Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

2,2'-\{1,1'-[2,2'-Oxalylbis(hydrazin-2-yl-1ylidene)]diethylidyne\}dipyridinium bis(perchlorate) dihydrate

Goran N. Kaluderović, ${ }^{\text {a* }}$ Rabia O. Mohamad Eshkourfu, ${ }^{\text {b }}$ Santiago Gómez-Ruiz, ${ }^{\text {c }}$ Dragana Miticić ${ }^{\text {b }}$ and Katarina K. Andelkovićb
${ }^{\text {a }}$ Department of Chemistry, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Studentski trg 14, 11000 Belgrade, Serbia, ${ }^{\text {b }}$ Faculty of Chemistry, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia, and ${ }^{\text {c }}$ Departamento de Química Inorgánica y Analitica, E.S.C.E.T., Universidad Rey Juan Carlos, 28933 Móstoles, Madrid, Spain
Correspondence e-mail: goran@chem.bg.ac.rs

Received 24 February 2010; accepted 18 March 2010
Key indicators: single-crystal X-ray study; $T=130 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.043 ; w R$ factor $=0.105$; data-to-parameter ratio $=19.7$.

The title salt, $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{6} \mathrm{O}_{2}{ }^{2+} \cdot 2 \mathrm{ClO}_{4}{ }^{-} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, was obtained unintentionally as a major product in the reaction of $\mathrm{Zn}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ with the $N^{\prime}, N^{\prime 2}$-bis $[(1 E)$-1-(2-pyridyl)ethylidene]ethanedihydrazide $\left(\mathrm{H}_{2} L\right)$ ligand. The $\left(\mathrm{H}_{4} L\right)^{2+}$ cation lies across a centre of inversion. The pyridiniumimine fragments of $\left(\mathrm{H}_{4} L\right)^{2+}$ adopt syn orientations. Intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds lead to the formation of $S(5)$ motifs. In the crystal, neighbouring cations are connected by $\pi-\pi$ interactions between pyridinium units with a centroid-centroid distance of 3.600 (1) A. Moreover, the crystal components are assembled into two-dimensional layers via $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, with no direct hydrogen-bonding interactions between cations.

Related literature

For the use of $N^{\prime}, N^{\prime 2}$-bis[(1E)-1-(2-pyridyl)ethylidene]ethanedihydrazide in reactions with metal ions, see: Anelković et al. (2005); Kelly et al. (2005); Sen et al. (2006). For hydrogen bonds, see: Bernstein et al. (1995); Jeffrey et al. (1985).

Experimental

Crystal data
$\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{6} \mathrm{O}_{2}{ }^{2+} \cdot 2 \mathrm{ClO}_{4}{ }^{-} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$V=1113.26(7) \AA^{3}$
$M_{r}=561.3$
Monoclinic, $P 2_{h^{\prime}} / c$
$Z=2$
$a=7.0166$ (3) A
$b=15.6855$ (5) \AA
Mo $K \alpha$ radiation
$\mu=0.37 \mathrm{~mm}^{-1}$
$T=130 \mathrm{~K}$
$0.4 \times 0.3 \times 0.2 \mathrm{~mm}$
$\beta=90.240(3)^{\circ}$

Data collection

Oxford Diffraction XcaliburS CCD diffractometer
Absorption correction: multi-scan
(CrysAlis PRO; Oxford
Diffraction, 2009)
$T_{\text {min }}=0.875, T_{\text {max }}=0.929$
12596 measured reflections 3402 independent reflections 2504 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.037$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.105$
$S=0.98$
3402 reflections
173 parameters
2 restraints

> H atoms treated by a mixture of independent and constrained refinement
> $\Delta \rho_{\max }=0.69 \mathrm{e} \AA^{-3}$
> $\Delta \rho_{\min }=-0.48 \mathrm{e} \AA^{-3}$

Table 1
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N} \cdots \mathrm{O} 6$	0.84 (2)	1.86 (2)	2.690 (2)	168 (2)
$\mathrm{N} 1-\mathrm{H} 1 N \cdots \mathrm{~N} 2$	0.84 (2)	2.32 (2)	2.632 (2)	102 (2)
N3-H3N..O5	0.84 (2)	2.36 (2)	3.011 (2)	134 (2)
$\mathrm{N} 3-\mathrm{H} 3 \mathrm{~N} \cdots \mathrm{O} 1^{\text {i }}$	0.84 (2)	2.36 (2)	2.686 (2)	104 (2)
O6-H6A \cdots O1	0.82 (2)	2.08 (2)	2.889 (2)	173 (2)
$\mathrm{O} 6-\mathrm{H} 6 \mathrm{~B} \cdots \mathrm{O}^{\text {ii }}$	0.84 (2)	1.98 (2)	2.809 (2)	171 (2)

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97.

This work was supported by the Ministry of Science and Technological Development of the Republic of Serbia (grant 142026).

[^0]
References

Anelković, K., Sladić, D., Bacchi, A., Pelizzi, G., Filipović, N. \& Rajković, M. (2005). Transition Met. Chem. 30, 243-250

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Jeffrey, G. A., Małuszyńska, H. \& Mitra, J. (1985). Int. J. Biol. Macromol. 7, 336-348.
Kelly, T. L., Milway, V. A., Grove, H., Niel, V., Abedin, T. S. M., Thompson, L. K., Zhao, L., Harvey, R. G., Miller, D. O., Leech, M., Goeta, A. E. \& Howard, J. A. K. (2005). Polyhedron, 24, 807-821.

organic compounds

Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. \& van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.

Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.

Sen, S., Choudhury, C. R., Talukder, P., Mitra, S., Westerhausen, M., Kneifel, A. N., Desplanches, C., Daro, N. \& Sutter, J.-P. (2006). Polyhedron, 25, 12711278.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

2,2'-\{1,1'-[2,2'-Oxalylbis(hydrazin-2-yl-1-ylidene)]diethylidyne\}dipyridinium bis(perchlorate) dihydrate

G. N. Kaluderovic, R. O. Mohamad Eshkourfu, S. Gómez-Ruiz, D. Mitic and K. K. Andelkovic

Comment

$N^{\prime}, N^{2}-\operatorname{Bis}\left[(1 E)-1-\left(2\right.\right.$-pyridyl)ethylidene]ethanedihydrazide $\left(\mathrm{H}_{2} L\right)$ is usually used for the preparation of metal complexes (Anđelković et al. 2005; Kelly et al. 2005; Sen et al., 2006). However, only two complexes, polynuclear complex of $\mathrm{Cu}(\mathrm{II})$ and mononuclear complex of $\mathrm{Ni}(\mathrm{II})$, with ligand $\mathrm{H}_{2} L$ have been obtained and characterized so far (Sen et al., 2006). These complexes have been prepared by direct reaction of $M(\mathrm{AcO})_{2}[M=\mathrm{Cu}(\mathrm{II})$ and $\mathrm{Ni}(\mathrm{II})]$ with $\mathrm{H}_{2} L$ in 2-propanol/ $\mathrm{H}_{2} \mathrm{O}$ (Sen et al., 2006). However, in the reactions of $\mathrm{H}_{2} L$ with $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ or $\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ in $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$, hydrolysis at the hydrazide moiety occurred affording the formation of the binuclear $\mathrm{Cu}(\mathrm{II})$ complex with 2-acetylpyridine hydrazone in which oxalate ion serves as a bridge between two metal centers (Kelly et al., 2005). Similarly, hydrolysis of $\mathrm{H}_{2} L$ took place in the reaction with $\mathrm{Fe}\left(\mathrm{ClO}_{4}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ in water, with simultaneous reduction of $\mathrm{Fe}(\mathrm{III})$ to Fe (II) by oxalic fragment affording formation of mononuclear Fe(II) complex with 2-acetylpyridine hydrazone (Anđelković et al., 2005). The cited studies show that direct synthetic reactions of metal ions with the ligand $\mathrm{H}_{2} L$ may be very intricate and often lead to accidental products. The title salt, (I), was obtained unintentionally as a major product in direct reaction of $\mathrm{Zn}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ with the ligand N^{\prime}, N^{2}-bis $\left[(1 E)-1\right.$-(2-pyridyl)ethylidene]ethanedihydrazide $\left(\mathrm{H}_{2} L\right)$. The cation $\left(\mathrm{H}_{4} L\right)^{2+}$ lies at the center of inversion at $1 / 2,0,0$. The numbering scheme of (I) is given in Fig. 1. The C8-O1 bond distance of 1.214 (2) \AA is consistent with the carbon-oxygen double bonding. The N3-C8 [1.352 (2) \AA] and N2-C6 [1.289 (2) \AA] bond distances indicate single and double CN bonding, respectively. The cation deviates from planarity. The distance between the mean plane defined by C1-C6,C8,N1-N3 atoms and that defined by respective symmetry related atoms is $0.223 \AA$. The structure of (I) is stabilized by intramolecular and intermolecular hydrogen bonds and their geometrical details are listed in Table 1. The s-trans conformation of the cation is stabilized by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Fig. 1, Table 1). The torsion angle O1-C8-C8a-O1a [atoms labeled with the suffix "a" are at symmetry position $1-x,-y,-z$] is 180°. The syn orientations of the pyridiniumimine fragments are stabilized by the $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ intramolecular hydrogen bonds. The torsion angle $\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{N} 2$ is 3.3 (2) ${ }^{\circ}$. The intramolecular hydrogen bonds ($\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$) lead to formation of $\mathrm{S}(5)$ motifs (Fig. 1.) (Bernstein et al., 1995). In the crystal structure all residues participate in the intermolecular hydrogen bonding (Fig. 2.). Solvent water molecule acts as a double donor [to O 1 and O 3 at $-x, y-1 / 2,-z+1 / 2]$ and a single acceptor. The pyridinium and hydrazone nitrogens serve as double hydrogen bond donors with one component intra and the other intermolecular. As suggested by Jeffrey et al., 1985, this type of H-bond is called three-center. Perchlorate groups and water molecules mediate in joining together the cation molecules (Fig. 2.). Each cation is H -bonded to two perchlorate groups and two water molecules. The oxygen atoms (O 3 and O 5) from perchlorate group serve as H -bond acceptors. The O 5 accepts hydrogen from hydrazone nitrogen and O 3 from water molecule. The other hydrogen from water molecule is being donated to carbonyl oxygen (O1) of cation molecule. This system of H -bond interactions spreads in two-dimensions parallel to (102). The heteroaromatic rings of the neighbouring cations are involved in $\pi-\pi$ interactions (Fig. 3). The aromatic rings are found to be parallel-displaced. Namely, the distance between the centers of gravity of aromatic rings (C1-C5,N1) and (C1b-C5b,N1b) [atoms labeled with the suffix " b " are at symmetry position $-x,-y, 1-z$] is 3.600 (1) \AA with the center of gravity displaced distance of 1.502 \AA. Cation molecules connected by $\pi-\pi$ interactions between pyridinium units extend in a stairs-like manner along [101].

Experimental

$\mathrm{Zn}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.32 \mathrm{~g}, 0.85 \mathrm{mmol})$ and $\mathrm{H}_{2} L(0.27 \mathrm{~g}, 0.85 \mathrm{mmol})$ were suspended in $\mathrm{MeOH}\left(30 \mathrm{~cm}^{3}\right)$. To the light yellow suspension 4-5 drops of HClO_{4} were added and the resulting yellow solution was refluxed for 1 h at 338 K . Upon cooling to room temperature and filtration, a light yellow microcrystalline product was obtained. Yield: 56\%; mp. 511-513 K; molar conductivity (DMF, $1.10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$) $\lambda_{\mathrm{M}}=160 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$. Solubility: insoluble in water and ethanol, soluble in acetonitrile and dimethylsulfoxide. The molar conductivity of a DMF solution of the ligand salt $\left(1.10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}\right)$ was measured at room temperature on a Jenway-4009 digital conductivity meter.

Refinement

The H atoms connected to C atoms were positioned geometrically $(\mathrm{C}-\mathrm{H}=0.95-0.98 \AA$) and treated as riding on their carrier atoms with $U_{\text {iso }}(\mathrm{H})=1.2 \mathrm{U}_{\mathrm{eq}}(\mathrm{C}) . \mathrm{H}$ atoms at nitrogen were found in electron-density difference maps and refined freely. In order to adjust distances of hydrogen atoms of water molecule DFIX instruction was used with the target value of $0.84(2) \AA(\mathrm{O} 6-\mathrm{H})$. The crystal was pseudomerohedrally twinned with the twin law (1000-1000-1) in the reciprocal space. The refinement gave with the 6% content of the minor component.

Figures

Fig. 1. The numbering scheme in the title compound. Displacement ellipsoids are drawn at the 50% probability level. The intramolecular hydrogen bonds $(\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{N})$ are shown with dashed lines. Atoms labeled with the suffix "a" are at the symmetry position 1-x, $-y,-z$.

Fig. 2. Packing diagram of the title compound showing 2D assembly parallel to (102) generated by hydrogen bonding. Hydrogen atoms, except those involved in hydrogen bonding, are omitted for clarity.

Fig. 3. Packing diagram of the title compound showing 1D assembly parallel to [-101] generated by stacking interactions of the pyridinium fragments. View along b-axis.

2,2'-\{1, $\mathbf{1}^{\prime}$-[2,2'-Oxalylbis(hydrazin-2-yl-1-ylidene)]diethylidyne\}dipyridinium bis(perchlorate) dihydrate

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{6} \mathrm{O}_{2}{ }^{2+} \cdot 2 \mathrm{ClO}_{4}{ }^{-} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=561.3$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=7.0166$ (3) \AA
$F(000)=580$
$D_{\mathrm{x}}=1.674 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 4422 reflections
$\theta=2.9-32.2^{\circ}$

$$
\begin{aligned}
& b=15.6855(5) \AA \\
& c=10.1152(4) \AA \\
& \beta=90.240(3)^{\circ} \\
& V=1113.26(7) \AA^{3} \\
& Z=2
\end{aligned}
$$

$\mu=0.37 \mathrm{~mm}^{-1}$
$T=130 \mathrm{~K}$
Plate, colourless
$0.4 \times 0.3 \times 0.2 \mathrm{~mm}$

Data collection

Oxford Diffraction XcaliburS CCD
diffractometer
graphite
Detector resolution: 16.356 pixels mm^{-1}
ω scans and φ scans
Absorption correction: multi-scan
(CrysAlis Pro; Oxford Diffraction, 2009)
$T_{\text {min }}=0.875, T_{\text {max }}=0.929$
12596 measured reflections
3402 independent reflections
2504 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.037$
$\theta_{\text {max }}=30.5^{\circ}, \theta_{\text {min }}=2.9^{\circ}$
$h=-9 \rightarrow 10$
$k=-22 \rightarrow 20$
$l=-12 \rightarrow 14$

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.105$
$S=0.98$
3402 reflections
173 parameters
2 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R -factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \operatorname{sigma}\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(A^{2}\right)$

$$
\begin{array}{llll}
x & y & z & U_{\mathrm{iso}} * / U_{\mathrm{eq}}
\end{array}
$$

Cl1	$-0.06740(7)$	$0.17109(3)$	$0.03091(5)$	$0.02258(12)$
O1	$0.5097(2)$	$-0.08816(8)$	$0.10597(12)$	$0.0239(3)$
O2	$-0.0958(2)$	$0.23504(9)$	$-0.06811(15)$	$0.0357(4)$
O3	$-0.2032(3)$	$0.18404(10)$	$0.13518(17)$	$0.0553(6)$
O4	$-0.0935(2)$	$0.08764(8)$	$-0.02205(14)$	$0.0331(3)$
O5	$0.1188(3)$	$0.17823(11)$	$0.0853(3)$	$0.0705(7)$
O6	$0.3496(2)$	$-0.14953(9)$	$0.35088(15)$	$0.0285(3)$
N1	$0.2466(2)$	$-0.01871(9)$	$0.50693(15)$	$0.0167(3)$
N2	$0.3686(2)$	$0.03179(9)$	$0.27403(15)$	$0.0190(2)$
N3	$0.4253(2)$	$0.05006(10)$	$0.14877(14)$	$0.0190(2)$
C1	$0.2678(2)$	$0.06619(11)$	$0.48485(17)$	$0.0168(3)$
C2	$0.2139(3)$	$0.12184(11)$	$0.58310(18)$	$0.0206(4)$
H2	0.2278	0.1815	0.5705	0.025^{*}
C3	$0.1395(3)$	$0.09094(12)$	$0.70044(18)$	$0.0226(4)$
H3	0.1008	0.1295	0.7675	0.027^{*}
C4	$0.1214(2)$	$0.00423(12)$	$0.72004(18)$	$0.0214(4)$
H4	0.0714	-0.0176	0.8004	0.026^{*}
C5	$0.1775(2)$	$-0.05004(11)$	$0.62031(17)$	$0.0193(4)$
H5	0.1672	-0.11	0.632	0.023^{*}
C6	$0.3414(2)$	$0.09391(11)$	$0.35522(17)$	$0.0174(3)$
C7	$0.3775(3)$	$0.18669(11)$	$0.3335(2)$	$0.0271(4)$
H7A	0.4424	0.1947	0.2488	0.041^{*}
H7B	0.4579	0.2088	0.4052	0.041^{*}
H7C	0.2559	0.2174	0.3323	0.041^{*}
C8	$0.4826(2)$	$-0.01508(11)$	$0.07098(18)$	$0.0188(3)$
H1N	$0.279(3)$	$-0.0545(14)$	$0.449(2)$	$0.026(4)^{*}$
H3N	$0.401(3)$	$0.0985(14)$	$0.118(2)$	$0.026(4)^{*}$
H6A	$0.388(4)$	$-0.1348(17)$	$0.2784(19)$	$0.049(6)^{*}$
H6B	$0.295(4)$	$-0.1971(13)$	$0.351(3)$	$0.049(6)^{*}$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	$0.0305(2)$	$0.01659(19)$	$0.0206(2)$	$0.00294(16)$	$0.00279(17)$	$0.00130(16)$
O1	$0.0335(7)$	$0.0212(6)$	$0.0172(7)$	$0.0020(5)$	$0.0033(5)$	$0.0015(5)$
O2	$0.0530(10)$	$0.0281(7)$	$0.0262(8)$	$0.0080(7)$	$0.0064(7)$	$0.0114(6)$
O3	$0.1039(16)$	$0.0265(8)$	$0.0358(10)$	$0.0169(9)$	$0.0408(10)$	$0.0046(7)$
O4	$0.0494(9)$	$0.0214(7)$	$0.0285(8)$	$-0.0010(6)$	$0.0064(7)$	$-0.0057(6)$
O5	$0.0498(12)$	$0.0292(9)$	$0.132(2)$	$-0.0002(8)$	$-0.0469(13)$	$0.0052(10)$
O6	$0.0401(8)$	$0.0207(7)$	$0.0247(8)$	$-0.0045(6)$	$0.0116(6)$	$-0.0010(6)$
N1	$0.0174(7)$	$0.0175(7)$	$0.0153(7)$	$0.0006(5)$	$0.0009(6)$	$-0.0004(5)$
N2	$0.0242(6)$	$0.0206(5)$	$0.0121(5)$	$0.0002(4)$	$0.0031(4)$	$0.0024(4)$
N3	$0.0242(6)$	$0.0206(5)$	$0.0121(5)$	$0.0002(4)$	$0.0031(4)$	$0.0024(4)$
C1	$0.0158(8)$	$0.0182(8)$	$0.0163(8)$	$0.0001(6)$	$0.0001(6)$	$0.0010(6)$
C2	$0.0240(9)$	$0.0183(8)$	$0.0195(9)$	$0.0002(6)$	$0.0019(7)$	$-0.0013(6)$
C3	$0.0258(9)$	$0.0258(9)$	$0.0161(9)$	$0.0000(7)$	$0.0011(7)$	$-0.0035(7)$
C4	$0.0222(9)$	$0.0274(9)$	$0.0145(8)$	$-0.0003(7)$	$0.0016(7)$	$0.0035(7)$
C5	$0.0193(9)$	$0.0207(8)$	$0.0180(9)$	$-0.0016(6)$	$-0.0011(7)$	$0.0038(7)$

sup-4

C6	$0.0170(8)$
C7	$0.0410(12)$
C8	$0.0192(8)$
Geometric parameters $\left(A,^{\circ}\right)$	

Cl1-O5	1.4198 (17)
Cl1-O4	1.4259 (14)
$\mathrm{C} 11-\mathrm{O} 2$	1.4309 (14)
Cl1-O3	1.4386 (17)
O1-C8	1.214 (2)
O6-H6A	0.815 (17)
O6-H6B	0.839 (17)
N1-C5	1.340 (2)
N1-C1	1.359 (2)
N1-H1N	0.84 (2)
N2-C6	1.289 (2)
N2-N3	1.360 (2)
N3-C8	1.352 (2)
N3-H3N	0.84 (2)
O5-Cl1-O4	109.55 (10)
$\mathrm{O} 5-\mathrm{Cl} 1-\mathrm{O} 2$	109.96 (11)
$\mathrm{O} 4-\mathrm{Cl} 1-\mathrm{O} 2$	111.30 (9)
$\mathrm{O} 5-\mathrm{Cl1}-\mathrm{O} 3$	108.40 (14)
$\mathrm{O} 4-\mathrm{Cl1}-\mathrm{O} 3$	108.69 (10)
$\mathrm{O} 2-\mathrm{Cl} 1-\mathrm{O} 3$	108.87 (9)
H6A-O6-H6B	114 (3)
C5-N1-C1	122.70 (15)
C5-N1-H1N	116.7 (15)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N}$	120.6 (15)
C6-N2-N3	118.61 (14)
C8-N3-N2	118.15 (15)
C8-N3-H3N	122.0 (14)
N2-N3-H3N	118.4 (15)
N1-C1-C2	118.18 (16)
N1-C1-C6	118.26 (15)
C2-C1-C6	123.53 (16)
C1-C2-C3	120.13 (17)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	119.9
C3-C2-H2	119.9
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	120.17 (17)
C6-N2-N3-C8	169.62 (16)
C5-N1-C1-C2	-0.7 (2)
C5-N1-C1-C6	-178.72 (16)
N1-C1-C2-C3	-0.3 (3)
C6-C1-C2-C3	177.63 (16)
C1-C2-C3-C4	0.9 (3)
C2-C3-C4-C5	-0.5 (3)

C1-C2	1.377 (2)
C1-C6	1.477 (2)
C2-C3	1.386 (3)
C2-H2	0.95
C3-C4	1.381 (3)
C3-H3	0.95
$\mathrm{C} 4-\mathrm{C} 5$	1.379 (3)
C4-H4	0.95
C5-H5	0.95
C6-C7	1.493 (2)
C7-H7A	0.98
C7-H7B	0.98
C7-H7C	0.98
C8-C8 ${ }^{\text {i }}$	1.532 (4)
C4-C3-H3	119.9
C2-C3-H3	119.9
C5-C4-C3	118.46 (17)
C5-C4-H4	120.8
C3-C4-H4	120.8
N1-C5-C4	120.35 (16)
N1-C5-H5	119.8
C4-C5-H5	119.8
N2-C6-C1	113.35 (15)
N2-C6-C7	128.13 (17)
C1-C6-C7	118.52 (15)
C6-C7-H7A	109.5
C6-C7-H7B	109.5
H7A-C7-H7B	109.5
C6-C7-H7C	109.5
H7A-C7-H7C	109.5
H7B-C7-H7C	109.5
$\mathrm{O} 1-\mathrm{C} 8-\mathrm{N} 3$	126.18 (17)
$\mathrm{O} 1-\mathrm{C} 8-\mathrm{C} 8^{\text {i }}$	122.6 (2)
N3-C8-C8 ${ }^{\text {i }}$	111.16 (18)
N3-N2-C6-C1	176.07 (14)
N3-N2-C6-C7	-4.8 (3)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{N} 2$	3.3 (2)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{N} 2$	-174.65 (17)
N1-C1-C6-C7	-175.92 (16)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 7$	6.1 (3)
N2-N3-C8-O1	-9.0 (3)

supplementary materials

$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4$	$1.1(3)$	$\mathrm{N} 2-\mathrm{N} 3-\mathrm{C} 8-\mathrm{C} 8{ }^{\mathrm{i}}$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 1$	$-0.5(3)$	

Symmetry codes: (i) $-x+1,-y,-z$.

Hydrogen-bond geometry (A, \circ)

$D — \mathrm{H} \cdots A$	D - H	$\mathrm{H} \cdots \mathrm{A}$	$D \cdots A$	$D — \mathrm{H} \cdots \mathrm{A}$
N1-H1N \cdots O6	0.84 (2)	1.86 (2)	2.690 (2)	168 (2)
N1-H1N \cdots N2	0.84 (2)	2.32 (2)	2.632 (2)	102 (2)
N3-H3N \cdots O5	0.84 (2)	2.36 (2)	3.011 (2)	134 (2)
$\mathrm{N} 3-\mathrm{H} 3 \mathrm{~N} \cdots \mathrm{O} 1^{\text {i }}$	0.84 (2)	2.36 (2)	2.686 (2)	104 (2)
O6-H6A \cdots O1	0.82 (2)	2.08 (2)	2.889 (2)	173 (2)
O6-H6A \cdots N2	0.82 (2)	2.62 (3)	2.952 (2)	106 (2)
O6-H6B $\cdots \mathrm{O} 3^{\text {ii }}$	0.84 (2)	1.98 (2)	2.809 (2)	171 (2)
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{O} 5{ }^{\text {iii }}$	0.95	2.33	3.206 (2)	152
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{O} 4^{\text {iv }}$	0.95	2.50	3.384 (2)	155
$\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{O} 2{ }^{\text {ii }}$	0.95	2.56	3.460 (2)	157
C7—H7A \cdots N	0.98	2.49	2.864 (2)	103

Symmetry codes: (i) $-x+1,-y,-z$; (ii) $-x, y-1 / 2,-z+1 / 2$; (iii) ; (iv) $-x,-y,-z+1$.

supplementary materials

Fig. 1

supplementary materials

Fig. 2

supplementary materials

Fig. 3

[^0]: Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2261).

