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Abstract: Tumor heterogeneity impinges on all the aspects of tumor history, from onset to
metastasis and relapse. It is growingly recognized as a propelling force for tumor adaptation
to environmental and micro-environmental cues. Metabolic heterogeneity perfectly falls into
this process. It strongly contributes to the metabolic plasticity which characterizes cancer cell
subpopulations—capable of adaptive switching under stress conditions, between aerobic glycolysis
and oxidative phosphorylation—in both a convergent and divergent modality. The mitochondria
appear at center-stage in this adaptive process and thus, targeting mitochondria in cancer may
prove of therapeutic value. Metformin is the oldest and most used anti-diabetic medication and its
relationship with cancer has witnessed rises and falls in the last 30 years. We believe it is useful
to revisit the main mechanisms of action of metformin in light of the emerging views on tumor
heterogeneity. We first analyze the most consolidated view of its mitochondrial mechanism of action
and then we frame the latter in the context of tumor adaptive strategies, cancer stem cell selection,
metabolic zonation of tumors and the tumor microenvironment. This may provide a more critical
point of view and, to some extent, may help to shed light on some of the controversial evidence for
metformin’s anticancer action.

Keywords: metformin; cancer stem cells; autophagy; metabolic heterogeneity; mitochondria;
OXPHOS; therapeutic target; ETC; STAT3; NFkB

1. A Brief Intro to Tumor Heterogeneity

“Tumor societies are highly adapted for survival” is a definition from Dr. Gloria Heppner which
captured, 36 years ago, the deep meaning of tumor heterogeneity [1]. In fact, it is now recognized
that tumors at diagnosis are a kaleidoscopic collection of genomically, epigenetically, metabolically,
and topographically different subclones, arranged into a complex ecosystem. The coexistence of
different cell subpopulations within a single tumor plays crucial roles during all stages of carcinogenesis
and poses challenges for clinical treatments by directly impinging on adaptive stress tolerance [2–5].
Genetic and epigenetic events may draw the landscape for tumor heterogeneity, which is then greatly
fueled by dramatic remodeling of the secretome, paracrine signaling and adaptive metabolism [2,6].

Therapy-induced stress may further promote metabolic heterogeneity, favoring dynamic shifts
between aerobic glycolysis and mitochondrial oxidative phosphorylation (OXPHOS) [7–9]. In more
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detail: advanced modelling inferred from correlating gene expression and metabolic foot-printing of
tumors, has shown that cancer cells are capable of adopting metabolic intermediate states in a very
dynamic way and to a larger extent than normal cells [10]. Thus, tumors may use both aerobic glycolysis
and OXPHOS, to a variable extent, depending on tumor stage and time [11–14]. The AMP-activated
protein kinase (AMPK) is the main molecular rheostat governing such plasticity [15]. Thus, targeting
metabolic adaptation to subvert therapeutic resistance is a clinically viable approach [14,16]. In this
review we will discuss metformin and its mechanism of action (MoA). We discuss how such a long-lived
drug, may impinge on adaptive strategies of tumors, by targeting both converging mechanisms
(common to both normal and transformed cells) and context-specific alterations.

2. Metformin Elicited Signaling Disturbance

Metformin (N′,N′-dimethylbiguanide) represents the most frequently administered drug to treat
patients with metabolic syndrome and type 2 diabetes, worldwide. Its use has spanned over 60 years
and is partially due to a very positive risk–benefit profile [17–20]. Systemically, metformin therapy
lowers blood glucose in type 2 diabetes patients by targeting hepatic gluconeogenesis and by increasing
glucose uptake in the peripheral tissues, mainly muscles, and indirectly reduces the insulin blood levels
by counteracting insulin resistance [19,21]. Before digging into the relationships between metformin
and cancer, we believe it may be useful to quickly review the main mechanism of action (MoA) of
metformin in diabetic, non-cancer patients.

Undisputedly, the finding that metformin indirectly activates the adenosine 5′-monophosphate
protein kinase (AMPK) [22–24], represented an important turn in the still unfinished quest for its
mechanism of action (MoA) [25] (Figure 1). The “secret recipe” in metformin’s MoA consists of its
hydrophilic nature, cationic behavior, Fe and Cu-binding properties and a pKa within the physiological
pH range [26]. Metformin accumulates in the mitochondria of intact cells by virtue of its positive
charge [27] (Figure 1), causing inhibition of complex 1 of the respiratory chain [28]. In detail,
metformin interferes with the coupling of redox and proton transfer domains in complex 1, resulting
in altered redox status at the mitochondria and cytosol [26,29] and reactive oxygen species (ROS)
accumulation [27,30]. The reduced phosphorylation of adenine nucleotides and accumulation of AMP
allosterically determines the liver kinase B1-STE20-related pseudokinase-calcium binding protein-39
(LKB1-STRAD-CAB39)-mediated activation of AMPK [31]. Furthermore, “non-canonical” activation of
AMPK takes place at lysosomes and is triggered either by changes in fructose-1,6-bisphosphate (F1, 6P2)
which affects LKB1-mediated phosphorylation [32], or by galectin-9-promoted transforming growth
factor-β-activated kinase-1 (TAK1)-mediated phosphorylation [33], the latter being linked to induction
of autophagy [34,35]. Interestingly, activation of AMPK seems to be spatially and temporally regulated:
a mild increase in AMP may activate the cytoplasmic and lysosomal pool while a more sustained
increase in AMP may promote phosphorylation of AMPK by the LKB1 complex in mitochondria [36].
This may have a functional consequence in light of the topographic constraints and gradients existing
within both normal tissues and in the tumor mass.

Regarding the inhibition of gluconeogenesis, recent evidence shows that the early,
acute downregulation of gluconeogenesis is AMPK independent and is possibly linked to compromised
functioning of complex 1 that causes unbalanced NADH/NAD in mitochondria and an altered cytosolic
redox state [26,37] and/or by inhibition of the mitochondrial glycerol-phosphate dehydrogenase
(mGPD) [38].
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activates, allosterically, the kinase LKB1 which phosphorylates AMPK. mTORC1 functions as an 
environmental sensor and is activated by insulin signaling and growth factors to promote anabolic 
metabolism and to inhibit autophagy. Metformin-stimulated AMPK reverses mTORC1 actions. 
mTORC2 is activated by AMPK and stimulates increased glucose entry into muscles and reduced 
glucose production in the liver. ACC inhibition reduces fatty acid synthesis and may increase 
collective protein acetylation (increased acetyl-CoA) thus exerting transcriptional modulation. 
Metformin-stimulated-AMPK controls transcriptionally hepatic gluconeogenesis. Metformin 
interferes with the increase in HIF-1α and the control of glycolytic genes and GLUT transporters, 

Figure 1. Schematic model of metformin action. Systemically, metformin lowers the glucose levels
and, indirectly, reduces insulin levels. Metformin crosses the plasma membrane at least partially
through organic cation transporters (OCTs and related) and enters mitochondria where it affects
complex 1 coupling and causes altered redox status and increased AMP/ATP ratio. This latter activates,
allosterically, the kinase LKB1 which phosphorylates AMPK. mTORC1 functions as an environmental
sensor and is activated by insulin signaling and growth factors to promote anabolic metabolism and
to inhibit autophagy. Metformin-stimulated AMPK reverses mTORC1 actions. mTORC2 is activated
by AMPK and stimulates increased glucose entry into muscles and reduced glucose production in
the liver. ACC inhibition reduces fatty acid synthesis and may increase collective protein acetylation
(increased acetyl-CoA) thus exerting transcriptional modulation. Metformin-stimulated-AMPK controls
transcriptionally hepatic gluconeogenesis. Metformin interferes with the increase in HIF-1α and the
control of glycolytic genes and GLUT transporters, including the expression of PFK2 which increases
the levels of the metabolite fructose-2,6-P2, allosterically activating PFK-1. Downregulated expression
of ACC, FASN, ACLY and SCD1 was promoted by metformin, through interference with SREBP-1c
and TR4.

The late inhibition of gluconeogenesis happens transcriptionally and is AMPK dependent.
In this latter process, the small heterodimer partner (SHP), a transcriptional co-repressor,
and phosphorylation of CREB binding protein (CBP) by AMPK-PKCι/λ (protein kinase C)
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were shown to play critical roles [39–42] (Figure 1). Additionally, even with some context
specificity, AMPK targets additional metabolic enzymes such as HK2, glycogen synthase (GS),
and hydroxy-methyl-glutaryl-CoA reductase (HMGCR) [43,44]. Metformin also downregulated
the expression of glucose transporters (GLUT1, GLUT3) and of glycolytic enzymes such as
hexokinase 2 (HK2), 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4 (PFKFB4), pyruvate
kinase (PKM) and lactate dehydrogenase A(LDH) [45]. In hepatocarcinoma cells (HCC), metformin
inhibited phosphofructokinase-1 (PFK1) activity by suppressing the expression of PFK2, thereby
reducing the allosteric activation of PFK1 by fructose-2,6-bisphosphate [46] (Figure 1). These effects
were achieved through metformin-induced inhibition of HIF-1α activity and its binding to the
hypoxia-responsive elements (HRE) within the promoter region of these genes [47]. Collectively,
the effect of metformin-activated AMPK accounts for increased catabolism and decreased anabolism
by modulating protein synthesis, lipid homeostasis, glycolysis—and mitochondrial homeostasis,
in addition to transcriptionally modulating gluconeogenesis (Figure 1).

2.1. Metformin Modulates the Activity of mTORC1 and mTORC2 Complexes

Mammalian target of rapamycin (mTOR) is the core of two, functionally distinct, multiprotein
complexes, mTOR complex 1 (mTORC1) and mTORC2 [48], oppositely modulated by metformin via
AMPK [49,50]. mTORC1 activation exerts anabolic effects (through increased ribosome biogenesis,
lipid, nucleotide and protein synthesis) and suppresses autophagy. The mTORC1 is activated by insulin
and growth factors via phosphatidyl-inositol 3-kinase (PI3K)/AKT [50]. Activated AMPK directly
phosphorylates tuberous sclerosis complex 2 (TSC2), thereby inhibiting mTORC1 [49]. mTORC1
signaling can also be inhibited by a metformin-sensitive Ras-related GTPase, as shown in mouse embryo
fibroblasts [51]. On the other hand, metformin-stimulated AMPK activates mTORC2, thereby promoting
cell survival and systemically reducing hepatic glucose production [52].

2.2. Metformin Inhibits Fatty Acid Synthesis

Another direct AMPK target protein highly relevant for cellular energy consumption, is the
acetyl-CoA carboxylase (ACC), deactivated by AMPK via phosphorylation [53]. The inhibition of
ACC activity decreased fatty acid synthesis consequent to a reduced conversion of acetyl-CoA to
malonyl-CoA [54] (Figure 1). ACC inhibition increases collective protein acetylation and thus, may exert
transcriptional modulation [43,44] (Figure 1). Additionally, phosphorylation by metformin-activated
AMPK inhibited the proteasome-mediated degradation of insulin-induced gene 1 (Insig-1), which in
turn reduced the activating cleavage of the transcription factor sterol regulatory element-binding
protein-1c (SREBP-1c) and consequently, reduced lipogenic gene expression [55] (Figure 1). In a mouse
hepatoma model, metformin decreased de novo fatty acid synthesis by reducing, transcriptionally,
the expression of acetyl CoA carboxylase, fatty acid synthase (FASN) and ATP citrate lyase (ACLY) [56].
Additionally, metformin impaired—AMPK-dependently—the binding and transactivation of the
nuclear receptor TR4 to its responsive elements in the stearoyl-CoA desaturase-1 (SCD1) promoter,
in hepatocytes [57] (Figure 1).

2.3. Metformin Modulates Gut Microbiota

Remodeling the gut microbiota mediates the therapeutic effects of metformin and is responsible
for its known gastrointestinal side effects [58,59]. In fact, there is long-known evidence showing
that the full glucose-lowering effect of metformin is bound to its oral administration [60] and that
antibiotics may blunt the effect of metformin in animal models [61]. Additionally, the concentration
of metformin in the jejunum was estimated to be from ten to a few hundred times higher than in
plasma [62]. The changes in microbiota elicited by metformin in diabetic patients can be relevant
for its anticancer action, given the involvement of gut microbiota in the pathogenesis of colorectal
cancer (CRC) and other solid tumors [63]. For instance, an effect of metformin on the abundance of
intestinal Akkermansia muciniphila has been reproducibly reported [61,64]. A. Muciniphila was shown
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to increase the abundance of gut-targeted CD4+ T cells, providing an adjuvant effect to the action of
anti- programmed cell death -1 (PD-1) agents, in animal models of melanoma and non-small cell lung
cancer (NSCLC) [65] and in a model of microsatellite-stable (MSS) colorectal cancer [66].

3. Metformin in Cancer Patients

Epidemiological studies suggest preventive effects of metformin on many types of human
cancers [67]. A large, population-based, case–control study in the Tayside region of Scotland evidenced
that in type 2 diabetic patients, using metformin was associated with reduced risk of breast cancer [68].
This was further supported by evidence in liver, colon, and pancreatic cancer patients, obtained
elsewhere [69]. In therapeutic settings, improvement of overall survival (OS) was observed in breast,
pancreatic, liver, colorectal and prostate cancer, generally in window-of-opportunity trials [70,71].
Effects of metformin were shown also in non-diabetic colorectal-cancer (CRC) and breast cancer
patients [72,73]. More recently, an observational, large, population based study on 315,000 patients has
partially challenged the above findings, except for prostate and pancreas cancers [74].

3.1. Metformin in Cancer Cells: Influence of Intra- and Inter-Tumor Heterogeneity

The anticancer effect of metformin dates back pretty far in time. In the late seventies, metformin
and phenformin had already been shown to suppress chemical carcinogenesis in rats and to foster
immunity in breast cancer patients [75,76]. Since then, there have been more than 5000 publications
and dozens of evoked MoAs. This is noteworthy, considering that high blood insulin levels represent
an important prognostic factor for many solid cancers, partly because of the proliferative signals
delivered by the insulin receptor and the insulin-like growth factor receptor (IGFR) [77,78]. The ability
of metformin to indirectly lower insulin in the blood by attenuating insulin resistance [79] represents a
first important anti-cancer property of the molecule (Figure 1). Now, it may help to further consider
some aspects of the inter- and intra-cancer heterogeneity which may prompt for a more critical
understanding of metformin action in cancer and may justify the heterogeneity of results reported in
the literature. Firstly, in tumors, metabolic routing of survival strategies is very dynamic [4]; it is usual
that, in a tumor tissue, a fraction of the cells are in an aerobic glycolytic state, while a significant fraction
are utilizing, to a various degree of efficiency, both OXPHOS and aerobic glycolysis [10]. This may
be influenced by nutrient availability, local hypoxia and effects of the oncometabolites [11] (Figure 2).
This may create a zonation phenomenon, recently described for cancer tissues [80,81] (Figure 2).
For example, in human glioblastomas, the proximity to the blood vessels determines “zonation”
of both “transcriptomically” and “metabolomically” distinct cell subpopulations [80]. Pertinently,
the expression of organic cation transporter 3 (OCT3), considered the main organic cation transporter
responsible for metformin uptake into the cells [82], can be very heterogeneous in a single tumor [83].
Further on this topic, only a variable fraction of tumor cells are in an epithelial-to-mesenchymal (EMT)
state or possess mesenchymal features in vivo and the EMT state was shown to modulate sensitivity of
breast cancer cells to metformin [84]. It is therefore likely that only a fraction of cells in a given region
of the tumor, at a given time in its history, may be sensitive to metformin action.

It may be interesting to consider, besides intra-tumor heterogeneity, how the inter-tumor differences
may shape metformin’s response. For example, a recent algorithm-assisted proteomic characterization
of ten hepatocellular carcinoma tissues as compared to “normal” peri-tumoral ones, revealed a huge
heterogeneity affecting most of the pathways analyzed and could be exemplified by a high variability
in lactate production and glycogen accumulation. Consequently, all the analyzed tumors behaved
differently to metformin challenge [85]. In this case, a possible difference in the biological stage of the
tumors could be called in question: it is indeed known how the mitochondrial (and OXPHOS) fitness
increases with the tumor stage (Figure 2). In fact, mitochondrial biology may vary with tumor stage,
with a general increase in mitochondrial fitness supporting mature stages of tumor formation and
progression, including resistance to therapy and metastasis [13].
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Figure 2. A schematic representation of the main factors modulating the anticancer effects of metformin.
The genetic background of the tumor may primarily influence the inter-tumor heterogeneity. The extent
of hypoxia and fibrosis and, ultimately, the nutrient availability and the release of oncometabolites may
greatly vary among patients as a function of tumor size and location, thus creating spatially defined
metabolic zonation phenomena inside the tumor. The composition of the tumor microenvironment
(TME) influences and is influenced by therapy-induced changes within the tumor which may trigger
epigenetic reprogramming. Altogether, these factors promote the emergence of stress-adapting cancer
cell subpopulations, with features of cancer stem cells (CSCs). The tumor stage-dependent change in
mitochondrial fitness may contribute to the selective pressure driving the oligo-clonal emergence of
CSCs. Those cell subpopulations may ultimately drive tumor metastasis and relapse and may resist
metformin treatment as a single agent by acquiring dynamic metabolic states. Please note that the
circular arrows indicate that both inter- and intra-tumor heterogeneity are self-fueling processes which
strongly influence each other.

In support of the above considerations, a recent pharmacogenomics study on both primary cultures
and cancer cell lines has revealed a significant cell context-specific variability of response to metformin.
Cell survival analysis, transcriptome and whole exome sequencing analysis were performed on both
primary dermal fibroblasts and induced-pluripotent-Stem cells (IPS), derived from NSCLC patients.
Cells of identical genotypes from different tissues or in different stages of development exhibited
differential sensitivity to metformin. In detail, skin fibroblasts, iPS- derived FOXA2+ or NKX2.1+ lung
endoderm cells showed very different responses to metformin treatment, despite being derived from
the same patient [86]. In the same study, the authors identified specific genomic signatures of response
to metformin, associated with single nucleotide variations (SNVs) and “small indels”, differentially
represented in metformin-sensitive and -resistant cells [86].

It is also relevant to consider the contribution of the tumor microenvironment [87] to metformin’s
effect and vice versa: metformin, as somehow expected, acts on the tumor microenvironment,
thereby perturbing the tumor stroma crosstalk, as very recently shown in endothelial cells and
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ovarian cancer-associated fibroblasts (CAFs) [88–90]. As it follows, the heterogeneity of the tumor
microenvironment, which is highly regarded as a determinant of tumor progression and response to
therapy, may influence metformin action (Figure 2) [90].

These considerations, collectively, suggest the usefulness of combinatorial usage of metformin to
target insensitive cell subpopulations and to increase the therapeutic window of the combined agent.
This is detailed in the following paragraphs.

3.2. Molecular Mechanisms for Anticancer Effects: It May All Start from Mitochondria

3.2.1. Dose of Metformin in Cancer Studies, a Long Debate with a Recent Twist

Firstly, some consideration regarding the dose of metformin used for cancer studies. Metformin
doses used in cancer studies often exceed the feasible therapeutic plasma levels (0.465–2.5 mg/L or
2.8–15 mM) in humans. In fact, clinical studies use metformin up to 2500 mg/day (for an average sized
person of 60 kg). Animal studies use metformin at doses up to 750 mg/Kg/day. Finally, in vitro cancer
studies report using doses of metformin between 1 and 60 mM (for reviews, [91–93]). This has ignited
a long debate on the relevance of “mitochondrial effects” in cancer experiments, with the idea that
supra-pharmacological concentrations of metformin may “collapse” mitochondrial respiration, in an
AMPK-independent and possibly, biologically irrelevant way. This debate has also stimulated the still
ongoing search for a metformin mitochondrial transporter responsible for its accumulation into the
inner membrane [92,94].

However, functional impairment of mitochondria was the most conserved feature observed when
applying metabolomics to biopsies from advanced ovarian cancer patients treated with metformin,
which were otherwise wildly heterogeneous [95], suggesting that mitochondrial targeting takes place
and is relevant in vivo. Further, mitochondria-targeted analogues of metformin exerted clear anticancer
effects [96–98]. In breast cancer cell lines that have undergone EMT, visual proof of mitochondrial
targeting of metformin-analogues in fixed, intact cells has been obtained [99]. The copper- and
iron-binding properties of metformin [29,100] were instrumental for its targeting to mitochondria and
complex 1 dis-functioning [99]. Unfortunately these labeled metformin analogues were not used in
parallel on untransformed cells, where previous biochemical fractionation suggested poor mitochondrial
targeting of metformin [101,102]. Thus, there is still the possibility that the mitochondrial uptake of
metformin is mechanistically different in untransformed cells and, possibly, influenced by the EMT
status [103]. This would further support metformin’s therapeutic window. Finally, a reconciling piece
of evidence is that, while supra-pharmacological doses (within the mM range) are required to induce
antitumor effects in vitro, metformin intra-tumor concentrations in vivo were reported to be equal
to those reached in plasma in orally-administered mice [104]. Thus, not surprisingly, tissues behave
much differently from cells in vitro. Possibly, the glucose- and growth factor-rich conditions typical
of in vitro cell culture media, and shown to dampen the effect of metformin, may cause the need for
supra-pharmacological doses of the drug, in vitro [105]. After these considerations, we believe it is
safe to recognize mitochondrial targeting as a first site of action for metformin in cancer cells.

3.2.2. Mitochondria Targeting Is Central to Metformin Anticancer Effects

Mitochondrial function is essential for tumor growth [106]. In fact, anabolic metabolism is crucial
to support proliferation and survival [107] and mitochondria provide key fluxes of building blocks for
macromolecule synthesis [108]. Additionally, mitochondria dynamically release key onco-metabolites,
such as 2-hydroxybutarate (2HG), succinate, and fumarate, instrumental for the survival and networking
of cancer cells in stress conditions [109,110]. Thus, mitochondria in cancer are a critical hub where
stress-induced adaptive changes, including resistance to therapy, converge [111]. Besides functioning
as an adaptive rheostat, these organelles are actively involved in supporting the survival of cancer
cells through networking with the tumor microenvironment (TME) cell subpopulations, like cancer
associated fibroblasts (CAFs) [112]. The way metformin alters the mitochondrial coupling at the electron
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transfer complex (ETC) is likely to be very similar to that discussed in non-cancer patients. In fact,
the mitochondrial uncoupling effect of metformin triggers NAD+/NADH reduction and aspartate
depletion [113], blocks the tricarboxylic acid cycle (TCA)-driven de novo fatty acid synthesis [114] and
alters the adaptive response to hypoxia [115].

Still, AMPK activation by metformin with its opposite actions on mTORC1 and mTORC2 is
the most studied mechanism of action of the drug [49,50]. On a molecular level, the “canonical
pathway” consisting of LKB1-dependent and AMPK-dependent growth inhibition, consequent to the
mitochondrial uncoupling effects of the drug, was the first mechanism to be considered in cancer [91].
Among the AMPK effectors, we consider, firstly, the effect of metformin-activated AMPK towards
molecules and processes involved in stress adaptation; additionally, we consider metformin’s effect,
first on bulk cell populations and, next, on specific cancer cell subpopulations.

4. Metformin May Impair the Tumor Response to Stress

4.1. Metformin, p53, STAT3, NFkB, ER-Stress and Other Stress Adaptive Processses

4.1.1. Metformin and p53

Collectively, wild-type p53 inhibits the shift from oxidative phosphorylation to glycolysis [116,117],
promotes fatty acid oxidation while preventing lipid accumulation in cancer cells [118] and does so by
modulating hundreds of targets [119]. For example, p53 upregulated expression of sestrin1/2 with
consequent AMPK activation and inhibition of mTORC1 [120]. Further, gut specific activation of
wtp53 revealed a transcriptional program enriched for OXPHOS functions [121]. On the other hand,
loss of p53 elicited a Warburg-like metabolism [122,123]. Metformin-stimulated AMPK promoted p53
phosphorylation on Ser15 to trigger cell-cycle arrest [124]. Additionally, phosphorylation of human
mouse double minute X (MDMX) on Ser342, leading to p53 stabilization, has been reported [125].
p53 stabilization was observed also in melanoma and lymphoma cells [126,127]. Stabilization and
nuclear targeting of p53 by metformin may mediate, at least in part, the anti-proliferative and
anti-glycolytic actions of the biguanide in cancer cells. What is less clear, is how the OXPHOS
promoting activities of metformin-activated p53 match the mitochondrial dysfunction induced by
metformin. Of note, is that the timing of the events (mitochondria uncoupling vs. transcriptional
modulation) is different, but more investigation on this matter would be desirable.

4.1.2. Metformin and STAT3

Signal transducer and activator of transcription 3 (STAT3) is involved in many aspects of cancer
adaptation to micro-environmental stress [128]. STAT3 shifts metabolism towards aerobic glycolysis
via increased transcription of hypoxia inducible factor 1α (HIF-1α) [129]. Furthermore, the recently
recognized mitochondrial targeting of STAT3 suggests that the action of the protein is even more
complex and possibly phosphorylation dependent [130,131]. In fact, tyr705-STAT3 has been involved
in mitochondrial gene transcription (OXPHOS genes), while the ser727-STAT3 was shown to modulate
mitochondrial influx of calcium and to increase the efficiency of the ETC (for a review, [132]). Metformin,
AMPK dependently, reduced both Ser727 and Tyr705 phosphorylation of STAT3 in four triple negative
breast cancer (TNBC) cell lines [133]. Additionally, it reduced Tyr705 and/or Ser727phosphorylation
in eight primary breast cancer cell cultures [134] and decreased Tyr705 and Ser727phosphorylation
in glioblastoma, bladder cancer, cholangiocarcinoma and castration-resistant prostate cancer cell
lines [134–137]. It would be interesting to assess whether metformin may interfere with mitochondrial
OXPHOS at multiple levels, with early and late effects depending on the STAT3 phosphorylation status
of the targeted cells.
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4.1.3. Metformin and NFkB

Metformin reduced the nuclear localization of nuclear factor kappa-light-chain-enhancer of
activated B cells (NFkB), with functional effects on proliferation and secretion of pro-inflammatory
cytokines [134,138,139]. The relationship of NFkB with cancer metabolism is linked to
mitochondrial [140] and p53 status. It ranges from increased glycolytic flux, to upregulation of
OXPHOS in p53 deficient and p53 proficient contexts, respectively (for a review, [141]). In fact,
impaired OXPHOS and mitochondrial function in primary chronic lymphocytic leukemia (CLL),
and Richter syndrome cultures and mouse models treated with a preclinical grade NFkB inhibitor
correlated with reduced nuclear accumulation of p65 [142]. A combined effect of metformin on p53
stability and NFkB localization may represent a further mechanism through which the drug alone, or in
combination, would tackle the metabolic plasticity of cancer tissues. In line with this, as an effect of
adaption to doxorubicin selection, MCF-7 cells reduced transcription of OXPHOS genes and increased
nuclear localization of NFkB and p53. Encouragingly, metformin treatment reversed all these changes,
and this correlated with restored sensitivity to the doxorubicin [84].

4.2. Metformin and Autophagy

Autophagy is a main cellular process which warrants cellular homeostasis in response to
metabolic stress [143]. Defective or altered autophagy is clearly associated with disease states, including
cancer. Interestingly, while increased autophagy exerts tumor suppressive functions at early stages
of cancer development [144], in fully developed tumors it is largely employed for anabolic adaptive
survival during therapy [145]. For instance, increased autophagy in the tumor microenvironment is
increasingly regarded as relevant for tumor progression, as shown for colorectal and head and neck
cancer cells [146,147]. Finally, chemo- and radio-resistant breast, ovarian, pancreatic and colorectal
cancer cells were shown to upregulate autophagy under therapy-induced pressure [145]. Metformin
induced autophagy, in gastric, liver cancer and myeloma cells through mTORC1 inhibition [148–150],
or by inhibiting small mother against decapentaplegic-3 (SMAD3) phosphorylation in melanoma
cells [151], at millimolar doses. AMPK phosphorylates forkhead boX O family of transcription factors-3
(FOXO3) at Ser413 or Ser588 and increases its nuclear localization and transcriptional activity [152]
thereby contrasting the PI3K-AKT derived signals, which act oppositely and promote FOXO3
degradation [153]. FOXO3 modulates, transcriptionally and post-transcriptionally, autophagy-related
genes (for a review, [154]). The effect of metformin-instigated AMPK on FOXO3 activation was
observed in ovarian, breast and endometrial cancer cells [155–157].

The link between metformin and autophagy may be indirect and context specific; in fact, metformin
was also shown, when used at micromolar doses and for a prolonged time on breast and cervical
cancer cell lines, to cause autophagy inhibition by decreasing glutamine metabolism and ammonia
accumulation [158]. While this discrepancy echoes what has already been discussed in this review,
regarding the variety of dose-experimental settings adopted in cancer experiments, it is noteworthy
that metformin seems to target a main Achilles’ heel of tumor cells: the glutamine addiction and
its adaptive rerouting to sustain nucleotide synthesis (by providing alpha-ketoglutarate to the TCA
cycle) and the glutathione (GSH) redox system [159–161]. Evidence for an effect of metformin on
glutaminase (GLS) expression was collected in cervical cancer cell lines as well, possibly as an effect of
c-MYC downregulation by the drug [162]. This is also interesting since the reduction of ammonia by
metformin may also affect the tumor microenvironment [163].

4.3. Metformin and Mitophagy

Mitophagy is a specialized form of autophagy process supporting mitochondrial homeostasis.
Damaged mitochondria exhibit reduced OXPHOS and increased ROS and are recognized by autophagy
proteins and degraded in lysosomes (for a review, [164]). So, it is very likely that metformin
effects the mitochondrial ETC and the increased ROS may trigger mitophagy. This may involve
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modulation of parkin-p53 [165,166]. Induction of mitophagy has been shown in diabetic patients
treated with metformin [167]. Further, mito-metformin, a specifically mitochondria targeted metformin
derivative [98], induced mitophagy features in CRC cells, in a k-RAS status-independent and
AMPK-dependent way [97]. Interestingly, untransformed cells in the same experimental setting
were much less affected [97].

4.4. Metformin and the Unfolded Protein Response (UPR)

Metformin treatment also impinges on the unfolded protein response (UPR) activity. This is a
complex program whose activity increases in cells in response to the proteotoxic stress conditions
emanating from the endoplasmic reticulum (ER), including glucose deprivation. The UPR response in
cancer is linked to EMT, resistance and metastasis [168,169]. The cell response to UPR consists of reduced
protein synthesis, increased protein degradation, induction of chaperone proteins and induction of
pro-apoptotic effectors like C/EBP homologous protein (CHOP). Metformin, AMPK-dependently,
blocked the activation of the UPR in acute lymphoblastic leukemia (ALL) cells and synergized with
both AKT and the proviral insertion site in moloney murine leukemia virus (PIM-2) inhibitors [170].

4.5. Metformin and Modulation of microRNA Expression

A growing list of evidence supports a crucial role for non-coding RNAs and for their intracellular
processing machinery in the metabolic reprogramming of primary or metastatic cancer cells [171,172].
Interestingly, microRNA modulation is an important part of metformin’s MoA: we and others have
demonstrated that metformin controls a broad set of microRNAs by modulating the expression of
the type III ribonuclease DICER [173], in an E2F-dependent manner [174]. Interestingly, microRNA
modulation, which correlated with anti-cancer metabolic changes, was more prominent in breast
cancer cell lines than in untransformed cells. This finding was validated in different experimental
settings [175–177].

4.6. Attenuation of Stress Adaptation by Metformin Is Complex, Integrated and Tumor Context-Specific

Combined and converging targeting of these described adaptive mechanisms, in a tumor specific
and to a tumor-specific extent, underlie the vast majority of reported effects of metformin on cancer
cells. Some examples will follow. AMPK-mediated targeting of NFkB signaling was shown to mediate
the growth-suppressive effect of metformin on hepatocellular carcinoma (HCC) development [178].
Additionally, the downregulation of acetyl-CoA carboxylase (ACC) and fatty acid synthase (FASN)
were shown to contribute to the effects on HCC cells [56] and metformin was also shown to synergize
with silencing of the hexokinase 2 (HK2) in a similar experimental system [179]. Further, metformin
affected the chemo-resistance of cholangiocarcinoma cells by suppressing the cisplatin-ROS instigated
increase in nuclear factor erythroid 2-related factor 2 (NRF2) [180] and inhibited proliferative and
invasion potential through STAT3 and NFkB targeting [139]. Metformin induced esophageal squamous
cell carcinoma (ESCC) cell autophagy and cell death via inhibiting the STAT3-B-cell lymphoma 2
(BCL2) pathway [181] and inhibited migration and invasion of ESCC cells by affecting NFκB nuclear
localization [182]. In pancreatic cancer, the effect of the drug on the specificity protein-1(SP) transcription
factors, and the effect on insulin receptor intracellular signaling were shown to be effective at inhibiting
cancer growth. In a similar setting, metformin also synergized with aspirin to suppress BCL2 and
myeloid cell leukemia 1 (MCL1) and augmented the effect of gemcitabine through inhibiting extracellular
signal-regulated kinase (ERK)-p70S6K [183,184]. Metformin interference with the ERK-NFkB axis has
been shown to attenuate the resistance of non-small cell lung cancer (NSCLC) cell lines to both gefitinib
and a third-gen epidermal growth factor receptor (EGFR) tyrosine-kinase-inhibitors (TKI) [185,186].
Further, resistance of rectal cancer cell lines to both irradiation and 5-fluorouracile (5-FU) was attenuated
by metformin via inhibition of STAT3 and transforming growth factor beta (TGF-β) [187] and colorectal
cancer cells were sensitized to imatinib through metformin-mediated autophagy induction [188].
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A common theme, besides metformin’s tumor-context specific actions, is the possibility to
counteract stress-induced reprogramming. For instance, in NSCLC, cisplatin treatment was shown to
induce ROS-mediated metabolic reprogramming, occurring early after treatment and this observation
was confirmed in a few post-treatment patient biopsies and in two patient-derived-xenograft (PDX)
models. This consisted of increased OXPHOS and augmented mitochondrial mass with increased
levels of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) [189].
This chemotherapy-instigated OXPHOS switch was also observed in colon cancer models [190,191] and
in ovarian cancer models [192]. Additionally, the early adaptive process of acquired resistance of the
EGFR-mutant NSCLC to tyrosine-kinase-inhibitors (TKI), was linked to increased mitochondrial mass
and performance of OXPHOS [193]. Intriguingly, in the case of NSCLC, it was shown that metformin
treatment could effectively counteract such an adaptive OXPHOS switch, with chemo-sensitizing
effects in vitro and in vivo, to cisplatin [189].

5. Metformin and Cancer Stem Cells: Another Layer of Complexity

The term cancer stem cells (CSCs) refers to specific subpopulations within a tumor, endowed
with greater plasticity and adaptive potential (as compared to the majority of the cells composing
the bulk tumor cell population) [194]. CSCs are considered responsible for resistance to therapy
and, therefore, relapse of the tumor. Therapy-induced stress provides a selective pressure, fueling
survival and the emergence of CSCs through complex paracrine interactions with the TME [195–197].
The maintenance of a stable NADH/NAD+ ratio is instrumental for the adaptive properties of CSCs,
and takes place through modulation of the glycolytic, OXPHOS and TCA cycle. Notably, putative CSC
subpopulations have been metabolically categorized as either mainly glycolytic or mainly dependent
on OXPHOS (for a review, [12]). The reason for this, besides obvious technical and biological differences
among the experimental systems adopted, may lie in the fact that there are no single cancer stem
cells, but heterogeneous cell populations endowed with “stemness” traits; their plasticity and capacity
of dynamic interactions with the TME may dictate their fluctuating metabolic behavior, which may
therefore become tumor-stage and -time specific (Lee et al., 2015). Pertinent to this, the cancer
stem cell concept [197] inspires the potential usefulness of exploiting combinatorial approaches,
which have recently been shown to provide interesting results. Thus, the combination of metformin
with 2-deoxy-d-glucose (2-DG), a glycolysis inhibitor, or the use of intermittent fasting as a strategy
to reduce glucose were shown to synergize with metformin treatment in vitro and in vivo, in breast
cancer models [198–200]. Other synergic action towards the CSC-linked metabolic heterogeneity
were observed with caffeic acid (trans-3,4-dihydroxycinnamic acid, CA) and dichloroacetate (DCA).
In cervical cancer cell lines, CA was shown to synergize with metformin at inhibiting de novo fatty acid
synthesis thereby decreasing the amount of unsaturated long chain fatty acids [201]. CA and metformin
were shown to attenuate TGF-β1-induced EMT in cervical carcinoma cells [202], partially because
of the involvement of unsaturated fatty acids to support EMT and the emergence of CSC [203,204].
DCA was shown to potentiate the effect of metformin in breast, ovarian cancer and glioma cells
in vitro and in vivo [205–207]. Further, both DCA and CA synergized with metformin [115,162,205]
to activate the pyruvate dehydrogenase complex (PDH) by inhibiting pyruvate dependent kinase
(PDK), thereby promoting the oxidative decarboxylation of pyruvate to acetyl-CoA and enhancing the
mitochondria-generated ROS. This counteracts the HIF-1α-dependent induction of PDK in favor of
glycolytic processes in the hypoxic regions of the tumor [208]. Additionally, activation of PDH has
been shown to reduce the CSCs in mouse mammary tumor virus (MMTV)-Wnt-1 mouse models [209].

Metformin Attenuates Cancer Stem Cell Features

One compelling feature of the cancer stem cells is their ability to sustain therapy-induced stress:
therefore, CSCs have been defined as chemo-resistant or radio-resistant, according to the experimental
system used. Cancer stem cells survive chemotherapy in vivo. In ovarian cancer patient samples,
a transient enrichment for ALDH1A1, CD44 and CD133pos cells was recorded, after chemotherapy [210],
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and this was validated by other studies in treated cancer patients [211]. Thus, interference with this
property may result in collective chemo- and radio-sensitization: generally, this is accompanied
by disappearance “or reduced expression” of surface markers employed for identifying the CSCs,
which may indicate eradication of the positive clones. This is the case, for example, for CD44+/CD24−

cells in breast cancer cells [84,105,212], for CD133+ CSCs in pancreatic CSCs [213] and for glioblastoma
CD133+ CSCs [214]. Cell subpopulations endowed with high aldehyde dehydrogenase (ALDH)
activity have been shown to be chemo-resistant and to possess some stemness traits, in many tumors
including sarcoma, lung and breast [215]. Interestingly, purified ALDHhigh (or “bright”—based
on fluorescence levels) cells were shown to have higher mitochondrial mass, both in vitro and
in vivo [216]. We treated FACS-sorted ALDHbright cells from breast cancer cell lines with metformin
and found that, in fact, metformin elicited substantially different metabolic changes, as compared to
the bulk population [217]. Notably, metformin action pushed the ALDHbright cells towards a more
glycolytic phenotype (possibly to compensate for mitochondrial inhibition), more similar to what was
observed in the more differentiated, chemo-sensitive ALDHlow cells [217], in agreement with the larger
mitochondrial mass [216] and metabolic plasticity of CSCs [218,219].

A selective action of metformin towards CSC cell subpopulations has been shown in the past, in a
clear way at least in breast cancer, ovarian, prostate and lung cancer models [212,220–222]. What confers
a relative selectivity of action towards CSC cell subpopulations (as compared to non-CSC from the same
culture or animal or patient) is an interesting question. The molecular determinants for the specificity
of metformin towards those cell subpopulations are still to be determined. One observation is that,
generally, such effects are not “black or white” and consist rather of a higher sensitivity of CSCs than
no sensitivity of the non-CSC cell subpopulations, to metformin treatment. It is likely that metformin’s
specificity is driven by the different biological status of the CSCs. For example, in pancreatic cancer stem
cells (CSCs), specificity of action seems to be conferred to the drug by their distinct metabolic phenotype.
CSCs were indeed shown to be mainly endowed with oxidative metabolism (OXPHOS) due to elevated
levels of PGC-1α consequent to c-MYC suppression (as compared to the mainly glycolytic non-CSC cell
subpopulations). Treatment with metformin caused mitochondrial inhibition and apoptosis, specifically
in those CSCs. Metformin resistant clones arise during treatment and exhibited downregulated levels
of PGC-1α and, intriguingly, a metabolic phenotype sitting between a glycolytic and an OXPHOS one,
again supporting the great plasticity of these cells [223]. Given the tight relationships between epithelial
to mesenchymal transition and the generation of CSCs [224], and the high sensitivity of EMT driven or
mesenchymal breast cancer cell lines to metformin [84], one possibility is that cells undergoing such
a program may expose metabolic targets to metformin. Metformin treatment strongly reduced the
teratogenicity of mouse embryo fibroblast-derived IPSs without affecting the multipotency of those
cells. This was due to the effect of metformin on OCT4-driven signals, responsible for malignant
transformation [225]. OCT-4 dependent signals are considered as important determinants of the CSC
phenotype (for a review, [226]).

In line with this, a recently closed phase II clinical trial has evaluated the impact of metformin on
ALDH-CD133pos CSC number and on carcinoma-associated mesenchymal stem cells (CA-MSCs) in 38
non-diabetic patients with advanced-stage epithelial ovarian cancer (EOC) [227]. The study revealed
that the tumors from patients treated with neoadjuvant metformin, with or without chemotherapy,
before surgery, exhibited a more than two-fold reduction in ALDH-CD133pos ovarian CSCs [227].
Despite this, as generally happens for phase II studies, this study did not have a control arm
and had a small sample number, the overall survival of the metformin-treated patients was better
than expected, based on historical controls [227]. Last but not least, the authors observed an
interesting effect on the methylation status of the cancer-associated-mesenchymal-stem-cells (CA-MSCs),
known to provide essential pro-tumorigenic signals to ovarian cancer cells. As somehow expected,
the authors encountered a significant inter-tumor heterogeneity which prevented statistical significance.
However, they found that CA-MSCs from a subgroup of metformin treated tumors were capable
of chemo-sensitizing, in vitro, a co-cultured epithelial ovarian cancer cell line (as compared to
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non-metformin treated CA-MSCs and metformin unresponsive CA-MSCs) [227]. The effect of metformin
on the ovarian cancer CA-MSCs methylation profile opens up another relevant point: that metformin
may modify the TME-promoting activity towards CSCs. Evidence in favor of such effects are
emerging [228,229]. Metabolic action on CA-MSCs and other TME cell populations may alter the
respiratory fitness of TME cell populations and their multifaceted pro-tumorigenic actions [230],
thereby attenuating the metabolic symbiosis between TME components and CSCs [231]. Additionally,
the effect of metformin on microRNAs could alter, for example, the exosome composition which has
been shown as an important part of the TME cancer interaction [232].

Last but not least, CSCs are characterized by elevated levels of autophagy when compared to
more differentiated cancer cell populations, an observation confirmed in multiple cancer types [233]
and exacerbated by therapy-induced stress [234,235]. Whether metformin modulates autophagy and
mitophagy differently in cancer stem cells as opposed to more differentiated cancer cells, would be an
interesting question to answer. This would be a further way metformin may interfere with the extreme
plasticity of these cell subpopulations.

6. Concluding Remarks

In summary, metformin shows a complex and partially unexplored MoA. Targeting of
mitochondria, interference with redox systems and cytosolic signaling all converge into a suggestive
anticancer effect, which starts from metabolic actions and impinges on developmental signaling (EMT)
and tumor–stroma crosstalk. However, the need for combinatorial therapies and the non-homogeneous
results of the clinical trials, all prompt towards the need for further dissecting its action in cancer patients
in light of tumor heterogeneity. If metformin is capable of targeting specific cell subpopulations within
the tumor, thereby dampening their adaptive properties, then the search for a biomarker to stratify
patients based on the degree of representation of such cell subpopulations may be the next welcome
step. Obtaining specific metabolic and pharmaco-genomic signatures would pave the way for this
search. Very recently, specific methylation signatures associated with metformin response and tolerance,
in naïve, type 2 diabetic patients, from blood and from adipose tissue have been documented [236].
Additionally, as mentioned earlier, specific genomic signatures of resistance/sensitivity were obtained
from a limited number of cancer cell lines [86]. This leaves hope that stratification of cancer patients
based on their responsiveness to metformin may be possible in the near future.
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