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Abstract: In this work, we perform a numerical study of magnetoresistance in a one-dimensional
quantum heterostructure, where the change in electrical resistance is measured between parallel and
antiparallel configurations of magnetic layers. This layered structure also incorporates a non-magnetic
spacer, subjected to quasi-periodic potentials, which is centrally clamped between two ferromagnetic
layers. The efficiency of the magnetoresistance is further tuned by injecting unpolarized light on top
of the two sided magnetic layers. Modulating the characteristic properties of different layers, the
value of magnetoresistance can be enhanced significantly. The site energies of the spacer is modified
through the well-known Aubry–André and Harper (AAH) potential, and the hopping parameter
of magnetic layers is renormalized due to light irradiation. We describe the Hamiltonian of the
layered structure within a tight-binding (TB) framework and investigate the transport properties
through this nanojunction following Green’s function formalism. The Floquet–Bloch (FB) anstaz
within the minimal coupling scheme is introduced to incorporate the effect of light irradiation in TB
Hamiltonian. Several interesting features of magnetotransport properties are represented considering
the interplay between cosine modulated site energies of the central region and the hopping integral
of the magnetic regions that are subjected to light irradiation. Finally, the effect of temperature
on magnetoresistance is also investigated to make the model more realistic and suitable for device
designing. Our analysis is purely a numerical one, and it leads to some fundamental prescriptions of
obtaining enhanced magnetoresistance in multilayered systems.

Keywords: magnetoresistance; light irradiation; quasi-periodic spacer; tight binding framework;
Floquet–Bloch ansatz; Green’s function formalism; quantum heterostructure

1. Introduction

A magnetoresistance (MR) effect is defined as the change in electrical resistance
of some conducting materials (preferably ferromagnets [1,2]) in response to an applied
magnetic field [1,3–10]. There exist several kinds of magnetoresistance phenomena due
to the variation in the structural and geometrical effects of different materials [11–13], the
orientation of the applied magnetic field to them [12–15], and the presence of quantum
mechanical interactions such as electron’s spin-orbit coupling [4,16–22], to name a few.
Depending on these circumstances, magnetoresistance in multicomponent or multilayered
systems can be categorized into four forms such as, giant magnetoresistance (GMR) [23–30],
tunnel magnetoresistance (TMR) [31–34], colossal magnetoresistance (CMR) [35–37], and
extraordinary magnetoresistance (EMR) [38–40].

Micromachines 2021, 12, 1021. https://doi.org/10.3390/mi12091021 https://www.mdpi.com/journal/micromachines

https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://orcid.org/0000-0002-6990-5516
https://orcid.org/0000-0003-3979-8606
https://orcid.org/0000-0002-2915-309X
https://orcid.org/0000-0001-7004-2984
https://orcid.org/0000-0002-6487-8096
https://doi.org/10.3390/mi12091021
https://doi.org/10.3390/mi12091021
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/mi12091021
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/article/10.3390/mi12091021?type=check_update&version=1


Micromachines 2021, 12, 1021 2 of 15

In the present work, we are interested in the giant magnetoresistance (GMR)
effect [41–45,45–51] , which was undoubtedly one of the groundbreaking works in the
late 80s. The Nobel winning work [6,9,23,26,29] in the year 2007 by Albert Fert and Peter
Grünberg has enriched the area of spintronics along with immense technological progress
such as magnetic recording, storage and sensor industries, and many more [52–55].

The phenomenon of magnetoresistance had set its journey through the weird property
of nickel and iron in the presence of an external magnetic field, and Thomson measured
the change of resistance for two specific directions of magnetization in the year 1856 [14].
Actually, spin-orbit coupling of electron is responsible for this anomalous observation and
it is known as anisotropic magnetoresistance (AMR) [14,15]. After that, another notable
work in this context was performed by Sir Nevill Francis Mott in early 1936 and he gave
a qualitative explanation for the relatively high resistance in transition metals using the
electron theory of metals [56]. High resistance occurs due to the greater probability of
electron scattering between conducting ‘s’ states and unoccupied ‘d’ states. On the other
hand, transition materials with unoccupied ‘d’ states show ferromagnetic or paramagnetic
behavior. Thus, it was understood that there is a connection between magnetism and
electrical conductivity. Gerlach and his co-workers extensively studied the resistance of
nickel with respect to temperature and external magnetic field, and the result showed that
in the neighborhood of the Curie temperature, resistance becomes less in the presence of a
~B field.

To explain that fact, Mott considered the spin of the electrons in the conduction
states due to the presence of an external magnetic field. In lower temperature, as soon
as spontaneous magnetization reaches its highest value, the spin direction of unoccupied
‘d’ states becomes antiparallel to the applied ~B field, resulting only in one kind of spin
transition between the ‘s’ and ‘d’ states. However, above the Curie temperature, holes of
the ‘d’ state also split into two spin channels, and therefore, both kinds of spin transitions
are possible. Consequently, it increases the resistance of transition elements possessing
partially filled ‘d’ states. Following the band structure of ferromagnetic metals, it reveals
that the density of states as well as the scattering rates for up and down spin electrons
are not equal at the Fermi energy. Thus, resistivities for different spin channels become
separated and give rise to the phenomenon of magnetoresistance, depending on the
magnetization direction.

At the end of the 1970s, the fabrication of a few nanometer thick multilayers became
possible using several new techniques of epitaxial growth [5,34,57,58]. Experimentally, it
was found that the presence of a non-magnetic (NM) spacer having a few atomic layer
thick (less than a mean free path of conduction electrons to maintain the GMR effect),
sandwiched between ferromagnetic multilayers under applied magnetic field, caused a sig-
nificant reduction in electrical resistance [23,29,57–59]. The work Grünberg et al. [6,29] was
associated with a trilayer structure of Fe/Cr/Fe, whereas the discovery of Fert et al. [9,26]
belonged to several layers (60) of Fe/Cr. The value of GMR decreased by almost 50% in the
latter case as it was performed at the temperature 4.2 K, whereas the other one achieved
10% at room temperature, with three Fe layers separated by two Cr layers.

In our work, we consider a one-dimensional trilayer structure (see Figure 1), where a
NM spacer with quasi-periodic site energies is clamped between two ferromagnetic layers.
The magnetization of one magnetic layer is fixed along +Z direction, while for the other
ferromagnetic layer, the magnetization direction is free, and depending on its magnetic
moment orientation [8,9,23,48], resistance changes accordingly. It is straightforward to
understand that, if the magnetization of the free layer is kept parallel to the fixed one,
resistance becomes very low due to low scattering rates, and an antiparallel orientation
suggests a high scattering rate, yielding a large resistance. Now, this spin-dependent
transport [32,55,60,61] behavior can be tuned externally by modifying the characteristics
of NM spacer and ferromagnetic layers. The site energies of the NM spacer is altered by
cosine modulation following the AAH form [62–73], whereas the hopping parameter in
ferromagnetic chains is rearranged by Floquet–Bloch anstaz [60,74–79] within a minimal
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coupling scheme due to light irradiation on them. The Hamiltonian of a layered nanojunc-
tion is constructed with the TB approximation [31,67] including only the contribution from
the nearest-neighbor hopping (NNH) integral. Interplay between the fractal-like gapped
transmission spectrum [68,69] because of the AAH modulation and the renormalized hop-
ping due to light irradiation [74,75] may lead to several interesting features in the GMR
effect. Our present analysis would be beneficial in developing a deeper insight into the
role of correlated disorder and light irradiation in the context of a magnetoresistance study.

Figure 1. (Color Online). Schematic diagram of the magnetoresistance setup in a trilayer structure, which is connected to a
non-magnetic source (S) and drain (D) electrodes through the couplings τS and τD, respectively. The bridging conductor is
made up of a non-magnetic spacer (N2 sites), subjected to AAH potential, and two ferromagnetic layers (N1 sites in each
layer) that are irradiated with light.

The rest of our work is arranged as follows. In Section 2, we present the GMR setup
and the theoretical prescription for the calculations. All of the results are presented and
thoroughly investigated in Section 3, and finally, we conclude our important findings in
Section 4.

2. Magnetoresistance Setup and Theoretical Framework
2.1. Quantum Heterostructure and the TB Hamiltonian

The schematic diagram of a trilayer structure between a one-dimensional semi-infinite
non-magnetic source and a drain is depicted in Figure 1, where the left ferromagnetic
layer is assumed to be a fixed layer with a magnetic moment in each site oriented along
the +Z direction, the middle layer is the non-magnetic spacer, and the last one is another
ferromagnetic layer in which the magnetization direction can be altered selectively. The
properties of each such layer can be modified and the combined effect is discussed in our
work. Now, for the magnetoresistance measurement, the magnetic moments of electrons’
spin in the free layer are chosen to be parallel and antiparallel with respect to the fixed
layer [6,9,12]. The whole arrangement of the nanojunction is represented by a tight-binding
framework considering the NNH integrals.

The Hamiltonian of the magnetic–non-magnetic–magnetic (M–NM–M) quantum
heterostructure is divided into different sub-Hamiltonians, associated with different parts
of the junction, and it is can be written as [31,48]

H = HS + Hcon + HD + Htun (1)

where HS and HD denote the Hamiltonians for the source and drain electrodes, respectively,
and Hcon represents the bridging conductor part and the last one, i.e., Htun includes the
tunneling junctions between electrodes and magnetic layers.

We start with the conducting channel Hamiltonian Hcon that can be further divided
into three sections corresponding to ferromagnetic layers, a NM spacer, and coupling
between the junctions. Ferromagnetic layers, each having N1 number of lattice sites, on
both sides of the spacer subjected to light irradiation are expressed in the TB form as

HM =
N1

∑
n=1

c†
n(εn −~hn.~σ)cn +

N1−1

∑
n=1

(c†
n t̃cn+1 + h.c.). (2)
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Each term of this equation is explicitly described here. c†
n(cn) is the fermionic creation

(annihilation) operator for the nth site and their components obey anticommutation relation.
The first term of Equation (2) denotes the on-site energy of magnetic chains in the presence
of a spin-flip scattering mechanism [18,60,61] between the magnetic moments of the nth
site and the incoming electron, and consequently, the potential profiles of the electrons
belonging to two spin states become separated. εn is the potential energy at the nth
site without any kind of interaction term. ~hn is the spin-flip scattering vector, and its
orientation is described in the usual spherical polar co-ordinate system with polar angle
θn and azimuthal angle ϕn. ~σ is the conventional Pauli spin vector. The second term
represents the renormalized nearest-neighbor hopping integral t̃ due to the perturbation of
light irradiation [74,75]. Here, all of the terms are expressed in the following forms:

cn =

(
cn↑
cn↓

)
; c†

n =
(

c†
n↑ c†

n↓

)
; εn =

(
εn↑ 0
0 εn↓

)
;

~hn.~σ =

(
hn cos θn hn sin θne−iϕn

hn sin θneiϕn −hn cos θn

)
; t̃ =

(
t̃ 0
0 t̃

)
.

The renormalized hopping strength t̃ is obtained from the following integration
procedure [74,75]:

t̃ =
t
T

∫ T
0

ej(p−q)Ωτe~A.~adτ

= tJ(p−q)(Λ) (3)

where t denotes the hopping strength in the absence of light irradiation. J(p−q) is the
(p− q)th order Bessel function of the first kind, and its argument Λ simplifies to Axa (a
being the lattice spacing) as per our consideration of one-dimensional layered geometry. Ax
is the amplitude of vector potential ~A(τ) that enters this calculation through the Floquet–
Bloch (FB) ansatz within the minimal coupling scheme to incorporate the effect of light
irradiation into the TB Hamiltonian. The general form of ~A(τ) reads as [74,75]

~A(τ) =
{

Ax sin(Ωτ), Ay sin(Ωτ + φ)
}

,

where Ax and Ay are the amplitudes, and φ is the phase. Tuning these parameters, the
light is made to be linearly, circularly, or elliptically polarized. For our one-dimensional
nanojunction, Ay and φ do not contribute, and the problem becomes quite simpler. Ω
is the frequency of the driving electromagnetic field, and the time period T = 2π/Ω.
~A(τ) obeys the relation ~A(T + τ) = ~A(τ). For a detailed description of FB theory, see
References [19,74–79].

The TB Hamiltonian of the NM spacer, possessing N2 lattice sites, subjected to AAH
site potentials obtains the form [62,63,65]

HNM =
N2

∑
n=1

c†
n(w cos(2πnb + φν))cn +

N2−1

∑
n=1

(c†
ntcn+1 + h.c.) (4)

where w is the strength of the cosine modulation, φν is the AAH phase factor, and b is
an irrational number. In our calculation, we chose b = (1 +

√
5)/2 (golden number) to

make the potential incommensurate. This typical value of b is mostly used in the literature,
though any other irrational number can also be taken into account and the physics remains
unchanged. Since the spacer is an NM one, the on-site energy becomes spin independent,
and thus, εn↑ = εn↓.
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For the side-attached 1D electrodes, those are assumed to be semi-infinite and non-
magnetic in nature, the Hamiltonians read as

HS = HD = ∑
n

bn
†ε0bn + ∑

n
(b†

nt0bn+1 + h.c.) (5)

The site index n in the source electrode runs from −1 to −∞, while for the drain, it
varies from 1 to ∞. ε0 and t0 are the on-site energy and NNH strength, respectively. bn is
the anticommutating fermionic operator similar to cn, as used in the conductor.

Finally, the tunneling Hamiltonian Htun that connects source (S) and drain (D) elec-
trodes to ferromagnetic chains can be written as

Htun = b−1
†τsc1 + b†

1τdcN1 + h.c. (6)

where τs and τd represent the coupling strengths between the source end to the first lattice
site of the fixed magnetic layer and the first lattice point of the drain electrode to the end
site of the free magnetic layer, respectively (see Figure 1).

2.2. Theoretical Framework

The determination of magnetoresistance requires the conductances in parallel (P) and
antiparallel (AP) configurations of magnetic moments to be between the fixed and free
magnetic layers. The conductance can be evaluated from the transmission probabilities of
up and down spin electrons following the Landauer definition, whereas spin-dependent
transmission probabilities are computed with the help of the well known non-equilibrium
Green’s function (NEGF) technique [80]. In the NEGF approach, the effects of the side
attached electrodes are incorporated through finite dimensional self-energy matrices, and
the effective Green’s functions are [80–84]

Gr = (Ga)† = (EI − Hcon − ΣS − ΣD)
−1 (7)

where E is the energy of an incident electron and I represents the identity matrix. All
of the matrices in Equation (7) are of the dimension 2(2N1 + N2)× 2(2N1 + N2). ΣS and
ΣD are self-energy matrices of source and drain electrodes, respectively. Using the above
retarded and advanced Green’s functions, we determine the spin-dependent transmission
co-efficients Tσσ′ from the Fisher–Lee relation [85]

Tσσ′ = Tr
[
Γσ

SGrΓσ′
D Ga

]
(8)

where the coupling matrices Γσ
S and Γσ′

D are

Γσ(σ′)
S(D)

= i
[

Σσ(σ′)
S(D)
−
(

Σσ(σ′)
S(D)

)†
]

.

Computing the individual spin-dependent transmission components, we obtain the
net up and down spin transmission probabilities as follows: T↑ = T↑↑ + T↓↑ and T↓ =
T↓↓ + T↑↓.

Using the Landauer integral, conductance Gσσ′ is written as [80]

Gσσ′ = (e2/h)Lσσ′
0 (9)

where
Lσσ′

0 = −
∫

Tσσ′(E)
∂ f
∂E

dE.

e, h are electronic charge and Planck’s constant, respectively, and f is the Fermi–Dirac distri-
bution function. At absolute zero temperature, Equation (9) boils down to Gσσ′ = (e2/h)Tσσ′ .
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Finally, we define GMR through the relation [6,9]

GMR =

∣∣∣∣GP − GAP
GP + GAP

∣∣∣∣ (10)

where GP and GAP include ‘net’ electron transfer (both up and down) for the parallel and
anti-parallel cases, respectively. The definition of GMR suggests that its value can vary
from zero to one hundred percent, and our ultimate goal is to achieve the highest value
of GMR.

3. Numerical Results and Discussion

In what follows, we present our numerical results, which include the spin-dependent
transmission probabilities through the nanojunction, energy band diagrams of the het-
erostructure sandwiched between the contact electrodes, and GMR characteristics under
different input conditions.

Before presenting the results, let us briefly mention the physical parameter values that
are kept constant throughout the numerical calculations. For the electrodes, we set ε0 = 0
and t0 = 2 eV. The site energies in the ferromagnetic layers are taken as εn↑ = εn↓ = 0
and the NNH strength t = 1 eV. For the NM spacer, the cosine modulation strength
w is fixed at 1 eV. The strengths of the magnetic moments are considered uniform (viz,
hn = h), and we set h = 1 eV. For the fixed magnetic layer, the moments are orientated
along the +Z direction, i.e, θn = 0. In contrast, for the free layer, θn becomes zero or π
depending on whether the moments are oriented along the +Z (parallel configuration) or
−Z (anti-parallel configuration) directions. The coupling strengths between different layers
of the heterostructure as well as the coupling between electrodes and magnetic layers are
fixed at 1 eV. The lattice sites are N1 = 10 and N2 = 20. The energies are measured in
units of electron-volt (eV), and unless stated otherwise, we fix the system temperature to
absolute zero.

In studying the effect of light irradiation, we restrict ourselves in the high-frequency
limit, defined as [74,75] h̄Ω >> t. There are two fundamental reasons for choosing this
limiting condition. First, the Floquet bands are almost decoupled to each other, and thus,
only the lowest order band contributes, i.e., p = q = 0 [19,60,61]. Second, it is well-
known that a D-dimensional driven quantum system is equivalent to a D + 1-dimensional
undriven quantum system. Thus, we need to consider several identical copies of the parent
lattice sites, which unnecessarily increase the system size, and eventually the system size
will be much larger than the spin diffusion length (SDL). Under this situation, the spin-
dependent transport phenomena and the GMR effect are no longer visible. The average
spin diffusion length of the usable ferromagnetic materials is of the order of 50 nm [59],
which suggests that we can safely consider almost 500 lattice sites (assuming the lattice
spacing ∼1).

In order to satisfy the condition of a high-frequency limit of the incident light, Ω should
be of the order of 1015 Hz or more. It corresponds to the regime of near-ultraviolet/extreme
ultraviolet. The light intensity is ∼105 W/m2, and it is far below the upper limit of
experimentally realizable intensities [86,87]. The chosen intensity does not damage the
physical system. For this light irradiation, the electric field E becomes ∼104 V/m, while
the magnetic field B is ∼10−5 T. Since the associated magnetic field B is too weak, its effect
is neglected.

3.1. Spin-Dependent Transmission Probabilities and GMR

We start presenting our results with Figure 2, where the net up and down spin
transmission probabilities along with the GMR are shown under three different input
conditions of the light parameter. The effects of cosine modulation, light irradiation, and
the interplay between them bring several interesting new features that we discuss here
one by one. For the parallel configuration, the transmission peaks are merged into two
broad energy regions followed by a zero transmission gap. On the other hand, for the
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anti-parallel configuration, only one energy window, across zero energy, is available where
finite transmission occurs. For each such transmission window, several peaks and dips
are obtained. All of these features are associated with the fractal like energy bands and
gaps of the AAH spacer. Even though the AAH spacer provides three distinct energy bands
followed by two gaps, in the transmission spectrum, we obtain less transmission zones
where finite transmission takes place. The appearance of two transmission windows for
the parallel case and a single transmission window for the anti-parallel case solely depends
on the common energy channel of the three-layered heterostructure (viz the M–NM–M
spacer). Once the arrangement of magnetization becomes altered from the parallel to the
anti-parallel configuration, the common energy window becomes modified, and following
the common energy region, we obtain the net transfer of electrons across the junction. A
more clear picture of this mechanism will be evident from our forthcoming analysis of the
energy band diagram.
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Figure 2. (a–i) (Color Online). Transmission probabilities Tσ as a function of energy (first and second columns, T↑ → orange,
T↓ → black) and GMR as a function of Fermi energy (last column) under three typical values of light parameter Ax. AAH
phase φν = 0.

The shifting of the up and down spin transmission peaks in each Tσ-E spectrum is
due to the spin-dependent scattering of electrons with local magnetic moments in the
ferromagnetic layers. In the presence of this scattering, the effective site energies of up and
down spin electrons are different from each other, resulting in a finite mismatch between
the energy eigenvalues and, thus, the transmission spectra. This phenomenon of channel
mismatch in the presence of spin-dependent scattering is well known in the literature
and has been studied in different contexts considering simple and complex magnetic
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systems. However, for a heterostructure, where one part is subjected to quasi-periodic
modulation, several additional signature are found, and here, we provide such an example
by investigating the magnetoresistance phenomenon.

More appealing features are obtained when we include the effect of light irradiation.
In presence of light, the NNH strength becomes renormalized following the relation given
in Equation (3), and therefore, the energy band spectrum is modified, which directly affects
the transmission probabilities. Comparing the transmission spectra shown in Figure 2,
it is clearly seen that the band narrowing occurs with enhancing the amplitude Ax, and
for the AP configuration, it becomes more prominent. We can reach a situation where
finite transmission is obtained for the parallel configuration, whereas an almost vanishing
transmission occurs for the anti-parallel configuration. Under this condition, a high degree
of GMR is naturally expected. The entire mechanism of obtaining finite transmission across
the heterostructure depends on the availability of the overlap energy channels, and that can
be fully controlled by the modulated site energies and the renormalized hopping integrals.

From the spin-dependent transmission probabilities in parallel and anti-parallel con-
figurations (first and second columns of Figure 2), the nature of GMR spectra (third column
of Figure 2) can be easily understood. In the absence of irradiation, a large degree of magne-
toresistance is of course obtained, but mostly towards the energy band edges, which is not
quite favorable from the experimental point of view since placing the Fermi energy near
the band edge is quite difficult. However, even for this case, moderate GMR is obtained
near the band center, providing peaks and dips, and these aspects are solely due to the
existence of the AAH spacer. With increasing strength of Ax, we can achieve a higher GMR
near the band center and finally reach a situation where almost a hundred percent GMR
is available. Achieving a high degree of GMR (of course, one hundred percent is the best
option) near the band center is the primary goal of our analysis, and we hope that we
approach that limit.

3.2. Energy Band Diagram of the Quantum Heterostructure

To understand the precise role of the AAH spacer along with the effect of light
irradiation, it is indeed required to analyze the energy band spectra of the individual layers,
since the net electron transfer through a layered structure depends on the energy channels
of all of these layers.

In Figure 3, we display the energy band diagrams of three different layers both for
the parallel and anti-parallel configurations. In each spectrum, two different sets of three
colored energy bands are shown. The left one corresponds to the energy levels for the
up spin electrons, while the right one is associated with the down spin electrons. For
better viewing of the distinct energy levels, we draw a single horizontal line in each of the
eigenvalues.

The positions of up (red) and down (blue) spin bands in the ferromagnetic layers are
associated with the effective site energies in the presence of the spin-dependent scattering.
However, as the spacer is non-magnetic, the green window becomes unaltered for both
the parallel and anti-parallel arrangements of the magnetic moments in the two magnetic
layers. The transfer of electron through the junction occurs only through the common
energy channels of all three layers. Therefore, adjusting the available energy channels either
of the AAH spacer or the magnetic layers, or of both, we can regulate the electron transfer
selectively. This is the key advantage of considering a layer structure over a single layer.

In the absence of light, we find that, for the parallel configuration, both electrons
can pass through the center of the band while only up or down can propagate across
this window (Figure 3a). Once the moments in the free layer are oriented along the −Z
direction, only the central energy region allows electrons to pass through the junction
(Figure 3b). As a result of this, we obtain a large GMR (almost a hundred percent) across
the two edges of the energy band. The finite but reasonably smaller value of GMR near the
band center is obtained due to the conductance mismatch between the two configurations.
The lowering of a mismatch yields a reduction in the GMR value, as expected. Suitably
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irradiating the ferromagnetic layers, we can find a situation where almost perfect blocking
of an electron takes place in the anti-parallel configuration, and thus, even very close to the
energy band center, we obtain a large GMR.
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Figure 3. (a–d) (Color Online). Energy levels of three different layers of the heterostructure, where the red, green, and
blue energy bands are associated with the free layer, the NM spacer, and the fixed layer, respectively. Two different cases,
irradiation-free and with irradiation, are shown. In each of the spectra, the left three colored bands are for the up spin
electrons, while the other three are for the down spin electrons. On the right most side, the uniformly filled colored regions
are used to illustrate through which energy zone an electron can transfer or not. The AAH phase φν is fixed to zero.

3.3. Tuning of GMR

In this subsection, we explore the possible tuning mechanisms of GMR by regulating
the physical parameters in a wide range for the sake of completeness of our analysis.

From the above discussion, it is already established that the spacer has an important
role in magnetoresistance. Thus, if we can tune the energy band diagram of it, then
definitely, we can have some variations in GMR. To substantiate this issue, in Figure 4,
we show the dependence of GMR on the AAH phase factor φν for the two typical Fermi
energies. The results are computed at two distinct values of the light parameter Ax. A
wide variation with φν is obtained. This is solely due to the modification of the energy
levels of the spacer. Another important point is that the selection of Fermi energy is also
crucial to obtain a large GMR for a particular set of other physical parameters. Thus, to
obtain a most favorable response, a thorough scan over the wide range of the parameters is
undoubtedly required.

In the same footing, in Figure 5, we present the dependence of GMR with light
parameter Ax at two typical Fermi energies. The results are computed for two distinct AAH
phase factors. For lower values of Ax, there are some oscillations, and for higher values
of Ax, GMR reaches its maximum limiting value. The underlying physical mechanism
relies on the renormalization of the effective hopping of the ferromagnetic layers and
the interplay between the available energy channels of these magnetic layers along with
the spacer.
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Figure 4. (a,b) (Color Online). Variation in GMR with the AAH phase φν at two different Fermi
energies both in the absence and presence of light irradiation.

From the results presented in both Figures 4 and 5, we see that there are finite possibil-
ities to control magnetoresistance by tuning either the AAH phase or the light parameter,
or both. Now, in order to inspect the dependence of GMR, when we simultaneously vary
both these two factors viz AAH phase and the light parameter, in Figure 6, we show a
density plot of GMR with the quantities, setting the Fermi energy at EF = 0.3 eV.
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Figure 5. (a,b) (Color Online). Dependence of GMR with Ax at two typical Fermi energies. The
results are shown for two different AAH phases.

0
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80
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Figure 6. (Color online). Simultaneous variation (density plot) of GMR as functions of Ax and AAH
phase φν. Here, we chose E = 0.3 eV.

The first impression is that we can vary the degree of magnetoresistance in a reasonable
range, ranging from a very low one to the maximum limiting value (near to cent percent).
Having tunable devices based on the magnetoresistance phenomena is undoubtedly helpful.
The other crucial point is that any particular value of GMR persists over a broad range
of physical parameters, which gives us confidence to verify our results with a suitable
laboratory setup.
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3.4. Effect of Temperature

The results analyzed so far are worked out at absolute zero temperature. Keeping in
mind the possible experimental realization, finally we investigated the role of temperature
on GMR. The results are presented in Figure 7, where we show the variation of GMR with
Fermi energy EF at two distinct temperatures. Two curves almost overlap with each other
for the entire energy window, which suggests that a favorable response can be obtained
even in the large temperature limit. The reason is that the average energy level spacing is
quite large due to small-scale systems compared with the thermal energy. Of course, when
the temperature is too large (>400 K), the degree of GMR is quite less, which we confirm
through our exhaustive numerics, but we do not need to go into that high temperature
limit. Here, it is relevant to note that the range of temperatures is directly linked to the
system size. We need to restrict the temperature in such a way that the thermal energy
is always less than the average energy level spacing of the system. Along with this, the
dimension of the system is also restricted in another way by considering the limiting value
of the spin diffusion length (∼50 nm). If the dimension of the functional element is higher
than the SDL, then it is hard to obtain a favorable response.

=100K

=200K

0 1-1-2 2-3 3

100

0

50

EF (eV)

G
M
R
(%

)

Figure 7. (Color Online). Temperature dependence: GMR as a function of Fermi energy at two
different temperatures. Here, we consider Ax = 1 and the AAH phase φν = 0.

4. Closing Remarks

To conclude, in this work, we investigated for the first time, to the best of our knowl-
edge, the interplay between cosine modulations and light irradiation on a magnetoresistive
study within a tight-binding framework. We considered a one-dimensional quantum
heterostructure where a non-magnetic spacer is clamped between two ferromagnetic layers.
Among these two, the magnetization direction in one magnetic layer remains fixed, while
for the other layer, it is free to change. The site energies of the NM spacer are modulated
in the well-known AAH form, and the two magnetic layers are subjected to light irradia-
tion. We essentially tried to develop the possible routes of engineering magnetoresistance
considering the combined effects of AAH potential and light irradiation.

Following the Floquet–Bloch approach, we incorporated the effect of light within a
minimal coupling scheme and computed the spin-dependent transmission probabilities for
the determination of GMR with the help of Green’s function formalism. All of the results
have been thoroughly discussed and explain the underlying mechanisms following the
energy band diagrams of different segments of the heterostructure. Several interesting and
important features have been emerged, as follows:

• A high degree of GMR was obtained; sometimes, it even reaches a hundred percent.
• The favorable response of GMR can be achieved even near the band center for the

driven heterostructure, which is no longer available for the irradiation-free case.
• We can selectively tune GMR by means of either the AAH phase or the irradiation or

by regulating both of these factors.
• The results are valid for a reasonable range of physical parameters. Moreover, the

high degree of GMR still persists even for a large temperature limit.
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Before ending this paper, we note that our analysis is not restricted to a specific
physical system or material. It can be generalized to any simple and complex driven
M–NM–M quantum heterostructure in the presence of such a quasi-periodic modulation.
Different kinds of magnetic systems have already been used so far in the vast literature,
and any such magnetic system is recommended. The crucial point of our analysis is the
inclusion of an aperiodic NM spacer between the two magnetic layers and the application
of light irradiation. These two factors play a central role in our analysis.
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