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Vitamin D receptor promotes 
healthy microbial metabolites and 
microbiome
ishita chatterjee1, Rong Lu1, Yongguo Zhang1, Jilei Zhang1, Yang Dai  2, Yinglin Xia1 ✉ & 
Jun Sun  1 ✉

Microbiota derived metabolites act as chemical messengers that elicit a profound impact on host 
physiology. Vitamin D receptor (VDR) is a key genetic factor for shaping the host microbiome. However, 
it remains unclear how microbial metabolites are altered in the absence of VDR. We investigated 
metabolites from mice with tissue-specific deletion of VDR in intestinal epithelial cells or myeloid cells. 
Conditional VDR deletion severely changed metabolites specifically produced from carbohydrate, 
protein, lipid, and bile acid metabolism. Eighty-four out of 765 biochemicals were significantly altered 
due to the Vdr status, and 530 significant changes were due to the high-fat diet intervention. The 
impact of diet was more prominent due to loss of VDR as indicated by the differences in metabolites 
generated from energy expenditure, tri-carboxylic acid cycle, tocopherol, polyamine metabolism, and 
bile acids. The effect of HFD was more pronounced in female mice after VDR deletion. Interestingly, 
the expression levels of farnesoid X receptor in liver and intestine were significantly increased after 
intestinal epithelial VDR deletion and were further increased by the high-fat diet. our study highlights 
the gender differences, tissue specificity, and potential gut-liver-microbiome axis mediated by VDR that 
might trigger downstream metabolic disorders.

Metabolites are the language between microbiome and host1. To understand how host factors modulate the 
microbiome and consequently alter molecular and physiological processes, we need to understand the metabo-
lome — the collection of interacting metabolites from the microbiome and host.

Vitamin D/VDR signaling contributes to the genetic, environmental, immune, and microbial aspects of 
human diseases (e.g., inflammatory bowel disease and obesity)2,3. The human Vdr gene is the first gene identified 
as a vital host factor that shapes the gut microbiome at the genetic level4. In mice lacking VDR, we observed 
significant shifts in the microbiota relative to control mice. In humans, correlations between the microbiota and 
serum measurements of selected bile acids and fatty acids were detected4. Those metabolites include known lig-
ands and downstream metabolites of VDR5. Moreover, we have demonstrated that VDR knock out (KO) (Vdr−/−) 
mice have depleted Lactobacillus and enriched Clostridium and Bacteroides in feces. Notably, in the cecal con-
tent, Alistipes and Odoribacter were significantly reduced whereas Eggerthella was increased6. Intestinal specific 
deletion of VDR (VDRΔIEC) leads to microbial dysbiosis due to a decrease in the butyrate-producing bacteria7,8. 
However, it is unclear how the loss of VDR impacts microbial metabolites.

In the current study, we hypothesize that host factors (e.g., VDR status in specific tissues) modulate microbial 
metabolites and the microbiome, thus contributing to the high risk of metabolic diseases. We used intestinal 
epithelium-specific VDR knock out (VDRΔIEC) mice and myeloid cell-specific VDR KO (VDRΔlyz) mice to assess 
whether the microbiome-associated metabolic changes linked with conditional loss of VDR in a particular tissue. 
Because the majority of metabolic syndromes are multifactorial, we further evaluated the effect of high-fat diet 
(HFD) on VDRΔIEC mice as compared to control chow diet-fed mice. We also correlated the altered metabolite 
profiles to specific mechanisms that lead to the observed changes in the host and microbiome.
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Results
Deletion of intestinal epithelial VDR impacted the overall metabolite profile. First, we exam-
ined the effects of intestinal epithelial VDR on the metabolite profile. Among named biochemical compounds, 
VDRΔIEC mice exhibited alterations in 68 metabolites (of which 35 increased and 33 decreased) with P ≤ 0.05 sig-
nificance level and 55 biochemicals with 0.05 < P < 0.1 significance level (of which 25 increased and 30 decreased) 
(Table 1).

Random Forest (RF) analysis of metabolites among chow diet-fed animals revealed the impact of different 
metabolites. Figure 1A shows a list of the top 30 biochemicals that contribute to maximum importance. Of these, 
maltose, maltotriose, and ceremide are among the top three most significant differentially expressed biochem-
icals. The action of the intestinal microbiome is responsible for the generation of several metabolites derived 
from carbohydrates, amino acids, bile acids, heme, and other dietary sources. Several of these metabolites are 
reabsorbed in the gut and can bind to cellular receptors, thus potentially influencing host functions9. The most 
significant alterations in metabolites were generated by four main super-pathways including (A) carbohydrate, 
(B) protein/ amino acids, (C) lipid, and (D) xenobiotics metabolism.

Carbohydrate metabolism. Carbohydrates are the primary source of energy for gut microbiota. Colonic bacte-
ria ferment nondigestible complex-carbohydrates and release glycogen, amino-sugars, and pentoses10. These are 
considered major factors in shaping the composition and physiology of the microbiome. As shown in Fig. 1B, 
VDRΔIEC had a significant (P ≤ 0.05) increase in amino-sugar metabolite N-acetylmuramate compared to the 
VDRLoxP control mice. Conversely, N-acetylglucosaminylasparagine, glucose, and galactonate were downregu-
lated in the VDRΔIEC group (Fig. 1B). These results suggest that the loss of intestinal epithelial VDR in host modi-
fies the carbohydrate metabolism, thus affecting mainly glycolysis, gluconeogenesis, pyruvate, fructose, mannose 
galactose, and amino-sugar metabolism pathways.

Protein/Amino-acid metabolism. Gut bacteria produce a range of metabolites by synthesizing proteinogenic 
amino acids via protein fermentation11. These metabolites are known to exert beneficial or harmful effects 
on the host. VDRΔIEC mice showed increased levels of N1,N12-diacetylspermine, N(‘1)-acetylspermidine, 
N-acetylglutamate, N2-acetyllysine, and diacetylspermidine (Fig. 1C), indicating a significant surge in polyam-
ine, glutamate, and lysine metabolism. A decrease in tryptophan and methionine metabolism in the VDRΔIEC 
group was indicated by decreased taurine, kynurine, and other related metabolites (Fig. 1C).

Lipid metabolism. Gut bacteria affect lipid metabolism through multiple direct and/or indirect mecha-
nisms, including bile acid metabolism, cholesterol transport, and energy expenditure12,13. We found a signif-
icant increase of octadecanedioate, 1-stearoyl-2-oleoyl-GPE, 1-palmitoyl-2-linoleoyl-galactosylglycerol, 
1-palmitoyl-galactosylglycerol, and 1-oleoyl-GPG in VDRΔIEC mice compared to those in the VDRLoxP mice. In 
contrast, the levels of valerylglycine, trimethylamine N-oxide, glycerophosphoserine, glycerophosphoinositol, 
and 2-hydroxyheptanoate were decreased in the VDRΔIEC mice (Fig. 1D), indicating that fatty acid and phospho-
lipid metabolism was altered in the VDRΔIEC mice.

Xenobiotics/Others. Xenobiotics are the extrinsic molecules ingested by the host from the environment and 
are subsequently metabolized by microorganisms and transformed into hundreds of metabolites14. VDR defi-
ciency in the intestinal epithelium altered the levels of many xenobiotics. RF analysis of animals showed that 
naringenin, a flavonoid displays strong anti-inflammatory and antioxidant function, among the pool of top 30 
metabolites (Fig. 1A). Further ANOVA analysis indicates that most xenobiotics were significantly downregulated 
in the VDRΔIEC mice (Fig. 1E). Ergothioneine (ET), an anti-oxidant sulfur-containing derivative of the histidine 
(amino acid) was the only xenobiotic found to be upregulated in VDRIEC (Fig. 1E).

Myeloid cell-specific VDR knockdown contributes to the definitive alteration of metabolites 
indicating the tissue-specific role of host VDR. VDR is known to have tissue and cell-specific roles15. 
Hence, we examined our myeloid cell-specific VDR KO model. In the VDRΔlyz mice, 100 known biochemicals 
were found to be significantly altered with P-value ≤0.05 (of which 56 increased and 44 decreased) and 58 chem-
icals showed with significance level 0.05 < P < 0.10 (of which 28 increased and 30 decreased) (Table 2), compared 
to chow-fed VDRLoxP control animals.

We compared the change in metabolites derived from VDRΔIEC and VDRΔlyz mice by Welch’s two-sample 
t-test and found 118 metabolites were significantly changed (P ≤ 0.05) (black box, Table 2) and another 49 fell in 

Statistical Comparisons

ANOVA contrasts

VDRΔIEC/VDRLoxP

Chow

Total biochemicals p ≤ 0.05 68

Biochemicals (↑↓) 35 33

Total biochemicals 0.05 < p < 0.10 55

Biochemicals (↑↓) 25 30

Table 1. Intestinal epithelial VDR on the profile of metabolites.
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Figure 1. Impact of intestinal epithelial VDR deletion on metabolite profile: (A) Random Forest (RF) analysis 
showing the top 30 most important metabolites resulting from using biochemical data derived from VDRLoxP, 
VDR∆IEC and VDR∆lyz mice fecal samples. The variables are ordered top-to-bottom as most-to-least important 
in categorizing between VDR deleted (VDR∆IEC and VDR∆lyz) and VDRLoxP groups. Different color indicates 
specific metabolites resulting from different super-pathways like light blue = amino acid; green =  carbohydrate, 
purple = cofactors, blue = lipids, Teal= Xenobiotics. Fold change (FC) ratios of the average concentrations 
of metabolites between VDRΔIEC mice to that in the VDRLoxP. Graph denotes only those biochemicals which 
displayed maximum fold change. Metabolites are listed as their origin of metabolic pathways: (B) carbohydrate 
(C) amino acid (D) lipid and (E) xenobiotic. Differences are assessed by the Mann–Whitney U test. VDRΔIEC 
(N  =  17) & VDRLoxP (N  =  16) mice. Significance is established at adjusted 0.05 < P < 0.1.
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the significant level 0.05 < P < 0.1. Here, we focused on the major changes in the carbohydrate, amino acids, lipid, 
and xenobiotics metabolites in VDR∆lyz model.

Loss of VDR in myeloid cells in the VDR∆lyz group showed altered carbohydrate metabolism and increased 
levels of the amino sugar metabolite N-acetylmuramate (Fig. 2A), similar to the VDRΔIEC mice. Unlike the 
VDRΔIEC group, VDR∆lyz mice showed an increase in pentose and glycogen metabolism in conjunction with 
elevated amounts of ribulose/xylulose, xylose, arabinose, maltotriose, maltose, and fucose (Fig. 2A). A promi-
nent decrease in diacetylchitobiose in VDRΔlyz mice was observed. The VDR∆lyz group also showed decreased 
histidine, proline, and citrulline, which was accompanied by a rise in N-acetyl proline and asparagine levels, 

Statistical Comparison

Welch’s Two-Sample t-Test

Chow

VDRΔLYZ/VDRLoxP VDRΔLYZ/VDRΔIEC

All Female Male All Female Male

Total biochemicals p ≤ 0.05 100 74 147 118 44 122

Biochemicals (↑↓) 56|44 52|22 46|101 59|59 26|18 43|79

Total biochemicals 
0.05 < p < 0.10 58 45 105 49 31 64

Biochemicals (↑↓) 28|30 24|21 20|85 26|23 19|12 15|49

Table 2. Myeloid cell-specific VDR contributes to the alteration of metabolites different from the Intestinal 
epithelial VDR.
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Figure 2. Overall alteration in the metabolites following myeloid cell-specific VDR deletion: Fold change ratio 
generated by (A) carbohydrate (B) amino acids (C) lipid and (D) xenobiotics metabolism in VDR∆lyz mice. The 
graph represents only those biochemicals showing maximum alterations among known detectable metabolites. 
Differences are assessed by the Mann–Whitney U test. VDR∆lyz (N  =  10) & VDRLoxP (N  =  16). Significance is 
established at adjusted 0.05 < P < 0.1.
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compared to VDRLoxP (Fig. 2B). These data suggest a reduction in urea-arginine-proline metabolism and elevated 
alanine and aspartate metabolism in VDR∆lyz mice.

In contrast to VDRLoxP mice, VDR∆lyz mice demonstrated a significant increase in palmitoyl-linoleoyl-glycerol 
and a substantial decrease in sphingosines and fatty acid metabolism, indicated by metabolites like hexadecas-
phingosine and dihomo-linolenoylcarnitine (Fig. 2C). Remarkably, among the different xenobiotic metabolism 
pathways, the VDRΔlyz group displayed a significant downregulation of quinolinate and tocopherol pathway 
derived metabolites and an increase in nicotinamide (Fig. 2D). Thus, these data indicate the different roles of 
VDR in intestinal epithelial cells and myeloid cells.

VDR deletion significantly impacted bile acid profile, especially in females. VDR is known to 
function as a bile acid sensor in the intestine and loss of VDR is known to disquiet the bile acid homeostasis16,17. 
Here, we assessed modifications in metabolites from secondary bile acid metabolism pathways. The microbi-
ota converts primary bile acids to secondary bile acids, which are then reabsorbed and can affect diverse bio-
logical processes18. Among different secondary bile acids, lithocholate, and deoxycholate, were increased due 
to loss of VDR in VDRΔIEC and in VDR∆lyz mice (Fig. 3A). When comparing VDRΔIEC females to VDRLoxP 
females, we found an increase in deoxycholic acid 3 sulphate and in deoxycholate (Fig. 3B). A decrease in 
7,12-diketolithocholate, was specifically observed in VDR∆lyz female mice (Fig. 3C).

Both VDR∆IEC and VDR∆lyz female mice showed a significant increase in deoxycholate, 3-dehydrodeoxychlate, 
lithocholate, 12-ketolithocholate, de-hydrolithocholate, and 3b-hydroxy-5-cholenoic acid, compared to control 
females (Fig. 3B,D). Tauroursodeoxycholic acid sulfate was decreased in the VDR∆IEC and VDR∆lyz female mice. 
Overall, our results indicate that VDR deletion significantly influences bile acid metabolism in a gender-specific 
manner.

VDR deficiency resulted in significant alterations in the polyamines levels. Polyamines have been 
shown to play a role in facilitating a switch between different coactivator complexes that bind to nuclear recep-
tors such as VDR19. Here, we observed a significant elevation in polyamines, such as N1, N12-diacetylspermine 
(Fig. 4A), diacetylspermidine (Fig. 4B), and N (‘1)- acetylspermidine (Fig. 4C) in chow-fed VDRΔIEC animals, 
compared with the VDRLoxP mice indicating accumulation of polyamines in VDR deficient animals. As noted, 
increases in polyamine levels were observed in male VDRΔIEC mice.

Long-chain fatty acids (LcfAS) and acylcarnitines were significantly elevated in VDR defi-
cient mice indicating perturbations with β-oxidation. Fatty acid beta-oxidation is one of the main 
energy-yielding metabolic processes. An earlier study has shown that Vitamin D/VDR plays an important role 
in the composition of fatty acids via direct regulation of Elovl3 (an FA elongase enzyme) expression20. Hence, we 
evaluated the effect of VDR deletion on fatty acid metabolites. We found that carnitines were significantly ele-
vated in fecal samples from VDRΔIEC and VDR∆lyz mice, compared to the VDRLoxP, including myristoylcarnitine 
(C14), palmitoylcarnitine (C16), oleoylcarnitine (C18:1) (Fig. 5A–C). This increase is accompanied by an eleva-
tion in long-chain fatty acids (Fig. 5A–C) that were mostly observed in VDRΔIEC and VDR∆lyz females, compared 
to VDRLoxP mice (Table 3). Defects in the beta-oxidation of fatty acids can be evaluated based on acylcarnitines 
(AC). Substantial increase in acylcarnitines and long-chain fatty acids could be potential indicators of elevated 
beta-oxidation in VDR deficient animals. However, there is no significant change in 3-hydroxybutyrate (BHBA).

HFD intervention altered metabolite profile in VDRLoxp and VDRΔiec mice. Studies have shown 
that obese humans and mice have microbiomes very different from their lean controls21–24. We further evaluated 
how diet impacted the metabolites in mice with tissue-specific VDR deletion. The 30-top ranking biochemicals in 
the importance plot suggests key differences in peptides, lipid metabolism, cofactors, vitamins, and amino acids 
with maximum impact on threonyl phenylalanine (Fig. 6A). RF-classification using named metabolites detected 
in VDRLoxP and VDRΔIEC with HFD gave a predictive accuracy of 100%.

Principal Component Analysis (PCA) for fecal samples showed clear separation based on the diet (Fig. 6B). 
Microbiome-derived metabolites had divergent trends following HFD feeding. Aromatic amino acids like phe-
nyl lactate (PLA), phenethylamine, 3-hydroxyphenylacetate, indole 3-carboxylate, indolelactate, and indole-
propionate were decreased in both VDRLoxP and VDRΔIEC HFD groups, as compared to the regular chow diet 
(Fig. 7A). Alternatively, trans and cis-urocanate were significantly increased by HFD (Fig. 7B). Levels of equol, a 
microbiota-derived metabolite known to exert epigenetic changes by inhibiting DNA methylation, histone mod-
ification, and regulating ncRNAs, was also found to be altered following VDR deletion and HFD.

Lower levels of tocopherol metabolism were associated with HfD intervention. Interestingly, 
HFD-fed VDRΔIEC mice had lower levels of alpha-tocopherol (Fig. 7C) in contrast to VDRLoxP and was noted 
important in RF analysis (Fig. 6A). Additional decreases were observed in levels of alpha-tocopherol and gamma 
tocopherol/betatocopherol (Fig. 7C) in HFD fed animals. Lower levels of tocopherols in HFD fed VDR defi-
cient animals might be indicative of increased risk for colon cancer. Alternatively, polyamines levels in HFD fed 
VDRΔIEC animals were also impacted greatly. Here, we observed significant elevation in levels of polyamines, 
such as spermidine, N1, N2-diacetylspermine, in all VDRΔIEC animals especially after HFD feeding, as compared 
to VDRLoxP group (Fig. 7D). These data suggest an accumulation of polyamines in HFD fed VDR deficient ani-
mals. Because polyamines have strong anti-inflammatory functions25, these changes may impact aspects of host 
immunity.
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Gender-specific changes in HFD fed mice following VDR deletion. When metabolites were ana-
lyzed based on gender, there was a separation between males and females that were fed HFD (Supplementary 
Fig. 1A,B), but in animals fed chow diet this effect was less significant (Fig. 6B).

Intestinal VDR deficiency extensively alters primary and secondary bile acid metabolites and bile acids 
are known to shape the gut microbiome especially in obesity. As anticipated, VDR deficiency along with HFD 
immensely altered the bile acid levels in fecal samples. Specifically, levels of the bile acids, taurolithocho-
late 3 sulphate, and taurocholenate sulphate were raised in VDR deficient animals (Fig. 8A). Metabolites like 
N-acetyltyrosine, N-formylphenylalanine, and indolepropionate were significantly changed in the VDRΔIEC, 
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Figure 3. VDR deletion altered bile acid (BA) metabolism: Box-plot diagrams displaying changes in secondary 
bile acid (A) lithocholate and deoxycholate in control VDRLoxP group as compared to VDRΔIEC and VDR∆lyz 
mice. (B) Specific changes in secondary bile acid metabolites as noted in female VDR∆IEC mice. (C) Collective 
changes demonstrated by VDR∆lyz mice. (D) Definite variations in secondary bile acid metabolites displayed 
by female VDR∆lyz mice. The data presented as the fold change (FC) ratios of the average concentrations of 
identified BA species in respective groups. VDRΔIEC group (N =  17; F = 8, M = 9), VDR∆lyz (N  =  10; F = 5, 
M = 5) & VDRLoxP (N  =  16; F = 6, M = 10). Differences are assessed by the Mann–Whitney U test. Significance 
is established at an adjusted 0.05 < P < 0.1.
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compared to VDRLoxP males; they remain unaltered after HFD feeding, suggesting that diet might impact changes 
that resulted from VDR deficiency in males (Fig. 8B).

Metabolites and microbiome regulated by VDR. Using Hierarchical clustering analysis (HCA) 
(Fig. 9A), a stepwise clustering method that groups metabolically similar samples close to one another, we found 
fecal samples did not show primary clustering by genotype (VDRLoxP, VDRΔIEC, and VDR∆lyz). Because the dele-
tion of intestinal epithelial cell-specific VDR impacted metabolites differently than myeloid cell-specific VDR 
deletion, we further checked whether these specific metabolite profiles are linked to changes in the microbiome.

Microbial analysis showed VDRLoxP fecal samples contain Lactobacillus, Butyricimonas, Lactococcus, while 
VDRΔIEC samples contain Clostridium, Eubacterium, Bacteroides, Tannerella, and Prevotella taxa. The difference in 
the microbial communities might be related to differences in tryptophan, polyamine, and tocopherol metabolism 
observed in this study. The abundance of Parabacteroides affected by VDR signaling in both human and mouse 
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Figure 4. VDR deficiency results in significant alterations in the levels of polyamines: Box-plot diagrams 
showing increased levels of polyamines metabolites namely, (A) N1, N12-diacetylspermine, (B) 
diacetylspermidine, (C) N (‘1) acetylspermidine were noted following VDR deletion (in VDRΔIEC & VDR∆lyz) 
in mice. This data is represented as the BOX-Plot diagram showing maximum and minimum variation among 
the group. VDRΔIEC group (N =  17; F = 8, M = 9), VDR∆lyz (N  =  10; F = 5, M = 5) & VDRLoxP (N  =  16; 
F = 6, M = 10). The ratio of fold-change differences are assessed by the Mann–Whitney U test. Significance is 
established at adjusted 0.05 < P < 0.1.
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samples are reported to alter secondary bile acids in obesity4. Interestingly, we found dysregulation of secondary 
bile acids after VDR deletion followed by HFD intervention.

VDRΔIEC mice showed an increasing trend in E. coli, and a decreasing trend of Prevotella dentalis and A. 
Muciniphila populations compared to VDRLoxP mice (Fig. 9B). A significant decrease in Parabacteroides sp. CT06 
and Parabacteroides distasonis were noted in VDRΔIEC mice. However, VDRΔlyz mice did not show similar changes 
(Fig. 9C). Alterations in maltose metabolism in VDR deficient mice (Fig. 1A) could be related to the abundance of 
E. coli in those mice, as shown in our previous studies7,8.

changes in VDR and fXR in liver and colon with or without HfD. Two nuclear receptors, VDR 
and farnesoid X receptor (FXR) interact with each other in a Vitamin D3-independent manner26. To verify the 
changes of VDR and related pathways in addition to microbiome and metabolites, we investigated the protein 
expression of VDR and FXR in mice with or without HFD. Western blot analysis of FXR indicated a ~ 4-fold and 
~5-fold increase in FXR in the colon (Fig. 10A,B) and liver (Fig. 10C,D) of HFD fed VDRΔIEC mice, respectively. 
Our metabolite analysis indicated that VDR status significantly impacts bile acid metabolism. Hence, we wanted 
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to check whether hepatic FXR was altered. Immunohistochemical staining (IHC) of liver sections showed a sim-
ilar increase in FXR, consistent with the observation by western blots.

Discussion
In the current study, we have demonstrated that targeted deletion of VDR in intestinal or myeloid cells distinc-
tively transformed metabolite profiles and the gut microbiome, leading to an increased risk of obesity. We found 
that 84 identifiable biochemicals that were significantly altered due to the VDR status. When challenged with a 
HFD, 530 metabolites showed discrete changes. These changes were observed due to variations in carbohydrate, 
protein, lipid, and xenobiotic pathways. The deletion of VDR mainly impacted bile acid, LCFA, polyamine, and 
tocopherol metabolism. VDRΔIEC mice challenged with HFD diet had the most dramatic changes in metabolites 
generated from energy expenditure, TCA cycle, tocopherol, and polyamine metabolism. Interestingly, HFD along 
with loss of VDR influenced female mice more than the males. At the protein level, we found that FXR expres-
sion was increased after VDR deletion and that HFD further elevated FXR in the colon and liver of VDRΔIEC 
mice. It is known that microbiota-mediated changes in bile acid profiles signal through FXR. FXR contributes 
directly to diet-induced obesity by promoting increased adiposity and altering the microbiota composition27. A 
study on HFD fed rats showed an increased expression of FXR28. Our results clearly indicate that the gut micro-
biota actively participates in host metabolism by regulating metabolites generated from bile acid metabolism 
via VDR-FXR signaling. VDR deficiency alters the metabolite profile and FXR expression in the host. Our data 
suggest the tissue specificity and gender differences of VDR in regulating metabolites and impacting gut-liver 
axis (Fig. 10F).

Our study highlights the importance of carbohydrate, lipid, and amino acid metabolism following VDR dele-
tion indicating changes in glycogen metabolism as well as lipid and amino acid super pathways, whereas RF 
analysis using data derived from HFD fed VDRloxP and VDR∆IEC mice pointed to peptides, lipid metabolism, 
cofactors, vitamins (e.g., alpha-tocopherol), and amino acid metabolism. Loss of intestinal VDR increased taurine 
and kynurenine levels. The amino acid metabolite taurine is known to be protective against inflammation, apop-
tosis, and oxidative stress29. The kynurenine pathway is associated with inflammatory neurological disorders30.

Sub Pathway Biochemical Name

Fold of Change
ANOVA Contrasts Welch’s 2-Sample t-Test
VDR∆IECVDR 
LoxPLoxP VDR∆IECVDR LoxP

Chow

VDRlyz VDR LoxP

Chow HFD
Chow HFD
Female Male Female Male All Female Male

Long Chain Saturated Fatty Acid

myristate (14:0) 1.24 1.23 1.44 1.07 1.52 1 1.19 1.33 1.05
pentadecanoate (15:0) 1.33 0.87 1.81 0.98 1.07 0.71 1.39 1.97 0.96
palmitate (16:0) 1.19 1.41 1.33 1.07 2.28 0.87 1.46 1.49 1.42
margarate (17:0) 1.36 1.5 1.81 1.02 2.69 0.83 1.57 2.26 1.07
stearate (18:0) 1.15 1.48 1.31 1 2.5 0.88 1.25 1.42 1.12
nonadecanoate (19:0) 1.3 1.56 1.83 0.92 2.78 0.88 1.27 1.76 0.95
arachidate (20:0) 1.31 1.7 1.72 1 3 0.96 1.28 1.48 1.14

Long Chain Monounsaturated 
Fatty Acid

palmitoleate (16:1n7) 1.19 1.05 1.38 1.02 1.06 1.04 1.12 1.28 1.02
10-heptadecenoate (17:1n7) 1.3 1.09 1.51 1.11 1.24 0.95 1.3 1.59 1.07
oleate/vaccenate (18:1) 1.37 1.19 1.66 1.13 1.92 0.73 1.59 1.76 1.45
10-nonadecenoate (19:1n9) 1.32 1.4 1.68 1.03 2.13 0.92 1.65 2.06 1.39
eicosenoate (20:1) 1.51 1.6 2.23 1.02 2.67 0.96 1.32 1.82 1.08
erucate (22:1n9) 1.56 1.7 2.74 0.88 2.73 1.05 0.87 1.48 0.66

Fatty Acid Metabolism 
(Acyl Carnitine, Long Chain 
Saturated)

myristoylcarnitine (C14) 0.91 2.89 1.34 0.63 1.71 4.9 0.53 1.08 0.33
palmitoylcarnitine (C16) 1.15 2.6 2.11 0.63 1.9 3.56 1.06 2.34 0.67
margaroylcarnitine (C17)* 1.03 1.93 1.56 0.68 1.5 2.48 0.94 1.67 0.65
arachidoylcarnitine (C20)* 1.18 1 1.5 0.93 0.7 1.42 0.83 1.3 0.61
behenoylcarnitine (C22)* 1.2 0.84 1.53 0.93 0.54 1.32 0.9 1.3 0.72
lignoceroylcarnitine (C24)* 1.12 0.94 1.4 0.89 0.73 1.21 1.06 1.35 0.91

Fatty Acid Metabolism (Acyl 
Carnitine, Monounsaturated)

myristoleoylcarnitine (C14:1)* 0.86 2.77 1.28 0.57 3.27 2.35 0.47 0.86 0.35
palmitoleoylcarnitine (C16:1)* 0.81 2.7 1.47 0.45 2.16 3.37 0.55 1.2 0.35
oleoylcarnitine (C18:1) 1.18 2.49 2.1 0.66 1.78 3.49 1.01 2.21 0.6
eicosenoylcarnitine (C20:1)* 1.45 1.74 2.22 0.94 1.23 2.45 1.06 1.98 0.66

Fatty Acid Metabolism (Acyl 
Carnitine, Polyunsaturated) 
(Acyl Carnitine, Hydroxy)

linoleoylcarnitine (C18:2)* 0.92 2.1 1.71 0.5 1.44 3.07 0.69 1.64 0.43
linolenoylcarnitine (C18:3)* 1.61 1.02 2.92 0.89 0.63 1.65 1.25 2.92 0.72
dihomo-linoleoylcarnitine (C20:2)* 1.15 1.62 1.42 0.94 1.04 2.53 0.78 1.32 0.52
arachidonoylcarnitine (C20:4) 0.97 1.39 2.52 0.37 0.55 3.53 0.49 1.47 0.21
(S)-3-hydroxybutyrylcarnitine 1.59 0.49 3.33 0.76 0.37 0.65 1.35 2.79 0.84

Table 3. Long-chain fatty acids and acylcarnitines elevated in VDR deficient mice.
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Microbial action in the gut is responsible for the generation of several metabolites derived from bile acids, 
amino acids, heme, and dietary sources. Bile acids are reabsorbed in the intestine by enterohepatic recirculation 
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and can affect diverse biological processes31. In our study, deletion of VDR altered secondary bile acids, signifying 
the crucial role of VDR in assembling the bile acid pool. Alterations in the bile acid profile were more obvious 
in females with VDR deletion, as well as in those receiving HFD. Previous studies have shown that the deletion 
of VDR alters metabolic responses in female mice32,33. Vdr gene polymorphisms are associated with PCOS and 
osteoporosis34. Bile acids are also considered significant factors in shaping the microbiome of diet-induced obese 
mice35. The dysfunction of the VDR-associated bile acid pathway observed in our study further explains the risk 
of HFD-induced obesity without the protection of Vitamin D/VDR.

Excessive accumulation of lipids such as long chain acylcarnitines (LCACs), ceramides, and other metabolites 
are implicated in cell stress and inflammation. Our study demonstrates that long-chain fatty acids (LCFAs) and 
acylcarnitines are significantly elevated in VDR deficient animals, potentially due to perturbations in β-oxidation. 
In the absence of vitamin, polyunsaturated fats can be oxidized in the intestines to produce mutagens and sub-
sequently, inflammatory cells in close proximity to the colon can produce reactive oxygen species36. As a result, 
VDR deficiency may cause lower levels of tocopherols, which may be indicative of an increased risk for colon 
cancer.
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VDR plays an important role in regulating several physiological functions through host-microbiome interac-
tions4. It is crucial for inflammation and immune responses15,37,38. Dysbiosis has emerged as a key risk factor for 
developing a myriad of metabolic diseases including obesity, atherosclerosis, cardiovascular disease, and Type 2 
diabetes39–41. A shift in the metabolic capacitance of the microbiota is also associated with the severity of nonal-
coholic fatty liver disease (NAFLD)42. Our previous studies have shown that VDR knock out (VDR−/−) mice have 
depleted Lactobacillus and enriched Clostridium and Bacteroides in feces. Notably, in the cecal content, Alistipes 
and Odoribacter population were significantly down, and Eggerthella were increased. Intestinal specific deletion of 
VDR leads to dysbiosis due to increased E. coli and Bacteroides and decreased butyrate-producing bacteria7. This 
imbalance resulted in defective autophagy in colitis8. In the current study, we found that VDR deletion contributes 
to the variation of microbial contents, supporting the changes in metabolite profile. Accordingly, the percentage of 
abundance of Parabacteroides distasonis (PD) significantly dropped in VDRΔIEC mice. For example, PD is known 
to modulate host metabolism via FXR pathway by producing secondary bile acids43. N-acetylmuramate released 
by L. acidophilus has an anti-inflammatory effect on LPS-induced inflammation. Decreased N-acetylmuramate 
in VDR∆lyz mice might be associated with loss of L. acidophilus as reported in our previous study44. Consistent 
with the recent report that indicated that high-fat diet depletes the indole-3-carboxylate and other tryptophan 
derived microbial metabolites, which are known to attenuate weight gain in rats45. Because polyamines have 
strong anti-inflammatory functions46, these changes may impact aspects of immunity. Previous studies from 
our lab have indicated a correlation between the short-chain fatty acid (SCFA) butyrate and VDR8,15. Lack of 
1,25(OH)2D3 or VDR deficiency results in microbial dysbiosis, leading to greater susceptibility to colitis, which 
might be important for patients with IBD8,47–49. Loss of SCFA and VDR is also connected to a higher risk of colon 
cancer50. Probiotic treatments could potentially exert beneficial effects depending on the VDR status51.

Gut microbiota controls neurobehavior via modulating brain insulin sensitivity and metabolism of trypto-
phan, the precursor of serotonin52. Increased influx of tryptophan into the brain by HFD could be related to 
increased blood insulin levels. VDRΔlyz group displayed significant downregulation of quinolinate and tocopherol 
pathway derived metabolites and increase in nicotinamide. Quinolinic acid acts as a neurotoxin, proinflamma-
tory mediator, and prooxidant molecule53. Loss of intestinal VDR also increased kynurenine, a pathway associ-
ated with inflammatory neurological disorder30. These changes indicate the role of VDR in neurophysiology. The 
role of VDR/vitamin D in the gut-brain axis needs further investigation in future research.

We have demonstrated gender differences in metabolites that may be regulated by VDR status. Female mice 
were shown to be more affected by VDR deletion than male mice. Higher circulating bile acids were observed in 
obese and type-2 diabetes54. Thus, significant elevation of secondary bile acids in VDR deficient females indicates 
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that VDR deficiency plays a critical role in bile acid accumulation. The same increase was not observed in males, 
suggesting that sex hormones might also play a role in bile acid accumulation. This might be the reason why 
Vitamin D deficiency makes females more vulnerable to metabolic disorders, including obesity55. Polyamines 
facilitate a switch between different coactivator complexes that bind to nuclear receptors, such as VDR19. 
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Figure 9. (A) Heat map of a global metabolomic study comparing fecal samples from VDR deficient animals to 
the control group as well as that were kept on HFD or a chow diet. Different group, gender, diet, super-pathways 
are indicated by colors as indicated in the right panel. Variations in explicit microbial content following targeted 
VDR deletion in intestine in (B) VDRΔIEC mice and (C) myeloid cell-specific VDRΔlyz mice. Each dot indicates 
percentage of abundance in each mice sample. Significance is established at adjusted P  <  0.05.
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The increase in polyamines was more significant in male VDRΔIEC mice, indicating the gender differences in 
metabolite-VDR interactions.

One of the limitations of our study is that it does not provide information on urolithin and that certain bio-
chemicals did not reach levels of significance. However, we did clearly demonstrate that in the absence of VDR, 

Figure 10. Western blot results showing increased FXR expression in the colonic epithelium (A) as well as in 
liver hepatic cells (B) following VDR deletion and HFD. (C) IHC staining of FXR (in brown color) in hepatic 
sections indicated increased expression (N = 3–6). (D) A working model showing role of VDR in regulating 
microbiome and metabolite and obesity. The absence of VDR leads to altered metabolites, which contribute to 
the disease state. Significance was established at adjusted P  <  0.05.
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altered intestinal homeostasis occurred which could drive an altered intestinal metabolism. We need to deter-
mine the potential function of the microbiota by functional and taxonomic annotation of the microbiota, using 
sample-matched data. Other future directions could include plasma samples from these mice, which will further 
improve our understanding of the role of intestinal homeostasis to host metabolism. As a path forward, we need 
to validate changes seen in this dataset in various disease models specifically related to metabolic syndrome and 
in human cohorts (representing both diets and genders).

conclusion
VDR is crucial for maintaining a healthy microbiome and metabolome. Our study reports how VDR defi-
ciency not only drives derangements in gut-microbiome but also significantly alters the metabolite profile in a 
tissue- and gender-specific manner. We have demonstrated the role of nuclear receptors (e.g., VDR and FXR) 
in regulating host physiology and microbial metabolites in health and obesity. These findings may potentially 
inform strategies for the prevention and management of metabolic diseases by elevating VDR and restoring 
host-microbiome-metabolites.

Methods
experimental animals and design. VDRLoxP mice were formerly developed by Dr. Geert Carmeliet. 
VDRΔIEC mice were obtained by crossing the VDRLoxP mice with villin-cre mice and VDRΔlyz mice were obtained 
by crossing Lyz-cre mice. Both Vilin-cre and Lyz-cre mice purchased from Jackson Laboratories. VDRΔIEC mice 
were derived from heterozygous mating pairs so that wild type and conditional KO mice came from the same 
litter. The same breeding method was used for the VDRLoxP mice.

Six-week old VDRΔIEC (8 female and 9 male), VDRΔlyz (5 female and 5 male), and VDRLoxP (6 female and 10 
male) mice were received normal chow (10% fat calories) diet. All mice were housed in specific pathogen-free 
environments under a controlled condition of 12 h light/12 h dark cycle at 20–22 °C and 45  ±  5% humidity, with 
free access to food and ultrapure water. All animal work was approved by the University of Illinois at Chicago 
Committee on Animal Resources. All experiments were performed in accordance with relevant guidelines and 
regulations.

This was a three-way (Genotype, Diet Treatment, and Gender) study design. To further evaluate the diet effect 
of VDRΔIEC versus VDRLoxP, an additional 7 VDRΔIEC (3 female and 4 male) and 6 VDRLoxP (4 female and 2 male) 
mice were fed with high-fat diet (45% fat calories) for 16 weeks. The body weights and food intake of all animals 
were observed once a week during the experiments. Fecal contents of mice were carefully collected in separate 
Eppendorf tubes, labeled with unique identification number and stored at −80 °C until sipped. Samples were 
transported to Metabolon Inc, NC, USA in dry ice by overnight shipment for analysis.

Sample preparation. Fecal samples were prepared using the automated MicroLab STAR® system from 
Hamilton Company. Several recovery standards were added prior to the first step in the extraction process for QC 
purposes. To remove protein, dissociate small molecules bound to protein or trapped in the precipitated protein 
matrix, and to recover chemically diverse metabolites, proteins were precipitated with methanol under vigorous 
shaking for 2 min (Glen Mills GenoGrinder 2000) followed by centrifugation. The resulting extract was divided 
into five fractions: two for analysis by two separate reverse phase (RP)/UPLC-MS/MS methods with positive ion 
mode electrospray ionization (ESI), one for analysis by RP/UPLC-MS/MS with negative ion mode ESI, one for 
analysis by HILIC/UPLC-MS/MS with negative ion mode ESI, and one sample was reserved for backup. Samples 
were placed briefly on a TurboVap® (Zymark) to remove the organic solvent. The sample extracts were stored 
overnight under nitrogen before preparation for analysis.

Western blotting. Colonic mucosa and liver tissues from mice were isolated and sonicated in lysis buffer (1% 
Triton X-100, 150 mmol/L NaCl, 10 mmol/L Tris pH 7.4, 1 mmol/L EDTA, 1 mmol/L EGTA pH 8.0, 0.2 mmol/L 
sodium ortho-vanadate, and protease inhibitor cocktail), as previously described8. Primary antibodies to mouse 
VDR, β-actin (Sigma-Aldrich, Milwaukee, WI, USA), and FXR (Santacruz, CA, USA) were used. WB was finally 
visualized using an ECL kit. The relative abundance of protein was determined using Image-J (NIH) software. 
The gels/blots used in figures are checked their compliance with the digital image and integrity policies in Nature 
publisher.

immunohistochemical staining (iHc). Immunohistochemistry (IHC) was performed using sections 
of paraffin-embedded liver tissue as previously described6. Sections were incubated in primary antibody FXR 
(Santacruz, CA, USA) 1:50 diluted for in blocking buffer) at 4 °C overnight. Then washed three times with 0.1% 
Tween in PBS, and incubated with biotin-conjugated secondary antibody at room temperature for 1 h, washed, 
incubated with ABC reagent at RT for 1 h (Vector lab PK-6100 standard), washed, visualized with DAB kit (Vector 
lab SK-4100) and counterstained with hematoxylin. Images were captured by B21 fluorescence microscope.

Shotgun sequencing. Fecal samples were used for shotgun sequencing. genomic DNA was fragmented into 
relatively small pieces (generally 250-600 bp fragments) prior to sequencing. Subsequently, the known sequences 
are used to manipulate the DNA by way of PCR amplification (to increase the total amount of DNA but without 
selecting for any specific sequences) and for the initiation of the sequencing reaction, again without selection for 
any specific sequence from the source genomic DNA. Millions to hundreds of millions of short sequences (gen-
erally 150 bases, in pairs) are generated using Illumina sequencing platforms. These data were analyzed by (a) 
searching for lineage-specific marker genes; (b) high-throughput BLAST analysis of individual sequences against 
a reference sequence; (c) assembly of larger DNA sequences (“contigs”) from the short-read data. Ultimately, the 
annotated data can be used to characterize the gene content of microbial communities, measure diversity, and 
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identify differences in the relative abundance of microbial features (i.e., taxa, genes, and pathways) between dif-
ferent groups of samples. We used the UIC genomic facility for our studies.

Statistical analysis. Raw data were extracted, peak-identified and QC processed using Metabolon’s hard-
ware and software. Compounds were identified by comparison to library entries of purified standards or recur-
rent unknown entities. Furthermore, biochemical identifications are based on three standard criteria. A variety of 
procedures were carried out to ensure that a high-quality data set was made available for statistical analysis and 
data interpretation. Metabolites were quantified and data were normalized as necessary.

The analysis data were presented as a fold change ratio of treatment vs. control. All the tests were two-sided. 
The numbers of biochemicals were summarized as statistical significance at P ≤ 0.05 and 0.05 < P < 0.10 levels. 
Following log transformation and imputation of missing values as appropriate, a two-way ANOVA with contrasts 
and Welch’s two-sample t-test were used to identify biochemicals that differed significantly between genotypes 
and treatment groups. Three-way ANOVA was further conducted to identify biochemicals exhibiting significant 
interaction and main effects for experimental parameters of genotype, diet, and gender. An estimate of the false 
discovery rate (q-value) was calculated to take into account the multiple comparisons that normally occur in 
metabolomic-based studies. The matched pairs t-test is used to test whether two unknown means are different 
from paired observations taken on the same sample. To present the high-level overview of data structure for 
experimental parameters of genotype, diet, and gender, principal component analysis (PCA) along with hierar-
chical clustering analysis (HCA) as well as random forest (RF) analysis were conducted to highlight biochemical 
alterations between fecal samples collected from VDRΔIEC, VDR∆lyz, and VDR LoxP, mice that were kept either on 
HFD or chow diet as well as gender differences.

ethics approval and consent to participate. No human study. All animal studies were performed fol-
lowing ACC guidelines at the University of Illinois at Chicago (UIC), IL, USA.

Data availability
Data and material will be available by request.
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