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The genetic architecture of appendicular lean mass
characterized by association analysis in the UK
Biobank study
Yu-Fang Pei 1,2,6,7✉, Yao-Zhong Liu3,6, Xiao-Lin Yang 4,6, Hong Zhang2,5, Gui-Juan Feng1,2,

Xin-Tong Wei1,2 & Lei Zhang 2,5,7✉

Appendicular lean mass (ALM) is a heritable trait associated with loss of lean muscle mass

and strength, or sarcopenia, but its genetic determinants are largely unknown. Here we

conducted a genome-wide association study (GWAS) with 450,243 UK Biobank participants

to uncover its genetic architecture. A total of 1059 conditionally independent variants from

799 loci were identified at the genome-wide significance level (p < 5 × 10−9), all of which

were also significant at p < 5 × 10–5 in both sexes. These variants explained ~15.5% of the

phenotypic variance, accounting for more than one quarter of the total ~50% GWAS-

attributable heritability. There was no difference in genetic effect between sexes or among

different age strata. Heritability was enriched in certain functional categories, such as con-

served and coding regions, and in tissues related to the musculoskeletal system. Polygenic

risk score prediction well distinguished participants with high and low ALM. The findings are

important not only for lean mass but also for other complex diseases, such as type 2 diabetes,

as ALM is shown to be a protective factor for type 2 diabetes.
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Lean body mass is an important physiological index. Low lean
body mass, together with low muscle strength and low
physical performance, represents a key component for the

definition of sarcopenia, which is a critical condition with func-
tional impairment and physical disability and a major modifiable
cause of frailty in the elderly1,2. Lean body mass is associated with
bone mineral density and hence may also influence the risk for
osteoporosis3. Other lean body mass-related conditions include
dysmotility syndrome4, sarcopenic obesity5 and cachexia6.

Lean body mass has a significant genetic component, as evi-
denced by a high heritability of 50–80% observed in twin
studies7,8. However, findings of specific genes for human lean
mass variation remain limited, even with the powerful genome-
wide association study (GWAS) approach. A key reason for
the limited findings, as in other human complex traits, is the
modest sample size used in most GWASs performed for lean
body mass9–13, resulting in few single nucleotide polymorphisms
(SNPs) identified with genome-wide significance.

As a notable example, one previous large meta-analysis of
GWASs amassed 20 cohorts of European ancestry with a total
sample size of >38,000 for whole body lean mass and of >28,000
for appendicular lean mass (ALM)14. Of the 20 studied cohorts, 10
(n= 21,074, 55%) were characterized with the dual-energy X-ray
absorptiometry (DEXA)-derived measure of lean mass, while the
other 10 (n= 17,218, 45%) were characterized with the bioelec-
trical impedance analysis (BIA)-derived measure. Despite the large
sample used, the percentage of phenotypic variance explained by
the identified SNPs was still only 0.23% and 0.16% for whole body
lean mass and ALM, respectively, suggesting that most of the
heritability of lean body mass was still undetected. Therefore, even
with such a large GWAS meta-analysis, it is still necessary to boost
the sample size further to enhance the statistical power for
detecting more causal SNPs underlying lean body mass.

In a more recent study, a GWAS of ALM was conducted in a
population of 85,750 middle-aged (aged 38–49 years) individuals
from the UK Biobank (UKB)15. A total of 182 loci were identified,
78% of which were replicated in a population of 181,862 elderly
(aged 60–74 years) individuals from the same UKB cohort.

Unlike ALM, which is mainly affected by skeletal muscle,
whole body lean mass is determined by skeletal muscle, smooth
muscle and cardiac muscle. Therefore, ALM has a higher pre-
dictive power for sarcopenia-related health outcomes because
sarcopenia is mainly due to a low skeletal muscle amount. ALM is
also slightly more heritable than whole body lean mass16 and as
such a more suitable trait for sarcopenia-related genetic analyses.

Here, in this study, with a sample containing approximately
half-million participants of European origin, we performed a
GWAS of ALM in the full UKB cohort. At a stringent genome-
wide significance level (p < 5 × 10–9), we identified >1000 inde-
pendent variants that were significant, all of which were sig-
nificant in both sexes at p < 5 × 10–5. Our findings revealed a large
number of genetic variants for lean body mass and contributed to
the characterization of the genetic architecture of this complex
trait. Through this GWAS, we demonstrated the power for
mapping the genetic landscape of common human complex
traits/diseases using extraordinarily large samples.

Results
A flow chart of this study is displayed in Fig. 1. The study sample
came from the UKB cohort, which is a large prospective cohort of
~500,000 participants from across the United Kingdom, aged
between 48 and 73 at recruitment. The basic characteristics of the
sample are listed in Supplementary Data 1. In this study, we
quantified ALM by appendicular fat-free mass measured by BIA.
This measurement of lean mass is reliable based on its strong

correlation with ALM measured by DEXA in 4294 UKB parti-
cipants (Pearson’s correlation coefficient 0.96, p < 2.2 × 10–16).
The Pearson correlation coefficient between ALM and AFM was
0.68 in males and 0.79 in females. Neither ALM nor AFM fol-
lowed a normal distribution. Instead, both distributions were
right skewed (Supplemental Fig. 1).

ALM for all eligible participants was adjusted by AFM and
other covariates, and the residuals were transformed into a
standard normal distribution so that no outliers were observed in
the transformed phenotype ALMadj.

Main association results. Following QC of both ALMadj and
genome-wide genotypes, data from 19.4 million variants with a
minor allele frequency (MAF) > 0.1% and an imputation quality
score >0.3 were available in 244,730 female and 205,513 male
participants.

In each sex group, the additive effect of each variant was tested
on ALMadj with BOLT-LMM17 (Fig. 2). The genomic inflation
factor showed notable inflation in both sex groups (λfemale= 2.09,
λmale= 1.84). The LDSC mean Chi-square and intercept were
3.05 and 1.17 for females and 2.63 and 1.13 for males,
corresponding to attenuation ratios of 0.083 and 0.077,
respectively.

LDSC estimated a genetic correlation coefficient as high as 0.93
(s.e. 0.01) between the two sexes, implying that most GWAS-
attributable heritability was shared between sexes.

Given the shared heritability between sexes, between-sex meta-
analysis was performed with an inverse-variance-weighted fixed-
effects model to combine the sex-specific GWAS results. The meta-
analysis signals had an attenuation ratio of 0.078 (mean Chi-square
= 4.50, intercept= 1.27), which was equal to that estimated by
analysing the subset of genetically determined “Caucasian”
participants (N= 400,879, attenuation ratio= 0.078), suggesting a
limited effect of population structure. However, some residual
stratification may remain uncorrected because ancestry was based
upon self-reporting.

A total of 121,109 variants were significant at the genome-wide
significance (GWS, α= 5.0 × 10–9) level in the combined meta-
analysis and were significant at p < 5 × 10–5 in both sexes. Based on
their physical coordinates, these variants were divided into 828 loci
that were at least 500 kb apart. It was found that 57 lead variants
were not in complete linkage equilibrium (LD r2 < 0.1) with each
other due to the long-range LD pattern. After removing 33 lead
variants, the remaining 795 lead variants were all in linkage
equilibrium. Therefore, they were treated as independent loci.

Approximate conditional association analysis followed by
between-sex meta-analysis was recursively performed, which
further identified 4 additional loci and 264 conditionally
significant variants at the GWS level that were also significant
in both sexes at p < 5 × 10–5. These additional variants were also
in linkage equilibrium (LD r2 < 0.1) with the 795 primary lead
variants.

In total, 1059 (i.e. 795+ 264) independent variants from 799
distinct loci were associated with ALMadj (Supplementary Data 2).
Among them, 353 achieved the strongest significance level (p <
5 × 10–9) in both sexes (categorized here as Tier 1 variants).
Additionally, 208 variants achieved p values <5 × 10–9 in females
and p values <5 × 10–5 in males; 94 variants achieved p values
<5 × 10–9 in males and p values <5 × 10–5 in females (categorized
here as Tier 2 variants). Finally, 404 variants achieved p values
<5 × 10–5 in both sexes and p values <5 × 10–9 in the between-sex
meta-analysis (categorized here as Tier 3 variants).

Replication in UKB South Asian participants. The associations
of the 1059 lead SNPs in the 7,452 UKB South Asian (Indian,
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Pakistani and Bangladeshi) participants are listed in Supple-
mentary Data 3. At the stringent significance level of 4.72 × 10–5

(0.05/1,059), only one SNP, rs4338565, was significant (p=
2.30 × 10–5), which is not unexpected given the limited sample
size. At the nominal level of 0.05, 124 SNPs were significant.
Overall, the effect direction at 767 SNPs was consistent between
the two analyses (binomial p < 2.2 × 10–16), and the correlation
coefficient of the regression between them was 0.27 (95% CI
[0.22, 0.33], p < 2.2 × 10–16), partially demonstrating the replic-
ability in the smaller South Asian sample.

Replication of previously reported loci. Associations of pre-
viously reported SNPs in the present study are listed in Supple-
mentary Data 4. Among them, all five lead SNPs reported by
Zillikens et al.14 were successfully replicated at the nominal level
of p < 0.05, and up to four of them were replicated at the 5.0 ×
10–8 level. For another bivariate study in which eight loci were
identified18, two were significant at the 5.0 × 10–8 level, five
additional were significant at the nominal level, but the last SNP
rs7672749 was not significant (p= 0.26). For the recent study of
ALM in middle-aged and older UKB participants, all 182 lead
SNPs were nominally significant in the present study, and up to
168 (92.3%) were significant at the GWS level. In sum, the present
study well replicates the findings from previous smaller studies.

Of the 799 identified loci, 102 were reported in the above-
mentioned previous studies, while the remaining 697 were not.

Overlap with loci for obesity-related traits. We also evaluated
the overlap of the identified loci with those identified for three
obesity traits obtained through the GIANT consortium. Flanking
variants surrounding 478 lead SNPs (defined as the lead SNP+
500 kb flanking region to either side) were associated with one or
more obesity traits at the 5.0 × 10–8 level, while no flanking var-
iants surrounding the remaining 581 lead SNPs showed associa-
tions at the 5.0 × 10–8 level, demonstrating their novelty and
possible specificity to lean but not fat mass.

Sex specificity. Our analysis identified an additional 107 loci that
were significant at the GWS level in the between-sex meta-ana-
lysis but not significant at the suggestive level (p < 5 × 10–5) in

each sex group (Supplementary Data 5). These loci may represent
sex-specific signals pending further replication.

Sex heterogeneity. Of the 1059 identified variants, 181 (17.1%)
exhibited high between-sex meta-analysis heterogeneity (I2 >
50%), most (175) of which were Tier 1 or 2 variants. A statistical
test of sex differences in genetic effects revealed no difference in
any SNP after accounting for multiple testing (α= 0.05/1,059=
4.72 × 10–5), suggesting that all of the identified variants had
similar effect sizes between sexes.

Age-dependent effect. The 1059 lead variants were evaluated for
their age-dependent effects. At the Bonferroni-corrected sig-
nificance level (p < 0.05/1,059= 4.72 × 10–5), no age-dependent
effects were identified at the 1059 lead SNPs (Supplementary
Data 6). The most significant hit was rs2310876 (p= 2.01 × 10–3),
where the per allele effect became larger as age increased. The
second strongest hit was rs550793660 (p= 3.48 × 10–3). In con-
trast, the allele effect at this SNP tended to become zero as age
increased.

Heritability distribution. The 1059 identified variants included
938 common (MAF > 5%), 97 less common (5%≥MAF > 1%) and
24 rare (MAF ≤ 1%) variants. Variants with a smaller MAF
generally had a larger per allele effect size (Fig. 2). For example,
the average per allele effect size of rare variants (mean 0.14, s.d
0.08) was 7-fold larger than that of common variants (mean 0.02,
s.d 0.009).

The total phenotypic variance explained by the 1059 lead
variants was 17.8% before correction for the winner’s curse
effect and 15.5% after the correction. Using BOLT-REML19,
GWAS-attributable total heritability was estimated to be 0.486
(s.e 3.14 × 10–3) and 0.476 (s.e 3.63 × 10–3) in females and males,
respectively. After removing all variants in the flanking 500 kb
regions surrounding each of the 1059 lead variants from raw
genotypes, the remaining heritability was estimated to be 0.207
(s.e 2.94 × 10–3) and 0.188 (s.e 3.34 × 10–3) in females and males,
respectively, implying that the identified loci collectively explained
heritabilities of 0.279 and 0.288 in females and males, respectively.
Therefore, ~10% of the heritability at the identified loci remains
undefined.

UKB Participants (N= 487,378) ¾ training, ¼ validation

Self-reported white participants
(N= 450,243 after QC ) Polygenic risk score evaluation

Male (N= 205,513) Female 
(N= 244,730)

795 independent loci
(p<5e-9, pmale<5e-5, pfemale<5e-5)

GWAS GWAS Recursive conditional analysis

799 i d d t l iBetween-gender meta-analysis 799 independent loci, 
1,059 independent SNPs

N d d tH it bilit G d t 15.5% heritability No age dependent 
effect

Heritability 
enrichment 

1,755 candidate 

Gene and gene set 
enrichment

Genetic correlation Mendelian 51 mis sense SNPsgenesGenetic correlation randomization 51 mis-sense SNPs

Fig. 1 Flow chart of the present study. The study sample came from the UKB cohort. After QC, 450,243 self-reported white participants were eligible for
analysis. The two sex groups were analyzed separately and then were combined for a meta-analysis. A series of in-depth analyses, including heritability
enrichment, gene and gene sets enrichment, genetic correlation, Mendelian randomization, and polygenic risk score profiling were performed to uncover
the genetic architecture of the trait.
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Fig. 2 Main association results. a Manhattan plot of the meta-analyses of both sexes (males: top, females: bottom). The horizontal red line indicates the
genome-wide significance level (α= 5 × 10−9) on the −log10 scale. All significant SNPs are marked in green. b Per allele effect size versus minor allele
frequency (MAF). The X-axis is the MAF of the 1059 identified variants, and the Y-axis is the per allele effect size (regression coefficient). The black solid
line is the power function fitted to the data.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-020-01334-0

4 COMMUNICATIONS BIOLOGY |           (2020) 3:608 | https://doi.org/10.1038/s42003-020-01334-0 | www.nature.com/commsbio

www.nature.com/commsbio


Applying the stratified LDSC analysis, the GWAS-attributable
heritability was partitioned into 24 functional categories20.
Statistically significant enrichment was observed for 19 functional
categories (p < 0.05/24= 2.08 × 10–3, Fig. 3). In line with the
observations by Finucane et al.20, regions conserved in mammals
showed the strongest enrichment of any category, with 2.6% of
SNPs explaining an estimated 31.3% of SNP heritability
(enrichment ratio= 12.0, P= 1.48 × 10–18). Other categories with
significant enrichment included coding regions (enrichment ratio
= 8.0, P= 4.10 × 10–10), 3′ UTRs (enrichment ratio= 7.6, P=
9.29 × 10–5), transcription start sites (enrichment ratio= 6.5, P=
6.07 × 10–5), and H3K9ac histone marks (enrichment ratio= 4.9,
P= 1.02 × 10–13). Neither the promoter nor the 5′-UTR region
showed significant enrichment, although the 5′-UTR region had a
high estimate of the enrichment ratio (13.2, p= 0.04).

Using a new function of the stratified LDSC method21, three
tissues were enriched at a Bonferroni-corrected significance level
(P < 0.05/205= 2.44 × 10–4), including cartilage (p= 1.01 × 10–7),
chondrocytes (p= 9.48 × 10–5) and uterus (2.02 × 10–4).

Candidate gene prioritization. To prioritize candidate genes at
the associated loci, we used multiple analytical strategies. A set of
credible risk variants (CRVs) at each locus were defined as var-
iants with high LD with the lead variant (r2 > 0.8). A total of
27,988 CRVs were identified (Supplementary Data 7). Based on
these CRVs, six sources of supporting evidence were used to
prioritize 1755 candidate genes (Supplementary Data 8–12).

A number of genes had multiple lines of supporting evidence
(Supplemental Fig. 2). The IGFBP3 (IGF-Binding Protein 3) gene
at 7p12.3, for example, had four lines of supporting evidence.
This gene was closest to the lead SNP chr7:46262082 at the locus.
One CRV, rs11977526, was associated with its mRNA expression
level in skeletal muscle (p= 3.21 × 10–5) and associated with its
protein level (p= 3.80 × 10–5) in whole blood. Finally, it was
prioritized by DEPICT (p= 5.66 × 10–4). Another example is
CXXC5 (CXXC Finger Protein 5) at 5q31.2. The lead SNP
rs3822742 is an intron variant in CXXC5. Multiple CRVs around
rs3822742, such as rs356452, were associated with CXXC5mRNA

expression in whole blood samples. This gene was also prioritized
by both DEPICT and SMR.

Comparison between imputation- and sequencing-based asso-
ciation signals. Of the 1059 identified variants, 51 were missense
coding variants. They are also available in the recently released
UKB exome-sequencing data that contain a subset of ~50,000
participants from the whole UKB cohort. Using a set of 45,554
unrelated European participants who were both genotyped/
imputed and sequenced, we compared the imputation-based
association results with exome-sequencing-based results. Raw
genotypes were highly concordant between the imputed and
sequenced data (r2= 0.84–1.00). The imputation-based and
sequencing-based p values were highly concordant (Supplementary
Data 13). For example, the imputation-based p values were within
a 2-fold difference of the sequencing-based p values for up to
48 variants. Overall, these observations support that imputation-
based association signals are close to the real sequencing-based
association signals in a large sample. Therefore, imputation-based
GWAS may be able to identify true associations, even those of
rare variants.

Missense variants and the associated genes. As mentioned
above, of the 1059 identified variants, 51 were missense coding
variants. The majority (28) of these 51 missense mutations were
predicted to be deleterious by one or more bioinformatics tools,
including PolyPhen-222, SIFT23, PROVEAN24 and FATHMM25

(Supplementary Data 14), supporting their potential functional
relevance.

Missense mutations were enriched among rare variants. Eight
of the 24 rare variants were missense mutations, in clear contrast
to the 43 missense mutations among the remaining 1035 variants
(odds ratio= 11.53, Fisher’s exact test p= 6.77 × 10–6). Evidence
of the enrichment was strengthened by comparing 24 missense
mutations from 121 rare or less common variants with 27
missense mutations from 938 common variants (odds ratio=
6.89, Fisher’s exact test p= 1.10 × 10–9), suggesting that low-

Fig. 3 Heritability enrichment in different functional annotations. Enrichment of genome-wide association signals in 24 main annotations using LDSC
regression. The Y-axis represents the ratio of phenotypic variance explained by variants in a particular annotation category against that explained in the
remaining regions. Error bars represent jackknife standard errors around the estimates of enrichment. A single asterisk indicates significance at p < 0.05
after Bonferroni correction for the 24 hypotheses tested, and two asterisks indicate significance at p < 0.01.
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frequency mutations are more likely to play a direct role in
changing protein function.

The top five loci containing missense lead variants are
described below, while all 51 loci are listed in Table 1.

2p23.3 (GCKR). The common lead SNP rs1260326 (MAF=
39.6%, beta=−0.03, pmale= 5.30 × 10–29, pfemale= 4.20 × 10–37,
pmeta= 6.16 × 10–64) is located in the exon of the GCKR
(glucokinase regulator) gene, resulting in an amino acid change
from leucine to proline. This SNP was previously reported to be
associated with multiple metabolic traits26. GCKR encodes a
regulatory protein that inhibits glucokinase in liver and pancreatic
islet cells by binding noncovalently to form an inactive complex
with the enzyme.

14q32.12 (RIN3). The lead SNP rs117068593 (MAF 19.0%,
beta= 0.04, pmale= 5.60 × 10–34, pfemale= 1.50 × 10–33, pmeta=
8.83 × 10–62) results in a change from arginine to cysteine at the
204th amino acid of the protein encoded by the RIN3 (ras and rab
interactor 3) gene. This change is predicted to be harmful by
PROVEAN, Polyphen-2 and SIFT. This locus was previously
reported to be bivariately associated with both bone mass and
lean mass at the lead SNP rs75438818. rs754388 is in nearly
perfect LD with rs117068593 (r2= 0.95), implying the same
association signal for both SNPs. The gene product of RIN3 is a
member of the RIN family of Ras interaction-interference
proteins. It functions as a guanine nucleotide exchange for
RAB5B and RAB31.

5q35.2 (STC2). The lead SNP rs148833559 (MAF 0.14%, beta
= 0.38, pmale= 6.70 × 10–25, pfemale= 1.10 × 10–30, pmeta= 9.21 ×
10–52) is a rare mutation whose per allele effect is 10-fold larger
than those of the above two common ones. The substitution of
arginine to leucine at the 44th amino acid of the STC2
(Stanniocalcin 2) protein is predicted to be harmful by
PROVEAN, Polyphen-2 and SIFT. This rare variant was
previously reported to be associated with human height27. In a
recent study of ALM in middle-aged and older participants of the
UKB cohort, the same SNP was identified. The authors also
verified that knockdown of STC2 had a significant effect on
myotube length in C2C12 cells15.

8q24.22 (ZFAT). Two missense SNPs in the ZFAT (zinc finger
and AT-hook domain containing) gene are associated with
ALMadj. The primary SNP is a common SNP rs12541381 (MAF
25.8%, beta=−0.03, pmale= 2.50 × 10–19, pfemale= 3.30 × 10–32,
pmeta= 2.81 × 10–49), resulting in a change from proline to serine
at the 102nd amino acid of the protein encoded by ZFAT,
where the change is predicted to be benign by all four prediction
tools. Conditional analysis identified a secondary rare SNP,
rs112892337 (MAF 0.4%, beta= 0.14, pmale= 4.53 × 10–14, pfemale=
2.32 × 10–11, pmeta= 1.23 × 10–23 after conditioning), which
results in a change from serine to cysteine at the 470th amino
acid. The change is predicted to be harmful by three prediction
tools. ZFAT encodes a protein that likely binds DNA and
functions as a transcriptional regulator involved in apoptosis
and cell survival.

8q24.12 (ENPP2). The lead SNP rs10283100 (MAF 5.6%, beta
=−0.06, pmale= 4.00 × 10–20, pfemale= 7.40 × 10–29, pmeta=
4.11 × 10–44) results in a change from serine to proline at the
545th amino acid of the protein encoded by the ENPP2
(Ectonucleotide pyrophosphatase/phosphodiesterase 2) gene.
This change is predicted to be benign by all prediction tools.
ENPP2 encodes a protein functioning as both a phosphodiester-
ase and a phospholipase.

Gene-based and geneset enrichment analyses. A total of 2885
genes were significant at the gene-based GWS level (α= 0.05/17,788
= 2.81 × 10–6, Supplementary Data 15). The most significant geneT
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was DLEU1 (p= 5.83 × 10–170), followed by ZBTB38 (p= 1.94 ×
10–77), FNDC3B (p= 9.68 × 10–73), EDEM2 (p= 1.76 × 10–72)
and CRADD (p= 2.36 × 10–71). Using gene level association statis-
tics as input, a total of 123 gene sets were significant at the
geneset significance level (α= 0.05/15,481= 3.23 × 10–6, Supple-
mentary Data 16). The top gene sets included genes with known
functions related to the musculoskeletal and connective systems,
such as GO:0001501 ‘skeletal system development’ (p= 3.31 × 10–18,
Ngene= 483), GO:0002062 ‘chondrocyte differentiation’ (p= 3.22 ×
10–14, Ngene= 115) and GO:0051216 ‘cartilage development’ (p=
3.55 × 10–14, Ngene= 197).

Polygenic risk score profiling. To assess the ability of the GWAS
findings to predict ALM, a polygenic risk score (PRS) analysis was
performed on the subset of unrelated white participants from the
UKB cohort. Three-quarters of the participants (n= 277,762,
including 149,329 females) were randomly selected as the training
sample, with the remaining participants (n= 92,206, including
49,660 females) as the validation sample.

The training sample revealed 134,277 variants with a p value
<1 × 10–5 for association with ALMadj. Using these variants as
predictors, the predicted genome-wide PRS and the real
phenotype residual in the validation sample were significantly
correlated (Pearson’s correlation coefficient 0.32, 95% CI (0.32,
0.33), p < 2.2 × 10–16). Mean phenotype residuals in the top tail
were significantly higher than those in the bottom tail of the PRS
distribution (Fig. 4). For example, the predicted top 1% of
participants had an increased average residual of 1.16 compared
to that of the predicted bottom 1% of participants (0.57 (s.d 0.96)
vs. −0.59 (s.d 0.94)), corresponding to a 1.69 kilogram (kg)
increase in raw ALM (24.61 kg (s.d 5.89 kg) vs. 22.92 kg (s.d 5.27
kg)). In the female group, the predicted top 1% of participants
had an average 1.39 kg increase in raw ALM compared with that
of the predicted bottom 1% of participants (20.26 kg (s.d 2.75 kg)
vs. 18.87 kg (s.d 2.45 kg)). In males, the increase was 2.29 kg
(29.82 kg (s.d 4.18 kg) vs. 27.53 kg (s.d 3.56 kg)). These results
demonstrate that PRS prediction based on the current GWAS
finding is capable of identifying participants with high or low
levels of ALM.

Using the same approach, we evaluated the capability of the
GWAS finding to predict DEXA-derived ALM. The correlation

coefficient between PRS and DEXA-derived ALM was 0.18 (95%
CI [0.15, 0.21] p < 2.2 × 10–16), again demonstrating the capacity
of the present findings to predict DEXA-measured lean mass.

Genetic correlations with other traits. To test whether lean mass
has a shared genetic aetiology with other diseases and relevant
traits, a genetic correlation analysis was performed with LDSC28.
ALMadj is strongly genetically correlated with whole body lean
mass and ALM studied by a previous GWAS meta-analysis14

(rg= 0.70 and 0.56, p < 2.2 × 10–16) (Fig. 5). Strikingly, ALM was
highly correlated with height (rg= 0.71, p < p < 2.2 × 10–16),
implying that the two traits share a large number of develop-
mental pathways. Furthermore, ALMadj was modestly correlated
with BMI (rg= 0.12, p= 1.59 × 10–7). However, the correlation
with heel bone mineral density was low (rg=−0.03, p= 0.13).
ALMadj was most negatively correlated with BMI-adjusted 2-h
glucose (rg= −0.26, p= 7.79 × 10–5) and BMI-adjusted leptin
(rg=−0.23, p= 2.63 × 10–7). It was also negatively correlated
with body fat (rg=−0.21, p= 1.36 × 10–10). However, this cor-
relation should be interpreted with caution given the following
two confounding factors. The first is collider bias, as the trait that
we analysed was fat mass-adjusted lean mass. The second is the
phenotypic constraint between lean mass and fat mass, as the sum
of the two measures defines body weight and body size.

Mendelian randomization analysis. To investigate whether
ALMadj is causally linked with other complex diseases and traits, a
Mendelian randomization analysis was performed with GSMR29.
Ten diseases and eight continuous traits from a variety of cate-
gories were chosen for evaluation. The scatter plot for all 18 traits
is displayed in Supplemental Fig. 3. At the Bonferroni-corrected
significance level of 2.78 × 10–3 (0.05/18), ALMadj was causally
associated with five diseases (coronary artery disease, p= 2.09 ×
10–56; fracture, p= 3.45 × 10–10; type 2 diabetes, p= 1.20 × 10–8;
insomnia, p= 2.77 × 10–5; and inflammatory bowel disease p=
8.09 × 10–4) (Supplementary Data 17). The causal association
between ALMadj and type 2 diabetes was negative, indicating that
ALMadj is a protective factor for the latter. A one-standard
deviation increase in the ALMadj residual corresponded to a
decrease in the odds ratio of 0.92 (95% CI [0.89, 0.95]).

At the same significance level, ALMadj was also causally
associated with 6 metabolic traits, including four serum lipid
traits and two blood pressure traits.

Discussion
This study of lean mass with approximately half a million par-
ticipants, the largest sample used for a GWAS of lean mass so far,
was successful. More than 1000 variants were identified at the
genome-wide significance scale (p < 5 × 10–9). In particular, more
than half of these variants achieved genome-wide significance
(p < 5 × 10–9) in one sex and were replicated in the other sex (p <
5 × 10–5). Overall, these >1000 variants accounted for ~15% of
ALM variation, again, the largest explainable fraction of variation
in lean mass reported so far in a GWAS. Our finding of >1000
variants is expected for a complex trait with high heritability,
particularly considering another trait with comparable herit-
ability, height, for which ~700 variants were detected30. Inter-
estingly, the majority of the loci detected in a previous smaller
GWAS12 and meta-analysis14 of lean mass were also significant in
the present study, providing solid evidence of replication.

The inability of GWAS to detect and replicate specific genetic
variants for human complex traits, contradicting a trait’s estab-
lished high heritability, e.g. height, was formally recognized as the
missing heritability problem a decade ago31,32. An explanation is
the so-called polygenic model, where hundreds or even thousands

Fig. 4 Polygenic risk score prediction. A total of 277,504 participants were
randomly selected as the training sample, and another independent 92,108
participants were selected as the validation sample. The variants achieving
a p value of <1 × 10−5 in the training sample were selected and used for
prediction in the validation sample via the LDpred approach. Participants in
the two extreme tails of the predicted genome-wide polygenic risk score
(PRS) distribution were compared in terms of raw phenotypic mean (after
correction). The X-axis represents the fraction of participants drawn from
both extreme tails of the predicted PRS distribution. The Y-axis represents
the mean ALMadj (with the standard error of the mean difference between
the two tails).
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of common SNP variants act additively, with each contributing
only a tiny fraction of the trait variation. The genetic findings
from the present study support this explanation for lean mass.
The total 1059 conditionally independent variants explained
15.5% of the phenotypic variance, corresponding to an average
per variant variance as low as 0.015%. It is worth noting that the
present study had nearly 100% power to detect variants with an
effect size larger than 0.015% and indeed did so. On the other
hand, the power to detect variants with effect sizes as low as
0.001% was nearly zero. Therefore, there might exist more var-
iants with effect sizes smaller than those identified in the present
study, further supporting the polygenic model.

The functional relevance of our identified variants was supported
by geneset enrichment analysis, where GO terms, including
GO:0001501 ‘skeletal system development’, GO:0061448 ‘connective
tissue development’ and GO:0051216 ‘cartilage development’, were
among the significant gene sets. Specifically, the common genes
involved in these terms were tightly connected into a network that
contained TGF pathway genes, BMP pathway genes and SMAD
family genes, which are all important musculoskeletal development
genes/pathways. This finding is concordant with knowledge of
developmental biology since cells from bone, cartilage, muscle and fat
share the same progenitor, mesenchymal stem cells, and pleiotropy of
muscle and bone is well recognized in both humans33 and animal
models34.

To declare an association as significant, we required that the
signal not only be significant at the GWS level in the combined

analysis but also be significant at the 5 × 10–5 level for each sex
group. This significance level was essentially equivalent to that in a
two-stage design, where the first stage involved a GWAS in one
group (e.g. the male group) and the second stage involved repli-
cating top hits in the other group (e.g. the female group). As a
maximal number of 1000 independent loci was assumed, we could
have selected the top 1000 hits from the first stage for replication
at the second stage. As a result, a significance level of 5 × 10–5

(0.05/1000) was sufficiently conservative to declare successful
replication. In our actual analysis, the numbers of independent
loci with p < 5 × 10–5 were 1988 and 1713 in the female and male
groups, respectively, which were almost twice the presumed
number (n= 1000) of independent loci. This may have inflated
the type I error rate for the variants whose p values fell within the
range from 5 × 10–5 to 5 × 10–9 (i.e. the Tier 3 variants).

The present study had the following strengths. First, the large
sample size of over 400,000 participants is the largest used for a
lean mass GWAS to date, offering a unique opportunity to dis-
cover loci that were undetected by previous smaller GWASs.
Second, instead of analysing the sample as a whole, the two sexes
were analysed separately, and then meta-analysis was performed.
This may have reduced the statistical power for identifying new
loci but allowed us to replicate significant findings between the
sexes. Third, via a series of comprehensive downstream analyses
annotating the identified SNPs, a deep understanding was
achieved for the genetic mechanism underlying ALM and its
interplay with other complex traits and diseases.
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Certain limitations existed in the present study. First, lean mass
was measured by the BIA approach, which is not as reliable as the
gold standards for quantifying lean mass, such as magnetic
resonance imaging and computed tomography, because these
latter methods are direct measures. Instead of measuring lean
mass directly, BIA derives an estimate of lean mass based on
electrical conductivity. Therefore, it can be influenced by the
hydration status of the subject. Moreover, the derivation equation
of BIA relies on a calibrated reference population, which may not
be well validated across populations. Second, the genetic findings
for lean mass alone are inadequate for characterizing the full
genetic basis of sarcopenia. This is because there is a consensus
that sarcopenia is defined not only by low lean mass but also,
more importantly, by low muscle strength and poor physical
performance35. Therefore, the present study only discovered the
genetic mechanism of sarcopenia from the lean mass perspective,
far more than enough to begin understanding the genetic basis of
sarcopenia as a whole. Third, physical activity is known to
influence lean mass36, the confounding effect of which was not
controlled for in the present study.

In summary, we performed a GWAS using approximately a
half-million participants for lean mass. The variation (~15%) in
lean mass explained by the identified variants represents a sig-
nificant leap in explaining the hidden heritability of this complex
trait using the GWAS approach. The translational value of these
findings lies in the importance of lean mass for other complex
diseases, such as type 2 diabetes, as our Mendelian randomization
analysis showed that ALM is a protective factor for the latter.
Overall, our study provides another example in which a GWAS
with a very large sample size ultimately and thoroughly delineates
the genetic architecture of a complex human trait. This epito-
mizes the value of big data in human genetic research.

Methods
Study participants. The study sample came from the UKB cohort, which is a large
prospective cohort of ~500,000 participants from across the United Kingdom, aged
between 48 and 73 at recruitment. Ethics approval for the UKB study was obtained
from the North West Centre for Research Ethics Committee (11/NW/0382), and
informed consent was provided by all participants. This study (project number
41542) was covered by general ethical approval for the UKB study.

As careful data quality control is critical to avoid false positives, we only
analysed self-reported white individuals (data field 21000). Participants who had a
self-reported sex inconsistent with the genetic sex, whose sex chromosome was
aneuploid, who had unusually high heterozygosity and/or missing rates or who
withdrew their consent were removed. Overall, 487,378 participants were identified
to have both phenotypic and genotypic data, 37,135 of whom were excluded. The
final sample consisted of 450,243 participants, including 244,730 females and
205,513 males.

Phenotype and modelling. Body composition was measured by the BIA approach.
ALM was quantified by the sum of fat-free mass at the arms (data fields 23121 and
23125) and legs (data fields 23113 and 23117). Appendicular fat mass (AFM) was
quantified by the sum of fat mass at the arms (data fields 23120 and 23124) and
legs (data fields 23112 and 23116). In each sex, covariates, including AFM, age, age
squared, the top 10 principal components, assessment centre (23 levels) and
genotyping array (2 levels), were used to adjust raw ALM values. To avoid collider
bias due to height, height was not included as a covariate. The adjusted residuals
were normalized into inverse quantiles of a standard normal distribution, which
were used for subsequent association analysis.

A small subset of 4294 participants also received a DEXA body composition
scan, and hence, their DEXA-derived ALM was also available. Therefore, raw ALM
values derived from DEXA and from BIA were compared in these participants to
evaluate phenotypic consistency from these two measurements.

Genotype quality control. Genome-wide genotypes were available for all parti-
cipants at 784,256 genotyped autosome markers and were imputed into UK10K
haplotype, 1000 Genomes project phase 3 and Haplotype Reference Consortium
reference panels. Genotype imputation was performed by the UKB. A total of ~92
million variants were generated by imputation. We excluded variants with a MAF
< 0.1% and with an imputation r2 < 0.3. As a result, ~19.4 million well-imputed
variants were retained for subsequent analysis.

Genetic association analysis. In each sex group, we used BOLT-LMM to perform
linear mixed model analysis17. Upon the completion of sex-specific association
analyses, we meta-analysed the summary statistics of the two sexes by an inverse-
variance-weighted fixed-effects model with METAL37. The GWS level was set at α
= 5 × 10–9 to account for both common and rare variants38. The variants that
passed this threshold in the between-sex meta-analysis were then checked for
significance in both sexes. Previous studies on human height and body mass index
(BMI), two of the most polygenic traits, identified 712 and 536 loci in up to
~700,000 European participants39. By referring to these previous findings, we
selected an arbitrary but reasonable number, i.e. 1000, for the maximal number of
independent loci for ALMadj and set the suggestive significance level to be 5 × 10–5

(0.05/1000) to account for multiple testing. An association was declared only if the
signal was significant at the GWS level (p < 5 × 10–9) in the meta-analysis and was
significant at the suggestive level (p < 5 × 10–5) in both sexes.

Differences in genetic effects between females and males were examined by a
two-sided z-score test with the following equation:

z ¼ βfemale � βmale
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var βfemale

� �þ var βmale

� �

q

where βfemale and βmale are regression coefficients for females and males and var(·)
are their variances, respectively.

The identified variants were annotated by Variant Effect Predictor (VEP)40,
which invokes dbNSFP41 to annotate nonsynonymous SNPs.

Conditional association analysis. To identify additional signals in regions of
association, approximate joint and conditional association analysis was performed
using the GCTA tool42. From the UKB sample, a reference sample of 100,000
unrelated participants was generated for estimating LD patterns. Specifically, KING
software43 (with a kinship coefficient cut-off at 0.0884) was used to infer 369,968
unrelated participants, from whom the 100,000 participants of the reference sample
were randomly drawn.

A recursive conditional association analysis was performed. In each iteration, an
approximate conditional analysis conditioned on the current list of lead variants
was performed in each sex, followed by a between-sex meta-analysis. Again, an
association was defined as significant if it achieved both a conditional meta-analysis
GWS signal and a conditional suggestive signal (p < 5 × 10–5) in both sexes. In
addition, each such identified variant was required to be independent of all variants
in the lead SNP list (LD r2 < 0.1). The variant with the lowest p value among such
identified variants was added to the list of lead variants. Iterations of the
conditional analysis were run until no significant signal could be detected.

Overlap with loci related to obesity traits. GWAS summary statistics for three
obesity traits, including BMI39, waist circumference and waist-hip ratio44, were
downloaded from the GIANT consortium website. For each trait, SNPs located
within all the identified loci (lead SNP +500 kb flanking region to either side) were
extracted from the GWAS summary statistics. The significance level for the obesity
traits was set at the conventional level of 5.0 × 10–8.

Replication in the South Asian population. The UKB participants from the South
Asian population were analysed to replicate the findings identified in the white
population. Specifically, self-reported South Asian participants (data field 21000,
including Indian, Pakistani and Bangladeshi) were collected. Quality control cri-
teria were the same as those for the main analysis. The final sample consisted of
7452 participants. Phenotype modelling was the same as that for the main analysis,
with the only exception that both sexes were analysed together, and sex was used as
a covariate. Association analysis was performed again with BOLT-LMM.

Comparing imputation accuracy with exome-sequencing data. During the
preparation of this manuscript, the UKB released exome-sequencing data on a
selected subset of ~50,000 participants. While we are aware of the systematic
assembly issue announced by the UKB, we used the current released SPB dataset to
assess the imputation accuracy of the present GWAS data by comparing associa-
tion signals from imputed genotypes to those from direct sequencing. BOLT-LMM
involves sophisticated two-step implementation, where the first step fits the model
to a set of directly typed variants and the second step examines the association in
another set of imputed and/or typed variants. When using BOLT-LMM for
comparison, the first-step model parameters fitted to imputed versus sequenced
data may incur differences, which is nonrelevant to imputation accuracy. To make
the comparison as fair as possible, we used a simple linear model instead. Speci-
fically, we generated an unrelated sample consisting of participants who were both
exome-sequenced and genotype-imputed.

As the QC procedure, we removed participants who were not self-reported as
white, whose self-reported sex was inconsistent with their genetic sex, and who
withdrew their consent. KING software was again used to select unrelated
participants43 according to genotyped SNPs. The final sample consisted of 45,554
participants, including 24,740 females and 20,814 males.

Sequence variant coordinates, which were annotated to the GRCH38 assembly,
were converted back to the GRCH37 assembly with Liftover (http://genome.ucsc.
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edu/cgi-bin/hgLiftOver). For each participant, variants that were missing in the
sequenced data were set to missing in the imputed data as well. In both datasets,
genetic association with normalized phenotype residuals was analysed in R.

Genetic architecture. The LDSC method was used to estimate the amount of
genomic inflation due to confounding factors such as population stratification and
cryptic relatedness28. Precomputed LD scores from the 1000 Genomes Project for
European participants were used for estimation. The relative contribution of
confounding factors was measured by the attenuation ratio, which is defined as
(intercept-1)/(mean chi^2−1), where intercept and mean chi^2 are estimates of
confounding and the overall association inflation, respectively28.

BOLT-REML was used to estimate heritability tagged by all the analysed
variants19. It was applied to raw genotypic data with or without removing all
variants among the total identified loci (each defined as the lead SNP +500 kb
flanking region to either side) to estimate respective values of heritability. The
difference between the two measures provides an estimate of the heritability
explained by the identified loci.

The variance explained by all lead variants was calculated as the sum of all
individual variant effect sizes, which is defined as the percentage of phenotypic
variance explained by the variant and estimated with the formula 2 f(1− f)β2,
where f is allele frequency and β is the regression coefficient associated with the
variant. To account for the winner’s curse effect, the effect sizes were shrunk with a
false discovery rate (FDR)-based method45.

Age-dependent effect. The identified lead variants were evaluated for their age-
dependent effects on ALMadj. Specifically, the sample was divided into the fol-
lowing six age strata defined by bins of 5 years: 45 or less (N= 54,608), 46–50 (N=
58,865), 51–55 (N= 70,253), 56–60 (N= 89,479), 61–65 (N= 109,696) and 66 or
more (N= 67,342). Participants of both sexes within each age stratum were pooled
together for analysis. Phenotype modelling within each age stratum was similar to
that in the main association analysis, with the only exception that sex was added to
the covariates. The association within each age stratum was examined by BOLT-
LMM. The generated regression coefficients from all age strata were meta-regressed
against the mean age of each stratum to examine the effect of age on the genetic
effect. Meta-regression was implemented by a linear regression analysis weighted
by the inverse variance of each regression coefficient. Evidence of significance was
determined by the Bonferroni-corrected significance level.

Enrichment analysis. Stratified LDSC was used to partition heritability from
GWAS summary statistics into different functional categories20. The analysis was
based on the ‘full baseline model’ created by Finucane et al.20 from 24 publicly
available main annotations that are not specific to any cell type. The significance
level of enrichment was set at p < 2.08 × 10–3 (0.05/24).

Stratified LDSC was also used to assess the enrichment of heritability in specific
tissues and cell types21. This method analyses gene expression data together with
GWAS summary statistics, for which the two precompiled gene expression datasets
in LDSC were used. The first is the GTEx project dataset46, and the second is the
Franke Laboratory dataset47. The GTEx dataset contains 53 tissues with an average
of 161 samples per tissue. The Franke Laboratory dataset is an aggregation of
publicly available microarray gene expression datasets comprising 37,427 human
samples from 152 tissues. A total of 205 (=53+ 152) tissues were classified into
nine categories for visualization. Again, evidence of significance was determined by
a Bonferroni-corrected significance level of p < 2.44 × 10–4 (0.05/205).

Candidate gene prioritization. At each associated locus, CRVs were defined as
variants in strong LD with the lead variant (r2 > 0.8, including the lead variant
itself). The LD r2 measure was estimated based on the above 100,000 unrelated
reference samples with PLINK48. Six sources of information were used to evaluate a
gene’s causality: (1) being nearest to the lead CRV; (2) containing a missense
coding CRV; (3) being a target gene for a cis-eQTL CRV; (4) being a target gene for
a cis-protein QTL (cis-pQTL) CRV; (5) being prioritized by DEPICT analysis49

and (6) being prioritized by SMR analysis50.
Cis-eQTLs revealed by the GTEx (v7) project were accessed from the GTEx web

portal (www.gtexportal.org/)46. Cis-eQTL information is available for over 50
tissues. We selected skeletal muscle and whole blood for our analysis. Cis-eQTL
was searched within a 500 kb distance of the target gene. Significant cis-eQTLs
were declared at p < 5 × 10–5.

Cis-pQTL information was accessed from Sun et al.51. GWAS summary
statistics for 3284 proteins were downloaded from the study’s website. Cis-pQTL
was searched within a 500 kb distance of the target gene. Significant cis-eQTLs
were declared at p < 5 × 10–5.

DEPICT is an integrative tool that takes advantage of predicted gene functions
to systematically prioritize the most likely causal genes at loci of interest49. The
input of DEPICT includes a list of variant identifiers, and the output contains all
genes located in the loci and their p values as candidate genes. All lead variants
were submitted to DEPICT for analysis. Significant genes were declared at a false
discovery rate <5%.

The SMR (Summary data–based Mendelian Randomization) method50 is
another gene prioritization program that integrates summary-level data from

GWASs with data from eQTL studies to identify genes whose expression levels are
associated with traits due to causal or pleiotropic effects. Here, the pleiotropy effect
means that a SNP is causally associated with both gene expression and phenotypic
variation. SMR uses SNPs as an instrumental variable and tests the causal relation
of gene expression to phenotype variation. The results are interpreted as the effect
of gene expression on the phenotype free of confounding from nongenetic factors.
We used a precompiled eQTL dataset of whole blood tissue for estimation52.
Evidence of a pleiotropic instead of causal relationship between an eQTL and
ALMadj was examined by the HEIDI test29. We set a loose significance level of 0.05
for the HEIDI test to exclude potential pleiotropy.

The intersections of candidate genes prioritized from different sources were
plotted using the R package UpSetR53.

Gene-based and geneset enrichment analyses. Gene-based association analysis
was performed with MAGMA v1.654, as implemented on the FUMA website
(http://fuma.ctglab.nl/). GWAS meta-analysis summary statistics were mapped to
19,427 protein-coding genes, resulting in 17,788 genes that were covered by at least
one SNP. A gene-based association test was performed, taking into account the LD
between variants. The significance level was set at a stringent Bonferroni-corrected
threshold of 2.81 × 10–6, i.e. 0.05/17,788.

The generated gene-based summary statistics were further used to test for
enrichment of associations with specific biological pathways or gene sets. A
geneset’s association signal was evaluated by integrating all signals from the genes
in the set with MAGMA. A competitive geneset analysis model was used to test
whether the genes in a geneset were more strongly associated with the phenotype
than other genes.

Gene sets were obtained through the MSigDB website (http://software.
broadinstitute.org/gsea/msigdb/index.jsp)55. Each gene was assigned to a geneset as
annotated by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes
(KEGG), Reactome and BioCarta geneset databases and other gene sets curated by
domain experts or from the biomedical literature55. A total of 15,481 gene sets were
used in this analysis. Significance was set at a Bonferroni-corrected level of 0.05/
15,481= 3.23 × 10–6.

Polygenic risk score profiling. To assess the capability of the GWAS findings to
predict ALM, a PRS analysis was conducted with a training sample and a validation
sample. It was required that the two samples be independent from each other. To
accomplish this, both samples were drawn from unrelated participants extracted
from the main UKB sample. Specifically, three-quarters of the participants
(277,504, including 149,172 females) were randomly selected as the training
sample, and the remaining one quarter of the participants (92,108, including 49,604
females) were selected as the validation sample. Participants of both sexes were
pooled together for analysis.

Raw phenotypes were adjusted by age, age squared, sex, assessment centre,
genotyping array, AFM and the top 10 PCs. The residuals were converted to the
standard normal distribution quantiles for downstream analysis. Genetic
association analysis was performed with PLINK 256 because of its computational
efficiency.

PRS calculation was conducted with LDpred57. LDpred infers the posterior
mean effect size of each marker by using a prior of effect sizes and LD information
from an external reference panel. To save computer memory usage, only the
variants achieving a p value of <1 × 10–5 in the training sample were selected and
used for prediction in the validation sample. Specifically, the validation sample with
original genotypes was used as a reference panel for LD estimation. The number of
SNPs used to adjust LD from each side of the target SNP was set to 1000. Other
software parameters were set to the default.

Using the same approach, we also evaluated the capability of the GWAS finding
to predict DEXA-derived ALM. To accomplish this, we divided the total 450,243
eligible participants into one training sample including participants who did not
receive the DEXA scan and one validation sample including participants who
received the DEXA scan. The correlation between the risk score and DEXA-derived
ALM was examined in the validation sample.

Genetic correlations with other traits. To test whether lean mass has a shared
genetic aetiology with other diseases and relevant traits, a genetic correlation
analysis was performed with the LDSC method28. An online web tool, LDHub
(http://ldsc.broadinstitute.org/ldhub/), was used to estimate the genetic correlations
between ALMadj and 49 complex traits and diseases. The standalone version of the
software was used to estimate the correlations between ALMadj and two additional
traits, ALM and whole body lean mass, which are not available in the LDHub
GWAS summary statistics collections and were downloaded from the GEFOS
consortium website (http://www.gefos.org).

Both the LDHub and standalone analyses adopted the same QC criteria.
Specifically, only HapMap3 autosomal SNPs were included to minimize poor
imputation quality28. SNPs were further removed given the following conditions:
MAF < 0.01, palindromic strand (A/T or C/G), duplicated ID, or reported sample
size less than 60% of the total sample size. LD scores precomputed with the
European participants in 1000 Genomes Project were used for calculation.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-020-01334-0 ARTICLE

COMMUNICATIONS BIOLOGY |           (2020) 3:608 | https://doi.org/10.1038/s42003-020-01334-0 | www.nature.com/commsbio 11

http://genome.ucsc.edu/cgi-bin/hgLiftOver
http://www.gtexportal.org/
http://fuma.ctglab.nl/
http://software.broadinstitute.org/gsea/msigdb/index.jsp
http://software.broadinstitute.org/gsea/msigdb/index.jsp
http://ldsc.broadinstitute.org/ldhub/
http://www.gefos.org
www.nature.com/commsbio
www.nature.com/commsbio


Mendelian randomization analysis. To investigate whether ALMadj (as exposure)
is causally associated with complex traits and diseases (as outcomes), a Mendelian
randomization analysis was performed with GSMR29 on 10 diseases and 8 meta-
bolic traits. The 10 diseases included fracture, type 2 diabetes, asthma, insomnia,
inflammatory bowel disease, smoking addiction, coronary artery disease, amyo-
trophic lateral sclerosis, bipolar disorder and autistic spectrum disorder. Although
some of the selected diseases were distantly related to lean mass, they could
serve as negative controls for the MR analysis. The metabolic traits included high-
density lipoprotein cholesterol, low-density lipoprotein cholesterol, total choles-
terol, triglycerides, insulin, glucose, diastolic blood pressure and systolic blood
pressure.

GWAS summary statistics for each trait were downloaded from the corresponding
study’s website. From the list of SNPs associated with ALMadj at the 5 × 10–9 level,
qualified SNPs were included based on the following criteria: concordant alleles
between exposure and outcome GWAS summary statistics, nonpalindromic SNPs
with certain strands, a MAF > 1%, and allele frequency difference between exposure
and outcome GWAS summary statistics <0.2.

Independent SNPs were further clumped with PLINK 256 by using an
independence LD threshold r2 < 0.05 and a 1 MB window size. For each pair of
studied traits, the clumped independent SNPs were examined for their pleiotropic
effects on both exposure and outcome by the HEIDI test29. The significance level
for the HEIDI test was set to α= 0.05. After removing pleiotropic SNPs on an
outcome-by-outcome basis, the remaining independent SNPs were taken as
instrumental variables to test for a causal effect of exposure on outcomes. The
estimated causal effect coefficients are approximately equal to the natural log odds
ratio for a case–control trait. The MR analysis significance level was set to 2.78 ×
10–3 (0.05/18).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Genome-wide summary statistics are available through the NHGRI-EBI GWAS Catalog
(https://www.ebi.ac.uk/gwas/downloads/summary-statistics), with accession IDs
GCST90000025-GCST90000027. Additional data are available in the Supplementary
Data file in Supplementary Data 1–17
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