found that most of the GO terms with
negative CV were related to mitochondrial function. After
that, we investigated core genes of GO terms with a significant
negative enrichment signal through GSEA. Six genes were dif-
ferentially expressed between normal and prostate cancer tis-
sues across at least two cohorts and simultaneously had AR
binding sites through analysis of public ChIP-seq data. Sur-
vival analysis demonstrated that NDUFA10 and NDUFV2
are potential prognostic markers with significantly different
RES or OS among patients with high and low expression
values. It should be noted that the data we used for bicluster
identification was from the public datasets of TCGA. How-
ever, no biological cohort was used to validate the biclusters,
which may cause some limitations on the results.

Studies have shown that the absence of NDUFV2 leads to
the destruction of multipolar-bipolar transition and polariza-

tion of neurons in vivo and in vitro [21]. NDUFA10 is a new
candidate gene for screening pathogenic mutations in
patients with complex I defects [22]. In addition, although
SAMMS50 did not show significant RFS or OS in survival
analysis, other studies have shown that SAMMS50 is
associated with nonalcoholic fatty liver disease and affects
drP1-dependent mitochondrial morphology [23, 24]. The
important effect of oxidative phosphorylation (OXPHOS)
on the progression of prostate cancer has been reported.
An activated OXPHOS has been observed in docetaxel-
resistant prostate cancer cells, and inhibition of OXPHOS
reduces nicotinamide adenine dinucleotide phosphate
(NADPH) coenzyme production in the oxidative phase of
the pentose phosphate pathway, suggesting the effectivity
of a combination of chemotherapy and OXPHOS inhibition
for the therapy of prostate cancer [25]. Besides, compared
with benign prostate and localized prostate cancer tissues,
the upregulated genes in castration-resistant prostate cancer
are significantly enriched in biological functions including
OXPHOS which may relate to the production of NADPH
coenzymes [26].

In summary, we applied MCbiclust to identify large gene
modules in a subset of samples. We successfully identified the
gene set associated with the function of ARGs and discovered
a difference in the proportion of biochemical recurrence and
the Gleason score among the upper fork and the lower fork.
Mitochondrial-related genes including NDUFA10 and
NDUFV2 participate in androgen regulation and may be
candidate prognostic markers, which could be therapeutic
targets of prostate cancer.
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Supplementary Materials

Supplementary 1. Figure S1: the process of biclustering analy-
sis using MCbiclust. Here, we can clearly see the steps required
when using the MCbiclust. Boxes of the same color represent
the steps of the same type of function or the results of the same
process. (A) The workflow of seed sample selection. (B) The
steps of identifying gene modules and further analysis.

Supplementary 2. Figure S2: heat maps drawn with different
correlation values which are calculated to get better seeds.
The abscissa and ordinate are genes, and the color of each
grid represents the correlation value. White represents a
strong correlation, and red represents a low correlation. Heat
map of the correlation value calculated by (A) a random seed,
(B) multiple iterations, and (C) hierarchical clustering of
multiple iterations.

Supplementary 3. Figure S3: the fork graph of the second
bicluster. The vertical coordinate in the graph represents
the value of the principal component, and the horizontal
coordinate represents the ranking of the samples. (A) The
distribution of patients with different recurrence status. The
red dots represent no recurrence, and the blue dots represent
recurrence. (B) The distribution of patients with different
tumor activities after initial treatment. Red dots represent
inactive, and blue dots represent active. (C) The distribution
of patients with different tumor sizes of lymph nodes. The
red dots represent the tumor size of T2 level, and the blue
dots represent the tumor size of T3 level. (D) The distribution
of patients with different tumor numbers of lymph nodes.
The red dots represent NO lymph nodes, and the blue repre-
sents N1 lymph nodes. (E) The distribution of patients with a
different Gleason score. Red dots represent a Gleason score
that is less than or equal to 7, and the cyan blue dots represent
a Gleason score that is greater than 7.

Supplementary 4. Figure S4: the fork graph of the first biclus-
ter. The vertical coordinate in the graph represents the value
of the principal component, and the horizontal coordinate
represents the ranking of the samples. (A) The distribution
of patients with different recurrence status. The red dots rep-

BioMed Research International

resent no recurrence, and the blue dots represent recurrence.
(B) The distribution of patients with different tumor activi-
ties after initial treatment. Red dots represent inactive, and
blue dots represent active. (C) The distribution of patients
with different tumor sizes of lymph nodes. The red dots rep-
resent the tumor size of T2 level, and the blue dots represent
the tumor size of T3 level. (D) The distribution of patients
with different tumor numbers of lymph nodes. The red dots
represent NO lymph nodes, and the blue represents N1 lymph
nodes. (E) The distribution of patients with a different Glea-
son score. Red dots represent a Gleason score that is less than
or equal to 7, and the cyan blue dots represent a Gleason
score that is greater than 7.

Supplementary 5. Figure S5: gene set enrichment analysis of
the five terms with negative CV. The genes are ranked
according to their CV in descending order. The enrichment
scores of the five terms with negative CV are shown for (A)
mitochondrial ATP synthesis coupled electron transport,
(B) mitochondrial translation, (C) mitochondrial transla-
tional elongation, (D) mitochondrial translational termina-
tion, and (E) mitochondrion organization.
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