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Oral diseases are among the most common human diseases yet less studied. These diseases affect both the physical, mental, and
social health of the patients resulting in poor quality of life. They affect all ages, although severe stages are mostly observed in older
individuals. Poor oral hygiene, genetics, and environmental factors contribute enormously to the development and progression of
these diseases. Although there are available treatment options for these diseases, the recurrence of the diseases hinders their
efficiency. Oral volatile sulfur compounds (VSCs) are highly produced in oral cavity as a result of bacteria activities. Together
with bacteria components such as lipopolysaccharides, VSCs participate in the progression of oral diseases by regulating
cellular activities and interfering with the immune response. Hydrogen sulfide (H2S) is a gaseous neurotransmitter primarily
produced endogenously and is involved in the regulation of cellular activities. The gas is also among the VSCs produced by
oral bacteria. In numerous diseases, H2S have been reported to have dual effects depending on the cell, concentration, and
donor used. In oral diseases, high production and subsequent utilization of this gas have been reported. Also, this high
production is associated with the progression of oral diseases. In this review, we will discuss the production of H2S in oral
cavity, its interaction with cellular activities, and most importantly its role in oral diseases.

1. Introduction

Oral cavity is an important organ that plays a huge role in
social interactions, and therefore, the health of the organ is
critical for individual’s personality, confidence, and commu-
nication. Oral diseases include acute and chronic health
problems that target the oral system. The diseases range
from discomforts caused by bad smell produced by the cav-
ity to chronic diseases that can occur in the organ. Oral dis-

eases are some of the least studied, and their treatments have
not been well established [1, 2]. Hence, there is an enormous
need to address the issue and identify possible diagnostic
and therapeutic targets for such diseases.

Hydrogen sulfide (H2S) is a potent gaseous neuromodu-
lator involved in the regulation of crucial cellular processes
such as inflammation, oxidative stress, autophagy, and apo-
ptosis [3, 4]. In many diseases, H2S has been reported to be
involved in their development and progression [4–6]. The
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gas is also highly produced in oral cavity and has been
numerously associated with the progression of oral diseases.
H2S is produced both endogenously by oral cells and exoge-
nously through the activities of oral microbes. Understand-
ing the importance of this gas in the progression of oral
diseases is of greater importance due to its activities in cell
regulation. Therefore, in this review article, we will discuss
the molecular mechanisms associated with the production
and utilization of H2S and correlate the dysregulation of this
gaseous neuromodulator with oral diseases.

2. H2S Production in Oral Cavity

2.1. Endogenous H2S Production in Oral Cavity. The endog-
enous production of H2S is principally catalyzed by three
enzymes, namely, cystathionine gamma-lyase (CSE), cysta-
thionine beta-synthase (CBS), and 3-mercaptopyruvate sul-
fur transferase (3-MST). The former two are members of
the pyridoxal 5′-phosphate- (PLP-) dependent enzymes
and are known to be involved in the metabolism of amino
acids. CSE and CBS have been reported to be significantly
expressed in gingival tissues at both gene and protein levels
[7]. At cellular level, the two enzymes have also been identi-
fied to be the main producers of H2S in human periodontal
ligament [8]. 3-MST is also strongly expressed in oral tis-
sues. In oral cavity, H2S participates in the regulation of cel-
lular homeostasis. For instance, gingival crevicular fluid
(GCF) volume which is an important parameter of oral
health has been positively correlated with clinical features
such as inflammation [9]. Simultaneously, the GCF volume
significantly correlates with both the production of H2S by
the cervical fluid and the rate of inflammation [10]. The
above data confirms the production of H2S in oral cavity
by different sites and its involvement in oral health.

2.2. H2S Production by Oral Bacteria. Apart from endoge-
nous production, bacteria present in the oral cavity synthe-
size H2S through several enzymatic reactions. Some of
these enzymes include CSE, CBS, and 3-MST [11–13], cyste-
ine desulfurase (CD) [14–18], lanthionine synthase (LS)
[19–23], aspartate aminotransferase [21, 24], l-methionine
gamma-lyase (MGL) [21, 25–28], and cysteine hydroxyl
lyase (CHL) [21, 29]. Through different mechanisms, these
bacteria-contained enzymes catalyze the production of H2S
from multiple substrates (Figure 1).

3. H2S-Regulated Cellular Mechanisms in
Oral Cavity

3.1. Oxidative Stress. Oxidative stress is one of the com-
monly dysregulated entities and a potential therapeutic tar-
get in chronic oral diseases [30, 31]. Oxidative stress is
caused by an imbalance between oxidants and antioxidant
levels which result into protein, lipids, DNA, and RNA oxi-
dation and damage. In oral cavity, oxidative stress can be
induced by many factors including cigarette smoking [32],
metabolic diseases [33], hydrogen peroxide- (H2O2-) based
tooth whitening products [34], food [35], and most impor-
tantly from oral bacteria [36–38]. High oxidative stress leads

to the promotion of senescence-like features [39] and pro-
gression of oral diseases [40, 41]. In human cellular models,
the bacterial-produced H2O2 have been demonstrated to be
lethal to both epithelial and macrophage cells [42, 43]. With
regard to H2S, previous studies indicate that exogenous H2S
can promote reactive oxygen species (ROS) generation and
subsequently DNA damage in both human gingival epithe-
lial cells and keratinocyte stem cells [44, 45]. Meanwhile, in
oral bacteria, both pro- and antioxidative properties have
been reported in bacteria following H2S treatment which
suggests that its subsequent effect varies in different condi-
tions. For example, in bacteria S. aureus, the inhibition of
H2S-synthesizing enzymes can potentially increase their vul-
nerability to immune defense and antibiotics [46, 47], indi-
cating the protective role of the compound, whereas in a
non-H2S-synthesizing bacteria A. baumannii, exogenous
H2S improves the sensitivity of the bacteria to numerous
antibiotics by targeting redox status and energy metabolism
[48]. Regardless, these data imply that H2S plays a crucial
role in bacteria survival, and exogenous H2S might promote
the oxidative stress features in the host cell meanwhile
inducing a similar or a protective effect in bacteria depend-
ing on the redox status (Figure 2).

3.2. Apoptosis. Apoptosis is a programmed mechanism
involved in the regulation of body homeostasis by syste-
matically killing cells that are no longer needed. The dys-
regulation of this process can lead to excessive cell death
(e.g., in tissue fibrosis) or the vice versa (e.g., in cancer).
Apoptosis is triggered through the activation of a group
of protein known as caspases (Casp) in intrinsic- or
extrinsic-dependent signaling pathways. Previous studies
show that the treatment of H2S derived from either exog-
enous sources or a pathogenic oral bacteria T. denticola
can significantly induce apoptosis in oral cells including
the human periodontal ligament cells (PDLCs) and human
gingival fibroblasts (HGFs) [49, 50]. The induction of apo-
ptosis by oral H2S is mediated via mitochondria depen-
dent pathway as evidenced by the promotion of Casp-3,
Casp-8, Casp-9, cytochrome c, mitochondria depolarization,
and the subsequent activation of p53 signaling cascade
[51–55]. Moreover, the event is associated with the elevation
of proapoptotic genes such as B cell lymphoma 2 (Bcl-2),
phosphatase and tensin homolog, sirtuin, histone deacetyl-
ase, growth arrest, and DNA damage-inducible gamma,
together with the ROS levels and DNA damage [56, 57].
However, the expression of the key component of death
receptor apoptotic pathway, Casp-8, could not be affected
by the increase, which suggests that the pathway is not
necessarily targeted. In a recent study, the gingiva-derived
mesenchymal stem cells (GMSCs) known to participate in
immunomodulation and tissue regeneration have been
shown to utilize CBS/CSE/H2S axis in mediating the apopto-
sis of regulatory T cell via the Fas/FasL signaling pathway
[58]. With this crucial finding, it is essential to analyze the
role of bacteria-derived H2S in the function of GMSCs both
in health and disease states. Moreover, the abundance of sev-
eral key H2S-producing bacteria in oral cavity noticeably
relates with the apoptotic activities in the surrounding cells.
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A recent study analyzing the role of oral microbes in oral epi-
thelial cells death found a positive correlation between the
abundance of S. gordonii, S. sanguinis, and P. gingivalis with
elevation of apoptosis and pyroptotic activities in a mecha-

nism involving the elevation of Casp, TNF receptor p55,
apoptosis-inducing factor (AIF), proteolytic activities of gin-
gipain enzyme, cleaved poly (ADP-ribose) polymerase
(PARP), and topoisomerase I, heat-labile protein-induced
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Figure 1: The illustration of the potential mechanisms used by oral bacteria to mediate H2S production. From left to right: CBS from
bacteria catalyzes the substrates L-Hcy and L-Cys to yield L-cystathionine which is then converted to ketoglutarate, NH3, L-Cys, and H2S
by CSE. Otherwise, 3-MST can also convert L-Cys to pyruvate and H2S; meanwhile, LS converts it to L-lanthionine and H2S. Other
enzymes such as aspartate aminotransferase (substrates: L-cystathionine, L-lanthionine, L-cystine, and L-Hcy), MGL (L-Cys and L-Hcy),
CHL (L-Cys+H2O), and Cd (L-Cys) catalyze the production of H2S, pyruvate, and NH3. CBS: cystathionine beta-synthase; L-Hcy: L-
homocysteine; L-Cys: L-cysteine; H2S: hydrogen sulfide; CSE: cystathionine gamma-lyase; 3-MST: 3-mercaptopyruvate sulfur transferase;
LS: lanthionine synthase; MGL: L-methionine gamma-lyase; CHL: cysteine (hydroxyl) lyase; Cd: cysteine desulfurase; NH3: ammonia;
H2O: water.
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activation of interleukin-1β- (IL-1β-) converting enzyme
and nuclear factor-kappa B (NF-κB), and partial activation
of protein kinase B (AKT)/mitogen-activated protein kinase
(MAPK) cascades [59–64].

3.3. Inflammation. Inflammation is a response mechanism
to tissue/cell damage and infection. In dental pulp mesen-
chymal stem cells and GMSCs, inflammation is associated
with higher proliferation rate [65]. Besides, human gingival
tissues from periodontal patients show improved expres-
sions of inflammatory markers such as tumor necrosis fac-
tor-α (TNF-α), interferon gamma (IFN-γ), and interleukins
(ILs) [66]. Inflammation strongly correlates with the decline
in vitamin D; hence, an increase in vitamin D can suppress
both pathogenic invasions and inflammatory responses in
human gingival epithelial cells [67]. LPS from bacteria also
induces the release of proinflammatories IL-6 and IL-8 in
HGFs which maintain the release upon further treatment
with LPS indicating lack of tolerance [68]. Mechanistically,
it is suggested that P. gingivalis LPS binds to the Toll-like
receptor 4 (TRL4) to mediate the downstream regulation
of inflammatory activities [69]. In mouse abscess model,
H2S from P. gingivalis has been reported to only enhance
the inflammatory effect induced by CH3SH [70]. With
respect to lifestyle, electronic cigarettes with flavorings are
associated with high proinflammatory activities and oxida-
tive/carbonyl stress in oral cells [71] and the use of fixed
orthodontic devices with poor oral hygiene, high levels of
H2S, and proinflammatory activities in children [72]. A pre-
vious study suggests that treatment with NaHS aggravates
the proinflammatory activities of P. gingivalis in HGFs and
PDLCs by activating the NF-κB pathway [73]. Meanwhile,
the treatment with GYY4137 in oral mucosa wound reduces
the induced macrophage activation and restores the dimin-
ished H2S levels and prevents the polarization of macro-
phage 1, suggesting a potential anti-inflammatory influence
of the slow-releasing donor [74]. Similarly, in HGFs, the
treatment with diallyl sulfide significantly reduces the LPS-
induced elevation of TNF-α, IL-1β, IL-6, and NF-κB levels
[75]. Overall, these data suggest that H2S may have pro or
anti-inflammatory responses in oral cells. Although, the
leading factors need to be further determined.

4. H2S and Oral Diseases

4.1. Oral Malodour (Halitosis). Halitosis is a common med-
ical condition of the oral cavity associated with the psycho-
logical and physical discomfort as a result of an offensive
bad breath. H2S, (CH3)2S, and CH3SH are the main com-
pounds causing the condition. Halitosis can be classified as
intraoral or extraoral depending on the origin of the com-
pounds. H2S and CH3SH are the common components of
the former type, whereas (CH3)2S features the latter [76].
Extraoral halitosis can be further subdivided into blood-
borne or nonblood borne originating from the respiratory
tracts or blood, respectively. Intraoral halitosis is caused by
several factors including oral bacteria and diseases [77].
Mimicking intraoral halitosis by treating rat epithelial cells
with low concentrations of H2S gas for 50 days results in sig-

nificant changes in cellular structure, vacuolization, and loss
of intercellular matrix resembling halitosis in human [78].
An increase in the abundance of H2S-producing oral bacte-
ria in oral biofilm has been associated with the disease
[79]. In a recent study, both oral malodorous compounds
(H2S, CH3SH, and (CH3)2S) and bacteria diversity have been
reported to be higher in halitosis patients compared to nor-
mal individuals [80, 81]. Among others, the genera Peptos-
treptococcus and Alloprevotella together with the specie
Eubacterium nodatum are highly abundant in halitosis
patients and positively correlate with H2S and CH3SH
concentrations in adults [82]. Similarly, in children with hal-
itosis, evidences indicate that the rate of production/con-
sumption of H2S is high as compared to healthy subjects
[83]. However, the use of mouth-rinsing products could
effectively reduce H2S levels in halitosis patients [84]
(Figure 3). Together, these data show that oral bacteria are
associated with halitosis through their involvement in the
production of H2S. Also, H2S contributes immensely to the
bad smell in halitosis and targeting this compound directly
or indirectly might improve oral health and reduce the
destruction of the oral tissues.

4.2. Periodontitis. Periodontitis is the common oral disease
characterized by the chronic inflammation of the periodon-
tal ligaments leading to the loss of connective tissue, alveolar
bone resorption, and development of periodontal pockets.
Oral bacteria play a major role in the development of this
disease [85]. A qPCR analysis shows high abundance of P.
gingivalis, T. denticola, and T. socranskii in plaque samples
from aggressive (84, 74, and 71%) and chronic periodontitis
patients (95, 94, and 89%) [86]. Antibacterial treatments
inhibiting the growth of P. gingivalis have been shown to
be effective in combating the disease in clinical trials [87,
88]. Similarly, periodontitis is also correlated with oral mal-
odour in patients’ model [89]. In periodontitis patients, H2S
levels show positive association with the abundance of P.
gingivalis in tongue coatings [90], and the bacteria growth
together with volatile smell in the oral cavity can be sup-
pressed with methionine gamma-lyase deaminase/CSE
inhibitor PAG [91]. CBS deficiency specifically causes a con-
dition known as homocystinuria, which is characterized by
elevation of proinflammatories such as IL-1b, IL-6, IL-8,
and TNF-α. A recent study aiming to compare the periodon-
tium of the CBS+/-mouse model to the wild type suggests a
significant correlation between periodontal diseases and
CBS deficiency [92]. Moreover, another study reports that
supplementation of H2S using GYY4137 promotes inflam-
matory and autophagic responses in LPS-treated HPDLCs
and ligature-induced rats [93]. Here, GYY4137 treatment
could markedly elevate the expressions of Bcl-1 and LC-3
and decrease that of p62, whereas the inhibition of the
autophagy with 3-methyladenine further aggravates inflam-
matory activities, implying that the treatment triggers a
protective autophagy in order to avert the enhanced
inflammation. However, another study suggests that a H2S-
releasing ketoprofen drug, ATB-352, can prevent the LPS-
induced periodontitis and associated bone resorption in rats
by reducing inflammation, apoptosis, and ROS through
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attenuating the IL-1β, TNF-α, NF-κB, Bax, cyclooxygenase-
2 (COX-2), and iNOS expressions, myeloperoxidase activi-
ties, and tartrate-resistant acid phosphatase positive cells as
well as upregulating Bcl-2 [94]. This is consistent with the
previous studies conducted using H2S donors, ATB-346,
and Na2S in periodontic rat model which demonstrates the
reduction of proinflammatory activities, ROS, and bone loss
[95]. Meanwhile, NaHS treatment could not show any
reduction or promotion of bone loss in ligature-induced rats
[96, 97], although the presence of both nitric oxide (NO)
and H2S moiety in ketoprofen derivatives might be the rea-
son for the observed anti-inflammatory property. The avail-
able information suggests that the nature of the donor
influences their effects, and leaves the question of the role
of H2S on periodontitis unanswered. But it is possible that
H2S produced by bacteria can facilitate periodontitis; how-
ever, more studies are needed to examine the mechanisms
involved (Figure 4).

4.3. Dental Root Resorption (DRR). DRR is the medical con-
dition featured by the mechanical- or chemical-induced loss
of the protective tissues of the root apex structure of the
tooth which exposes the tissues to bacterial infections [98,
99]. One of the common causes of DRR is orthodontic treat-
ments, although in most cases, the condition is classified as
minor or moderate. Without further stimulation or persis-

tent inflammation, the RR can be routinely repaired [100].
Oral bacteria and their byproducts such as H2S promote
inflammation and in that sense enhance the progression of
DRR. To examine the influence of H2S in DRR, Lu et al. used
a CSE-knockout mouse model and compared them with the
wild type. The results indicate that the downregulation of
CSE, which is the main H2S-producing enzyme in osteoclast,
attenuates the progression of orthodontic RR [101]. Simulta-
neously, the reduction in mRNA levels of the RANKL and
osteoprotegerin which have previously been associated with
proinflammatory responses in orthodontic RR could be
observed in CSE knockout mice [101, 102]. This confirms
that the increase in H2S may promote the progression of
the condition. However, further studies are needed to exam-
ine the effect of exogenously produced H2S in the disease.

4.4. Gingivitis. Gingivitis is an inflammatory disease primar-
ily caused by the deposition of microbial plaque near the
gingival sulcus [103]. The disease is associated with the
abundance of Streptococcus, Fusobacterium, Actinomyces,
Treponema, Capnocytophaga, and Bacteroides. On the other
hand, the healthy gingival is characterized by species such as
Streptococcus sanguis and Fusobacterium naviforme. Gingi-
vitis occurs in two forms: acute necrotizing ulcerative and
chronic gingivitis; however, chronic form is the most com-
mon one. In an earlier study, the accumulation of dental
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plaque has been determined to be much greater in older
individuals that younger ones possibly due to poor oral
hygiene [104]. It has been reported that oral VSCs in dogs
with gingivitis have a significant relationship with the
amount of plaque and the severity of the disease [105]. In
addition, gingival inflammation and bleeding on probing
also correlate with sulfide levels in human gingival mucosae
[106, 107]. Therefore, the elevation of sulfide levels as a
result of the accumulation of pathogenic bacteria in gingivi-
tis can positively influence the disease progression by pro-
moting gingival inflammation.

4.5. Oral Cancer

4.5.1. Oral Squamous Cell Carcinoma (OSCC). OSCC is most
frequently diagnosed type of head and neck carcinoma with
recent global estimation of 377,713 new cases and 177,757
deaths in 2020 [108]. Despite a recent increase in incidence
rate [109], the disease has a relatively stable survival rate
which increased for about 8.4% from 1980s to 2010s [110].
Some of the common risk factors for the disease include
excessive smoking, alcohol abuse, and oral diseases. Other-

wise, oral bacteria have also been identified to be an inde-
pendent risk factor for the disease in nonsmokers and oral
human papillomavirus- (HPV-) negative patients [111]. Gen-
erally, in OSCC patients, key bacteria including Prevotella,
Fusobacteria, Pseudomonas aeruginosa, Haemophilus influ-
enza, Campylobacter, Parvimonas micra, and Filifactor alocis
are distinctly elevated, correlate with the stages of OSCC pro-
gression, and act on vital signaling cascades [112–116].

The analysis of punch biopsies and benign mucosae
reveals that H2S is significantly upregulated in OSCC
patients as compared to the control group as evinced by
the increase of CSE, CBS, and 3-MST levels [117]. In addi-
tion, OSCC also contains higher levels of procarcinogenic
markers such as phosphorylated signal transducer and acti-
vator of transcription-3 (p-STAT3), mitoNEET, telomerase
reverse transcriptase, and MAPK. Besides, the extreme vola-
tile malodor has also been reported in head and neck carci-
noma patients and suggested to be a potential diagnostic
target for the diseases, which further confirm a decisive rela-
tionship between these volatile compounds and the disease
[118, 119]. It has been shown that surgical treatment of
OSCC can effectively reduce the volatile malodor including

LPS

LC-3 p62

Autophagy

Inflammation
Apoptosis

Periodontitis

Oxidative
stress

COX-2

ILs

IFN-𝛾

NF-𝜅B

TNF-𝛼Bax

Casp
iNOS

MPO
NADPH4

Oral bacteria

Exogenous
H2SVSCs

Figure 4: The illustration depicting the role of oral bacteria in periodontitis. VSCs and LPS produced by oral bacteria induce the promotion
of inflammation, apoptosis, and oxidative stress by targeting several associated markers including ILs, COX-2, TNF-α, IFN-γ, NF-κB, Bax,
Casp, NADPH4, iNOS, and MPO. However, exogenous H2S suppresses LPS induced changes and triggers autophagy via LC-3 and p62
ultimately attenuating inflammation. H2S: hydrogen sulfide; LPS: lipopolysaccharides, VSCs; volatile sulfur compounds, NADPH4:
nicotinamide adenine dinucleotide phosphate oxidase 4; MPO: myeloperoxidase; iNOS; inducible nitric oxide synthase; Bax: BCl-2-
associated X protein; Casp: caspases, NF-κB: nuclear factor-kappa B; ILs: interleukins, COX-2: cyclooxygenase 2; TNF-α: tumour necrosis
factor alpha; IFN-γ: interferon gamma; LC-3: microtubule-associated protein 1A/1B-light chain 3.

6 Oxidative Medicine and Cellular Longevity



those of sulfide containing compounds commonly generated
by oral bacteria [120, 121]. Using a donor NaHS, previous
studies suggest that the exogenous H2S promotes the prolif-
eration and cell cycle progression in OSCC cell lines Cal27,
GNM, and WSU-HN6 through elevating the expressions of
proliferating cell nuclear antigen and cyclin-dependent
kinase 4 and reducing those of replication protein A 70
and retinoblastoma protein 1 via the AKT/extracellular
signal-regulated kinase 1/2 (ERK1/2) pathways [121, 122].
Together, these data confirm the involvement of oral bacte-
ria and their products including H2S in the progression of
OSCC and illuminate the potential of inhibiting the produc-
tion of H2S in combating this disease.

4.5.2. Oral Adenoid Cystic Carcinoma (OACC). OACC is the
rare form of head and neck carcinoma of unknown etiology.
The statistics show a decline in the prevalence of the disease
from 1970s to 2000s [123]. Despite having a relatively high
short-term overall survival which ranges from 90% in 5
years to 69% in 15 years, the disease has high recurrence rate
[124, 125]. Although not 100% effective, both surgery and
radiotherapy can significantly impede the progression of
the disease [126]. The analysis of oral bacteria composition
between OACC patients and healthy individuals indicates a
considerable difference in genera Streptococci, Neisseria,
and Porphyromonas [127]. In a case study of a single, 54-
year-old female OACC patient, the protein expressions of
the three H2S-synthesizing enzymes as well as those mito-
NEET and nicotinamide phosphoribosyl transferase have
been reported to be upregulated in OACC tissues as opposed
to adjacent benign oral mucosae; however, the decrease in
the production of H2S for over 30% could also be observed
in the OACC samples, indicating that the H2S is overutilized
in the disease model and might be involved in the progres-
sion of the disease [128]. So far, little is known on the role
of oral bacteria and oral malodour in the development of
OACC. Even though the available information suggests the
involvement of H2S in the progression of the disease, the
influence of exogenous H2S demands further exploration.

4.5.3. Oral Cavity Mucoepidermoid Carcinoma (MEC). MEC
is one of the least-researched cancers but a highly prevalent
salivary gland malignancy. The disease has relatively favour-

able prognosis; however, advanced age, advanced stage, and
high-grade tumors negatively impact the survival rate [129,
130]. Surgery is the common treatment option for the dis-
ease. In a single-case study involving a 55-year-old woman,
the expressions of CSE, CBS, and 3-MST have been reported
to be elevated in MEC tissues; meanwhile, the levels of free
H2S, acid labile, and bound sulfane sulfur remain the same
between MEC and neighboring benign oral mucosae [130].
In addition, the study reported the elevation of key markers
such as phospho-ser727-STAT-3 and Nampt that are known
to promote cancer growth and metastasis as well as interact
with H2S-synthesizing enzymes [131, 132]. Furthermore, the
antiapoptotic and antiautophagic protein mitoNEET has
also reported to be upregulated in the metastatic tissue as
compared to benign [133]. Collectively, this information
indicates that H2S is highly produced and utilized in MEC
and plays a crucial part in the progression of the disease.
However, limited information is available on the matter,
and more studies are needed to deepen the exploration.

4.6. Endodontic Treatment Failures. Endodontic treatment
incorporates surgical and nonsurgical treatment options for
root canal [134, 135]. The therapy involves the treatment
of the infection, removal of the invading microorganisms,
and perfect sealing of the canal. Despite the success of the
method used, in significant cases, the treatments have been
reported to fail. Some of the factors causing the failure of
the therapy as identified in patients from Japan include per-
foration, root fracture, open apices, periodontic diseases,
fenestrations, and accessory canal [136]. Apart from these
factors, another key causative of endodontic failures is bacte-
rial infection [137]. A substantial difference has been
reported in patients with failed treatment as opposed to
the untreated ones, with the former featured by the domi-
nance of Enterococcus faecalis [138]. Also, bacteria such as
P. gingivalis and F. nucleatum have been reported to partic-
ipate in the treatment failure. With respect to H2S, previous
studies indicate that VSCs specifically H2S and CH3SH can
trigger proinflammatory responses in endodontic treatment
failures by increasing the levels of IFN-γ and IL-10 in
patients [139, 140]. This suggests that H2S produced by oral
bacteria can potentially increase inflammation which in turn
hinders the treatment efficacy.

Table 1: Some of the clinical trials targeting VSCs in treating oral diseases.

Treatment option Disease Effects References

Chlorhexidine

Halitosis
Reduces H2S-producing bacteria as

well as H2S levels
[145–150]

Colgate 360

Triclosan/copolymer/dentifrice

Rinsing or drinking of water

Hinokitiol-containing gel

Pycnogenol

YAG laser irradiation Periodontitis Reduces VSCs [151]

Antiplaque dentifrices
Gingivitis Reduces VSCs and proinflammatories [152, 153]

Oral prophylaxis such as tongue scraping
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5. Conclusion

H2S is among the VSCs released by the oral microbes and
strongly produced by oral cells. The upregulation of H2S
production as result of endogenous/cellular mechanisms or
exogenous/bacteria activities has significant impact in oral
health. This is due to the role of H2S in regulating cellular
activities such as oxidative stress, apoptosis, cell differentia-
tion, and inflammation. In most oral diseases, H2S is a prereq-
uisite for further progression and severe conditions. Besides,
the reducing power of H2S helps to suppress the effects of
drugs that work primarily through promotion of oxidative
stress; this is a crucial mechanism observed in antibiotic resis-
tance by the oral bacteria. In recent years, the role of H2S has
been well documented in various diseases including cancer,
heart diseases, respiratory diseases, and metabolic diseases
[141–144]. Despite high production of this gas by pathogenic
oral bacteria, yet few information is available concerning the
matter. In chronic oral diseases such as cancers, high produc-
tion and high utilization of H2S have been reported to the
extent that cancer tissues and surrounding tissues have no
significant difference in H2S levels despite high levels of the
synthetase enzymes observed in cancer tissues. Also, few clin-
ical trials are available on the subject and none of them specif-
ically targeted H2S alone which stresses the need for further
studies to be conducted (Table 1). Therefore, it is important
to examine the role of H2S in oral diseases in order to establish
literature foundation for the possibility of using this gasotrans-
mitter as diagnostic tool or therapeutic target.

Additionally, treatment of oral diseases with H2S donors
has also been shown to have conflicting outcomes; this effect
is possibly in relation to the nature of the donor used and
their mechanism of actions. With regard to this, it is crucial
to determine the impact of downregulation of H2S levels in
these disease models and check the possibility of combining
H2S inhibitors and other treatment options for oral diseases
in order to improve the sensitivity of the therapies. One of
the challenges facing the inhibition of H2S in oral diseases
especially the H2S produced by oral bacteria is the complex-
ity of their mechanisms. Different bacteria can produce the
gas through different enzymes which affects the specificity
of the available inhibitors. With further research, many chal-
lenges facing this venture will be solved. Hence, it is indis-
pensable to examine the mechanism used by H2S to induce
its effect in oral diseases, cellular activities targeted, and out-
come. Otherwise, the future advance in this field will help to
clarify and improve the current knowledge available con-
cerning H2S and oral diseases.
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