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Recently, data with complex characteristics such as epilepsy electroencephalography (EEG) time series has emerged. Epilepsy EEG
data has special characteristics including nonlinearity, nonnormality, and nonperiodicity.Therefore, it is important to find a suitable
forecastingmethod that covers these special characteristics. In this paper, we propose a coercively adjusted autoregression (CA-AR)
method that forecasts future values from a multivariable epilepsy EEG time series. We use the technique of random coefficients,
which forcefully adjusts the coefficients with−1 and 1.The fractal dimension is used to determine the order of the CA-ARmodel.We
applied the CA-ARmethod reflecting special characteristics of data to forecast the future value of epilepsy EEG data. Experimental
results show that when compared to previous methods, the proposed method can forecast faster and accurately.

1. Introduction

Forecasting time series data predicts future values by discov-
ering a set of rules or identifying patterns from past data.
Linear regression models for forecasting time series such as
autoregressive (AR), moving average (MA), and autoregres-
sive moving average (ARMA) are widely used [1]. However,
these methods have difficulty obtaining accurate forecasts
when the time series data has nonlinear characteristics that
constantly change. Thus, soft computing techniques, such
as fuzzy logic and neural networks, have been developed
to resolve the problems of linear approach considering
nonlinear properties and uncertainty of time series data [2, 3].

EEG time series signals obtained from a brain have
irregular and complex wave structures. They also include a
large amount of noise. Epilepsy EEG data is a representative
example of a complex time series. Epilepsy is a disease defined
by abnormal electrical activity in the brain that is central
to the diagnosis of epilepsy. Epilepsy EEG signals display
changes over time through constant interaction with external
factors [4]. Noise is included within the complexity of
epilepsy EEG data during measurements. Epilepsy EEG data
is difficult to forecast because it has special characteristics,

such as nonlinearity, abnormalities, and noise. Therefore,
it is important to select an appropriate forecasting method
because these characteristics affect the forecasting accuracy.

In recent years, studies have been conducted to auto-
matically detect and predict epilepsy seizures using EEG
data. Univariate, bivariate, and multivariate algorithms were
proposed to solve the problem of seizure detection and
prediction based on the EEG analysis of single or multiple
electrodes [5–7]. Rabbi et al. applied nonlinear dynamics
based on unvaried characteristic measurements to extract a
correlation dimension from the intracranial EEG recordings
and designed a fuzzy rule-based system for seizure prediction
[8]. Iasemidis et al. proposed an adaptive seizure prediction
algorithm (ASPA) based on the convergence of the short-
termmaximum Lyapunov exponents (STLmax) among criti-
cal electrodes in the preseizure phase [9]. Liu et al. introduced
a seizure prediction approach using particle filtering [10].
Also, Shahidi Zandi et al. proposed a method to predict
seizures by analyzing the entropy level corresponding to zero-
crossing intervals in scalp EEG and its derivatives [11]. Many
researchers also used autoregressive and spectral analysis for
forecasting by extracting seizure precursors from the EEG
data [12, 13]. However, these researchers used approaches that
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were based on the linear data or unvaried characteristics of
data.

We can give the following problem definition.

Problem Definition. Given a time series data which includes
special characteristics such as nonlinearity, nonnormality,
and nonperiodicity, a forecasting model attempts to forecast
the values over some future time period.More formally, given
a time series of Epilepsy EEG 𝑋 = 𝑥

1
, 𝑥

2
, . . . , 𝑥

𝑡
, we forecast

the value of 𝑥
𝑡+𝑛

. 𝑥
𝑡
is the value of the time series at time 𝑡,

and 𝑛 is the forecasting length.
In this paper, we propose an adaptive forecasting algo-

rithm that adjusts its coefficients of the autoregressive (AR)
model forcedly. To forecast the future values of epilepsy EEG
data including special characteristics, we use the random
coefficients with −1 and 1 and the fractal dimension which
the order of the CA-AR model determines. We conduct
experiments with sets of EEG time series to evaluate the
suitability of our forecasting approach. The experimental
results demonstrate that the proposed method provides
better forecasting performance than previous methods. The
proposed algorithm provides the following benefits: (1)
seizure forecasting and warning to patients about seizures
and (2) actively probing the characteristics of seizure onset.

The remainder of the paper is organized as follows. In
Section 2, we describe the proposed method for forecasting.
The experiment results are compared with the other methods
in Section 3. In Section 4, we discuss the related work on the
prediction and analysis of seizures. Finally, we present our
conclusions in Section 5.

2. Materials and Methods

An autoregressive model is a simple model to estimate the
future value of a series using previous input values.TheAR(𝑝)
model represents a stochastic process using a general form of
order 𝑝 as shown in (1):

𝑋

𝑡
= 𝑐 + 𝜑

1
𝑋

𝑡−1
+ 𝜑

2
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𝑡−2
+ ⋅ ⋅ ⋅ + 𝜑

𝑝
𝑋

𝑡−𝑝
+ 𝜀

𝑡
,

𝑋

𝑡
= 𝑐 +

𝑝

∑

𝑖=1

𝜑

𝑖
𝑋

𝑡−𝑖
+ 𝜀

𝑡
,

(1)

where𝑋
𝑡
is the observation at time 𝑡, 𝜑

𝑝
is the autoregressive

coefficient of 𝑝th order, and 𝜀

𝑡
is white noise normally

distributed with mean zero and variance 𝜎2 at time 𝑡.
An important feature of the AR model is utilizing recent

past observations in the process of estimating the current
observation𝑋

𝑡
at time 𝑡. That is, the current observation can

be estimated by a linear weighted sum of previous obser-
vations. The weights denote the auto-regression coefficients.
The problem in AR analysis is the assumption that data is
stationary and linear, and it must derive the best values for
coefficients given a series 𝑋

𝑡
. Several methods have been

used to estimate AR parameters, such as Yule-Walker, least
squares, and Burg’s method [1]. It has been shown that for
large data samples these estimation techniques should lead to
approximately the same parameter values. The Yule-Walker
method applied the AR model to the signals by minimizing

the forward forecasting error in a least squares sense. The
unknown parameter 𝜑 is estimated as follows:

𝜑 =

∑

𝑝

𝑖=1
𝑋

𝑡
𝑋

𝑡−𝑖

∑

𝑝

𝑖=1
𝑋

2

𝑡−𝑖

. (2)

Under the assumption that 𝜀
𝑡
is normally distributed, this is

also the maximum likelihood estimate of 𝜑. The distribution
of 𝜑 has been studied extensively. Unfortunately, the exact
distribution of 𝜑 is unknown. Asymptotically, if |𝜑| < 1, it
has a normal distribution, while if |𝜑| > 1, it is a Cauchy
distribution. In addition, if |𝜑| = 1, it is a nonstandard
distribution [14]. These distributions can be used to approx-
imate the finite sample distribution of 𝜑. This suggests that
the distribution would not adequately approximate the finite
sample distribution, especially near the discontinuity point
of 𝜑 = 1, because the exact distribution of 𝜑 is continuous
for all values of 𝜑. It has been found that, unless 𝜑 is close to
zero, these distributions do not approximate the distribution
of finite samples well. The nonstandard limiting distribution
when |𝜑| = 1 seems to give a good approximation of the finite
sample distribution when |𝜑| is close to 1. However, it is too
complex for practical use since an accurate approximation to
this nonstandard limiting distribution can be obtained from
the asymptotic expansion [15]. In this study, our aim is to
find a forecasting method suitable for epilepsy EEG data.
More specifically, suppose that {𝜑

𝑡
} is an independent and

identically distributed sequence defined by

𝜑

𝑡
= {

𝜃 with probability 𝛼,
−𝜃 with probability 1 − 𝛼,

(3)

where 0 ≤ 𝜃 < ∞ and 0 < 𝛼 < 1. From (3), we have 𝜑 =
𝐸(𝜑

𝑡
) = 2(𝛼−1)𝜃, 𝐸(𝜑2

𝑡
) = 𝜃

2, and 𝜎2
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2
−𝜑

2
= 4𝛼(1−𝛼)𝜃

2

[16].
In particular, if we take 𝜃 = 𝑝, we obtain a special case

of an AR(𝑝) process [16]. We study this special case in this
paper. As a motivation for the model in (3) for {𝜑

𝑡
} with

𝜃 = 𝑝, consider the order of the standard flexible coefficient
AR(𝑝)model given in (1). If 𝜑 = 1, we have (4) leading to the
standard random model from (1):

𝑋

(𝑝)

𝑡
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𝑡−𝑝
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𝜀
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.

(4)

If we put 𝜑 = −1, we have

𝑋

(𝑝)

𝑡
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∑

𝑖=1

− (1)

𝑖
𝜀
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(5)

Both models (4) and (5) correspond to the standard (critical
case) unit root [17]. A model that generalizes (4) and (5) is

𝑋

𝑡
=

𝑡−𝑝

∑

𝑖=1

𝜉

𝑡𝑖
𝜀

𝑡−𝑖
,

(6)

where the random coefficients {𝜉
𝑡𝑖
} take the values 1 or−1.The

model in (6) can be viewed as a generalization of the standard
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randomwhere the successive jumps go up or down according
as 𝜉
𝑡𝑖
= 1 or −1.

Epilepsy EEG data has special characteristics, such as
nonlinearity and abnormal and nonstandard distributions
[4]. Therefore, in this study, when EEG data has an abnormal
distribution,we forcefully adjust the coefficients ofAR. In this
paper, the ARmodel is the basis of our coercively adjustedAR
model (CA-AR). This model can be expressed as follows:

𝑋

𝑡
= 𝑐 +

𝑝

∑

𝑖=1

𝜋

𝑡𝑝
⋅ 𝑋

𝑡−𝑖
+ 𝜀

𝑡
, (7)

where 𝜋
𝑡𝑝
is random coefficients with 𝜑 = 1 and 𝜑 = −1, with

𝜋

𝑡1
= 1 and |𝜋

𝑡𝑝
| = 1 for all 𝑡 and 𝑝. 𝑝 has an important

role in AR modeling since it determines the order of the
coefficients. In the autoregressive model, to determine the
order of the AR model is an important issue [18]. The order
of an AR model, 𝑝, must be appropriately selected because it
determines the efficiency of the autoregressive model. If 𝑝 is
smaller, then the estimation error is higher while calculation
speed is faster. On the other hand, if 𝑝 is bigger, there are
drawbacks requiring more computation time without any
decreases in estimation error. Therefore, in order to resolve
these drawbacks, an optimal way to determine the order of
the AR model is required.

In this paper, the fractal dimension is used to determine
the order of the CA-AR model. To calculate the fractal
dimension, we apply the box-countingmethod [19].The box-
counting method is one of the most common methods to
obtain the fractal dimensions using boxes that are big enough
to cover the measured signal 𝑆 [20]. In other words, when the
length of one side of the square is 𝜀 (𝜀 > 0) and the number
of square boxes is 𝑁

𝜀
, the box-counting dimension of 𝑆 is

𝑁

𝜀
(𝑆) ∼ 1/𝜀

𝑑 and 𝜀 → 0. It can be expressed as the box-
counting dimension of 𝑆, 𝑑, and the positive constant, 𝑘:

lim
𝜀→0

𝑁

𝜀
(𝑆)

1/𝜀

𝑑
= 𝑘. (8)

By taking logs on both sides of (8), we get

lim
𝜀→0

(ln𝑁
𝜀
(𝑆) + 𝑑 ln 𝜀) = ln 𝑘. (9)

Fractal dimension 𝑑 is given by (10):

𝑑 = lim
𝜀→0

ln 𝑘 − ln𝑁
𝜀
(𝑆)

ln 𝜀
= − lim
𝜀→0

ln𝑁
𝜀
(𝑆)

ln 𝜀
,

(10)

where ln 𝑘 is excluded while the denominator 𝜀 → 0. Also,
0 < 𝜀 < 1, and if ln 𝜀 is a negative number, 𝑑 will be a positive
number. If the log-diagram of ln 𝜀 verses ln𝑁

𝜀
is a straight

line, the fractal dimension is the slope of this straight line (as
shown in Figure 3).

In this paper, the measured value 𝑑 using (10) is defined
as the order of AR, 𝑝, and it is applied to the CA-AR(𝑝)
model. In other words, to predict epileptic seizures from EEG
data, the future value 𝑋

𝑡
is predicted using 𝑋

𝑡−1
, . . . , 𝑋

𝑡−𝑝
,

the observed values from the past. This paper will show that
special case of epileptic seizure where 𝑋

𝑡
is predicted by

𝑋

𝑡−1
, . . . , 𝑋

𝑡−𝑝
, where the series 𝑋

𝑡
is AR(𝑝) using (7). The

estimated AR model is then used for prediction by applying
the least squares estimation.

3. Results

In this section we present the empirical verification of our
data analysis to forecast epilepsy EEG data. EEG datasets
are provided in [4], and epilepsy EEG data set composed
the five EEG datasets 5 (denoted by A∼E). A and B datasets
are recorded in the relaxed awake state of healthy volunteers
(eye open or closed). C and D are measured during seizure
free intervals, and E contained seizure activity. These five
EEG datasets contain 100 single channel EEG segments of
23.6 sec duration, and they are sampled at 173.61Hz. For our
experiments, we used only three datasets such as A, C, and E.

3.1. Detection of Special Characteristics. In this paper, we
proposed a novel approach to help in the improvement of
epileptic seizure forecasting in nonlinear and nonperiodic
EEG signals. In this section, we first analyze the charac-
teristics of epilepsy EEG data which show nonlinearity and
periodicity by applying cepstrum and lag plots.The cepstrum
is employed to extract periodicities or repeated patterns [21].
The cepstrum analysis of a spectrum will have peaks corre-
sponding to the spacing of the harmonics and sidebands.The
𝑥-axis of the cepstrum shows frequency, and peaks in the cep-
strum are related to periodicities. The cepstrum is employed
to find the periodicity in Subjects A, C, and E. Figure 1(a)
demonstrates the 50th original signal of Subject E recorded
during seizure activity and Figure 1(b) displays the measured
periodicity using the cepstrum. Figure 1(a) seems to have a
periodicwavewithin the original signal.However, Figure 1(b)
does not have any periodicity. In addition, Subjects A and C
also do not show the periodicity.

Even though the periodicities in the original signal
repeatedly appear as a sinusoidal wave during seizure activity,
when we applied the cepstrum to the seizure activity signals,
the results differ from the original signal. Seizure activity
signals do not have any periodicity. We observed that our
experimental results of the seizure activity signals by the
cepstrum do not have any periodicity. Therefore, since most
conventional forecasting or prediction approaches require
periodicity in observed data, these approaches are not appro-
priate for the nonperiodic seizure activity signals.

In this paper we also applied lag plots to find hidden
characteristics in the data. Lag plots are useful in the analysis
of cyclical data [22]. A lag plot checks whether a dataset is
random or not. In addition, they provide the autocorrelation
of the data. Figure 2(a) shows the first raw signal of Subject
A’s epilepsy EEG time series. The lag plot of Subject A is
shown in Figures 2(b) and 2(c), where the lag 𝐿 = 1 and
𝐿 = 20, respectively. Figure 2(b) shows a definite linear
structure in the lag plot, which was hidden in Figure 2(a).
That is, this lag plot exhibits a linear pattern. If the data is
strongly nonrandom, we are able to apply an autoregressive
model that might be appropriate for prediction. Figure 2(c)
shows the Gaussian distribution of Subject A plotted with
a lag of 𝐿 = 20 by plotting 𝑥

𝑡
versus 𝑥

𝑡−20
. Figure 2(d)

is the first raw signal of Subject C. Figures 2(e) and 2(f)
show lag plots for 𝐿 = 1 and 𝐿 = 20, respectively. In
the case of 𝐿 = 1, linear patterns are shown for both
Subject A and Subject C. Figure 2(f) shows similar results
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Figure 1: Periodicity detection using cepstrum in Subject E.

to Figure 2(c). However, Figures 2(h) and 2(i) for Subject E
differ from Subject A and Subject C. In the case of 𝐿 = 20

shown in Figure 2(i), it is a mixture of Gaussian distribution.
Generally, when a lag plot has a nonrandom pattern, the
data can be predicted using conventional methods. However,
the epilepsy EEG dataset shows random patterns that are
difficult to be predicted by conventional approaches.Thus, we
need a suitable method for forecasting of EEG signals whose
characteristics are nonlinearity and nonperiodicity.

3.2. The Order of CA-AR Choice (Box-Counting) for Forecast-
ing. In this section, we present how the order of CA-AR is
determined using fractal dimension. We use box-counting
analysis which is a common method for fractal dimension
estimation. It is also known that it is easy, automatically
computable, and applicable to patterns with or without
self-similarity [20]. However, this technique, including the
processing of data and definition of the range of grid size,
requires proper implementation to be effective in practice.
In this study, the grid size is changed from 0.1 to 10000
in multiplication of 2 [22]. The slope of the linear part of
the plot is the estimated fractal dimension 𝑑 of the epilepsy
dataset. In this method each signal is covered by a sequence
of grids of ascending sizes. Two values are recorded for
each of the grids: the number of square boxes intersected
by the signal, 𝑁

𝜀
(𝑆), and the side-length of the squares, 𝜀.

The slope 𝑑 of the straight line formed by plotting log(𝑁
𝜀
(𝑆))

against log(1/𝜀) indicates the degree of complexity or fractal
dimension between 1 and 2 (1 ≤ 𝑑 ≤ 2) [23]. A signal
with a fractal dimension of 1 or 2 is considered as completely
differentiable or very rough and irregular, respectively.

We measured the fractal dimension of the 100 single
signals from each subject to determine the order of CA-AR
using box-counting analysis. Figure 3 illustrates the plot of
log(𝑁

𝜀
(𝑆)) versus log(1/𝜀) based on the grid sizes. The log-

log plots of Figure 3 are used to estimate the fractal dimension

that is computed from the slope of the plot. Figures 3(a), 3(b),
and 3(c) are the log-log plot for the fractal dimension of the
1st signals of Subject A, Subject C, and Subject E. This graph
clearly displays a horizontal straight line when the grid size is
small or too big. Deviation from a linear straight line can be
expected to lead to underestimation of the fractal dimension
value for the skeleton of a signal.

We applied the box-counting method to estimate the
fractal dimension of the Phase Space from a signal of each
subject. The vector space of the delay coordinate vectors
is termed the Phase Space [22]. The observation sequence
is represented by the series 𝑥

𝑡
, which gives the value of

the time series at time 𝑡. That is, we can define 𝑉 =

[𝑥

𝑡
, 𝑥

𝑡−𝜏
, 𝑥

𝑡−2𝜏
, . . . , 𝑥

𝑡−𝐿𝜏
]. 𝜏 is a real number greater than zero

termed the time delay, and 𝐿 is any integer greater than zero.
The vector 𝑉 is termed the delay coordinate vector, because
its terms are the time-delayed data values from the time
series. Given time series 𝑥

𝑡
and lag 𝐿, we form all the delay

coordinate vectors from 𝑥

𝑡
. The Phase Space is a (𝐿 + 1)-

dimensional space.
Figure 4 demonstrates the estimated fractal dimensions.

The 𝑥-axis and 𝑦-axis denote the Phase Space (time delay
space) and slope, respectively. This implies that a lag length
of one is sufficient to reconstruct the state space.

Figure 4 shows fractal dimension of few signal, and we
confirm some particular results; if the dimension of signal 𝑥

𝑡

increases, the fractal dimension (slope) increases. As a result
of Figure 4, in the case of Subjects A and C, signals mostly
have a fractal dimension between 5 and 7, while Subject E
exhibits a fractal dimension between 2 and 4 when time
delay is 20. That is, Subjects A and C exhibit an average
slope between 4 and 5. However, in the case of Subject E,
the seizure activity represents an average slope of 2.5. When
the time delay dimension increases, the fractal dimension
increases. However, the plot of fractal dimension versus lag
length shows that fractal dimension does not significantly
increase, as lag length is incremented.This experiment shows
the determination of the value of parameters using log-log
plots for time series prediction. That is, we select the round-
up integer of the average slope values of all normal signals
as Subjects A and C for the order 𝑝 of CA-AR, because we
must predict abnormal behavior that dropped out of the past
pattern. We ran the CA-AR model with the round-up integer
“5” of the average of the slope of all signals for forecasting.
To verify that the selected 𝑝 = 5 is the optimal order,
we measured the forecasting error of each signal from each
subject. That result can be confirmed in Section 3.3.

3.3. Forecast Accuracy. To evaluate the reliability of optimal
order for our model, we measured Root Mean Square Error
(RMSE) of forecasting from all signals of each subject. An
autoregressivemodel of order𝑝 implies that the current value
of the time series is being predicted based on past 𝑝th data
of the same random variable. Thus, an autoregressive model
of order 𝑝 can be expressed using the 𝑝 previous values of
the time series. Let 𝑋

1
, 𝑋

2
, . . ., be successive instances of the

random variable 𝑋, measured at regular intervals of time.
We applied the standard AR model and CA-AR (coercively
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Figure 2: Lag plots: epilepsy EEG dataset. Subject A is shown in (a). This appears hard to predict. (d) is Subject C, and Subject E is shown
in (g). (b), (e), and (h) show the two-dimensional lag plots of 𝑥

𝑡
versus 𝑥

𝑡−1
, for each subject. (c), (f), and (i) are lag plots of 𝑥
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versus 𝑥
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,

respectively.

adjusted coefficient with 𝜑 = 1 or −1) model to forecast the
new𝑋

𝑡
of the epilepsy EEG data.

We forecasted the signals from 481 to 500 time points
by the proposed model and compared the forecasting errors
between the optimal order that decided by the average of
fractal dimensions and the other orders. For forecasting, we
used the 𝑝 past values of time series, and 𝑝 is selected by
fractal dimension. If 𝑝 = 5, our model uses from 476 to 480
time points to forecast 481 time point. Table 1 shows RMSE
results of several signals that were measured between the
original values and the generated values by the model. RMSE
is comparedwhen the orders are 3, 5, 10, and 15 for AR and the
proposedmethod. In the case of𝑝 = 5 in the proposedmodel,
RMSE has a higher accuracy than 𝑝 = 3, 𝑝 = 10, and 𝑝 = 15
in Subjects A, C, and E. In case of the standard AR, Subjects
A, C and E exhibited the lowest RMSE in 𝑝 = 5, similar to the
proposedmethod. As shown in Table 1, the proposedmethod
is exhibits a lower error rate than standard AR, and when 𝑝 is
5, the lowest RMSE exhibited in Subject E among the subjects.
Thus, we confirm that optimal order is 5, and it is used as
the order of the CA-AR during experiments to verify the

efficiency. The order of the proposed method is determined
with the round-up integer of the average fractal dimension
that it is measured from all normal signals as Subjects A and
C.

Figure 5 shows the result of the forecast snapshot of
Subjects A, C, and E, using the CA-AR and standard AR
models. Plots (a), (c), and (e) show a specific case of a 20-
time step prediction of the 20th electrode, and plots (b), (d),
and (f) provide the prediction result for the 80th electrode
signal. The original signal is shown in Figure 5(a), from the
time 481 to 500 in red line with the star point marker. The
plus signmarker shows the forecasted signals by the proposed
method (green line) and the pointmarker plots the forecasted
signals by standard AR (blue line). These plots confirm that
our forecasting method outperforms the conventional AR
method.

In this paper, we compared the forecasting results among
several existing methods and CA-AR method. Table 2 shows
the forecasting results using existing methods of linear and
nonlinear prediction (Artificial Neural Networks [3], Fuzzy
[2, 24], Nearest Neighbors [25], and the proposedmethod) of
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Figure 3: Fractal dimension: the log-log plot about the 1st signal (a vector 𝑥
𝑡
) for each of Subjects A, C, and E.

the 7th electrode signal in Subject E. For the experiments, we
used a single signal of each subject to measure the forecasting
error in each forecasting method. Also, to measure forecast-
ing errors of existingmethods, we derived the partial training
signals from original signals that are from the starting points
to 500 time points or 1000 time points of signal. For example,
when the existing method tries to forecast the length of 150
time points, 1 to 500 time points or 1000 time point of the
signal are used for training. However, our method still uses
only 5 time points to forecast the future values of 150 time
points. CA-AR considers from the time 496 to 500 to forecast
the future values of the time 501, and it used from the time
497 to 501 to forecast the time 502.

As a result of Table 2, the proposed method shows lower
error rates than existing forecastingmethods. In case ofANN,
RMSE is gradually increasedwhen the forecasting time points
increase. However, our proposedmethod is unaffected by the
length of the forecasting time points because it used only the
order 𝑝 of AR. Besides, even though the length of forecasting
time points increased, the error rate of the forecasting result
did not show much change in our model. In case of the
Fuzzy-based method, it performs the batch process using all
of the previous values to estimate the new value.Thus, we quit

measuring the forecasting error because it requires very long
execution time.

Table 3 measures the forecasting time using the existing
methods as in Table 2. For example, if the training time
duration of ANN (Artificial Neural Networks) is 500 and
the forecasting time duration is 150, then 0.5304 represents
the execution time to forecast from the time 501 to 650.
Fuzzy-based method [2, 24] was excluded from the 1500-
forecasting time point test, because it already exhibited the
highest forecasting time compared to the other methods in
the 150-time point forecasting test. The proposed method
achieves much faster forecasting time than ANN (Artificial
Neural Networks) and NN (Nearest Neighbors). When the
training time point or forecasting time point increases, the
existingmethods incrementally increase the forecasting time.
However, since the proposed CA-AR method uses only a few
observed values, it maintains a steady time. In the case of
epilepsy seizure, we assume that it should be able to inform a
patient a few minutes or several hours before the beginning
of a seizure.

We evaluated forecasting error with each signal in each
subject, and Table 4 shows the results. This experiment is
done to measure the future values of the length of 500 time
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Figure 4: Fractal dimension of time delay space: (a) the 13th electrode of each subject, (b) the 14th electrode, (c) 17th electrode, and (d) 23rd
electrode.

points using the observed signal from the time 1 to 500. That
is, single signal has 4096 time points, and the existingmethod
used from the time 1 to 500 of single signal for learning.Mod-
els forecast from the time 501 to 1000 through learning. In this
paper, we measured RMSE between the original signals and
the forecasted signals. As a result of Table 4, Subjects C and E
indicated the lowest average forecasting error rate when NN
algorithm was used. However, NN method required much
learning time compared to our method. That is, the values of
1 to 500 in NN will be the training period for the forecasted
value of 501. For the forecast of 502, the training period
is 1 : 501. On the other hand, our method provides the fast
computation time because its training period is 407 to 501
for the forecast of 502. Besides, the difference of error rate
between NN and CA-AR is very small.

Our method needs only the past values of 𝑝 that are
determined by fractal dimension to forecast the future values.
Therefore, it guarantees the fastest computation time for

learning to forecast the epileptic seizure. We measured the
execution time of each model during forecasting the time
length of 1000, 2000, and 3000. We can confirm the result
of several signals from Table 5. In this experiment, we used
each signal of Subject E and training signal used from the
time 1 to 500 or 1000 time points of each signal in the existing
method. As a result of Table 5, the lowest RMSE of forecasting
is appeared in NN method except when CA-AR forecasted
the length of the 2000 times using the length of the 1000
times as training signals. However, we need to look at the
execution time of the whole forecasting method. NNmethod
provided good forecasting results. However, it needs longer
execution time. In addition, when the length of forecasting
time increases, the execution time also increases.

The accuracy of time series forecasting is a very important
factor to many decision processes, and hence the research for
improving the effectiveness of forecasting models has lasted.
Both the neural network and the AR model capture all of the
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Table 1: Root Mean Square Error of forecast using CA-AR and AR.

Electrode Proposed method Standard AR
𝑃 = 3 𝑃 = 5 𝑃 = 10 𝑃 = 15 𝑃 = 3 𝑃 = 5 𝑃 = 10 𝑃 = 15

RMSE of Subject A
7 0.1878 0.1320 0.0419 0.0523 1.0044 0.8149 0.5294 0.5399
15 0.3766 0.5306 0.9532 0.9942 0.9947 0.9514 0.9985 1.3158
20 0.2629 0.1525 0.1943 0.3741 1.0003 1.0071 1.0478 1.0128
27 0.1226 0.0757 0.1347 0.0897 1.0093 1.0961 1.2423 1.3061
35 0.0213 0.0559 0.0348 0.0563 0.9995 0.9299 0.8068 0.8334
50 0.1271 0.1436 0.1093 0.1339 1.0038 0.9907 1.0183 1.1479
60 0.0356 0.0273 0.0332 0.0070 0.8364 0.5043 0.7012 0.5120
70 0.0554 0.0449 0.0369 0.0402 0.9960 0.9987 0.9937 1.0352
80 0.0101 0.0068 0.0078 0.0110 0.4783 0.3180 0.2287 0.2108
87 0.1368 0.1458 0.1524 0.1370 1.0011 0.9736 1.0224 1.3125
95 0.0999 0.0677 0.0902 0.0385 1.0025 1.0141 1.0118 0.9709
Average 0.1306 0.1257 0.1626 0.1758 0.9388 0.8726 0.8728 0.9270

RMSE of Subject C
7 0.0302 0.0427 0.0372 0.0939 0.9501 0.5978 0.6480 0.6142
15 0.8090 0.7386 0.8873 1.5213 1.4048 1.1270 1.2222 1.8517
20 0.0384 0.0305 0.0335 0.0798 0.9979 0.9496 0.8857 0.8286
27 0.1288 0.1376 0.1122 0.1107 0.9469 1.02888 1.0845 0.7823
35 0.0495 0.0394 0.0428 0.1079 1.0635 1.0051 0.9715 0.9691
50 0.0369 0.0500 0.0437 0.0694 1.0187 0.9474 0.9118 0.8815
60 0.0319 0.0412 0.0282 0.1105 0.9208 0.6429 0.7676 0.7703
70 0.1612 0.1302 0.1527 0.0376 1.0973 1.3006 1.2392 1.3000
80 0.1068 0.1126 0.1087 0.1012 1.2428 1.4660 1.4313 1.4892
87 0.1478 0.1470 0.1621 0.0706 1.1839 1.5971 1.6903 1.9786
95 0.1158 0.1105 0.1141 0.0710 1.6958 1.7924 1.6513 1.6922
Average 0.1506 0.1437 0.1566 0.2158 1.1384 1.1322 1.1367 1.1962

RMSE of Subject E
7 0.2225 0.0098 0.0074 0.0272 0.9566 0.9761 0.7667 0.7669
15 0.0709 0.0749 0.0763 0.0739 1.0041 0.9226 0.9306 0.9534
20 0.1757 0.0540 0.1248 0.1429 1.2710 1.1595 0.9591 0.3047
27 0.0661 0.0494 0.0822 0.1094 1.1139 0.9623 1.1128 0.8602
35 0.1138 0.0375 0.0605 0.0774 1.0139 1.0181 1.2581 2.8540
50 0.0345 0.0310 0.0121 0.1890 0.7694 0.8749 0.8942 1.6892
60 0.0062 0.0343 0.0109 0.0794 0.8563 0.6543 0.8975 1.0238
70 0.0975 0.0246 0.0590 0.0450 0.1912 1.1594 1.7443 1.5908
80 0.0642 0.0237 0.0517 0.1455 0.5931 0.5950 3.4392 9.2907
87 0.0039 0.0802 0.1155 0.1507 1.0098 0.5522 0.5753 0.6716
95 0.1567 0.0389 0.1023 0.1285 1.2754 1.1505 1.0432 0.619
Average 0.0920 0.0417 0.0639 0.1063 0.9141 0.9114 1.2383 1.8749

patterns in the data [26]. Our method also can capture the
patterns of data because it was based on the AR model. In
epilepsy EEGdata, the amplitude betweennormal and seizure
signal presents a great difference. If a pattern of the generated
signals by the proposedmodel deviates from the past pattern,
CA-AR can regard these as the epileptic seizure. However, the
proposed model does not separately determine or measure

the sliding timewindow length to detect the change of pattern
in this paper. The goal of this study is to provide the fast run
time andhigh forecasting accuracy in time series data that has
special characteristics such as the nonperiodicity and non-
linearity. Through our experiments results, we can guarantee
the fast execution time and accuracy between original signal
and generated signal from our model.
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Table 2: Root Mean Square Error of forecast comparison.

Forecasting time
points

500 (training time points) 1000 (training time points)
ANN Fuzzy NN CA-AR (5) ANN Fuzzy NN CA-AR (5)

150 0.2059 0.1210 0.1462 0.0162 0.1297 0.0721 0.0950 0.0114
1500 0.6174 — 0.1050 0.0541 0.3221 — 0.0887 0.0533
2000 0.6328 — 0.0998 0.0487 0.356 — 0.0918 0.0486
2500 0.7607 — 0.0995 0.0497 0.3741 — 0.0910 0.0507
3000 0.7801 — 0.0976 0.0480 0.3613 — 0.0874 0.0479

Table 3: Forecast time comparisons.

Forecasting
time points

500 (training time points) 1000 (training time points)
ANN Fuzzy NN CA-AR (5) ANN Fuzzy NN CA-AR (5)

150 0.5304 186.94 1.060 0.0780 4.430 675.38 1.669 0.0156
1500 0.9516 — 13.722 0.0499 5.004 — 13.887 0.0811
2000 0.9953 — 20.439 0.0749 4.995 — 20.689 0.0718
2500 0.9766 — 28.189 0.0967 5.098 — 29.178 0.0874
3000 1.0764 — 32.723 0.0748 5.248 — 37.272 0.0736

Table 4: The measured forecasting error with several signals from each subject.

Electrode Subject A Subject C Subject E

NN Fuzzy ANN CA-AR
(5) NN Fuzzy ANN CA-AR

(5) NN Fuzzy ANN CA-AR
(5)

4 0.320 0.050 0.429 0.019 0.013 0.031 0.156 0.023 0.018 0.044 0.136 0.029
8 0.086 0.050 0.177 0.127 0.010 0.018 0.093 0.018 0.002 0.121 0.086 0.016
35 0.043 0.086 0.113 0.056 0.045 0.029 0.394 0.078 0.069 0.169 0.203 0.038
70 0.145 0.058 0.166 0.045 0.038 0.048 0.130 0.066 0.012 0.072 0.038 0.025
95 0.093 0.087 0.173 0.068 0.030 0.061 0.111 0.024 0.013 0.081 0.115 0.039
Average 0.137 0.066 0.212 0.063 0.027 0.037 0.177 0.042 0.023 0.097 0.115 0.029

4. Discussion

Epilepsy is a common neurological disorder in which some
nerve cells spasmodically incur excessive electricity for a
short time. Seizure predictions are mostly handled by sta-
tistical analysis methods from the EEG recordings of brain
activity. The forecasting of epilepsy seizures can be used as a
warning about seizures occurring on certain time scales by
estimating the change in brain waves. That is, the forecasting
of seizures alerts patients before an epilepsy seizure occurs.
As a result, they could avoid potentially dangerous situations
such as brain damage or injury during seizures.

In recent years, much research has looked into the
prediction of epilepsy seizures using EEG data. Mormann
et al. [27] analyzed bivariate EEG signals for seizure pre-
diction. They analyzed the synchrony of EEG data using
mean phase coherence (MPC) and maximum linear cross-
correlation between EEG signal pairs. Schelter et al. [28]
used MPC and obtained a proportion of seizures that were
correctly predicted. Chávez et al. [29] analyzed the focal
epilepsy EEG data for seizure prediction using non-linear
regression analysis and phase synchrony. Winterhalder et al.

[30] suggested the “seizure prediction characteristic” based
on clinical and statistical considerations and compared to the
performance of seizure predictionmethods using concepts of
linear and nonlinear time series analysis. This work indicates
the uncertainty of predictions made by the use of the seizure
occurrence period (SOP), in which the seizure is expected.
However, it can be expressed when the independent variables
are continuous. Moreover, these methods assume that the
data has normality and independence.

Li and Yao [31] proposed prediction methods based on
the wavelet transform and fuzzy similarity measurements
of EEG data. This method is divided into two steps: to
calculate the entropy of the EEG data and to calculate
similarity between variables. Li and Ouyang [32] proposed
the dynamical similarity measure based on a similarity index
to predict epileptic seizures using EEG data. Gigola et al.
[33] analyzed the time domain of different types of epilepsy
to predict epileptic seizures using wavelet analysis based on
the evolution of accumulated energy. Maiwald et al. [34]
evaluated three nonlinear methods for seizure prediction:
dynamical similarity index, correlation dimension, and accu-
mulated energy. These methods can extract robust features
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Figure 5: Forecast comparison: (a) and (b) plot forecasts of the 20th and 80th electrode of Subject A to compare the proposed and standard
AR methods. (c) and (d) show forecast plots of Subject C. (e) and (f) display the forecast plot of the 20th and 80th electrode of Subject E,
respectively.

from EEG data. However, part of these methods is performed
based on the window unit and it is not sufficient for clinical
applications.

Several techniques have been proposed to analyze char-
acteristics of seizures via various methods. Liu et al. [35]
measured the fractal dimension of the human cerebellum
in magnetic resonance images (MRI) of 24 healthy young
subjects using the box-counting method. Esteller et al. [36]
determined the fractal dimension in the cortex electroen-
cephalogram (IEEG, ECoG), using the Katz algorithm.Their
results show that an electrographic seizure in the Electro-
corticography (ECoG) occurs when there is an increase
of complexity. Sackellares et al. [37] found that temporal
lobe epilepsy is characterized by episodic paroxysmal elec-
trical discharges (ictal activity). These discharges consist of
organized synchronous activity of mesial temporal neurons,

particularly those of the hippocampus. However, proper
interpretation of such analyses has not been thoroughly
addressed.

In this paper, we proposed a new CA-AR forecasting
method based on the AR model that can forecast the seizure
of complex epilepsy EEG data by applying the property of
nonstandard distribution from [14]. The CA-AR model is
suited to time series data with special characteristics, such as
abnormality, noise, nonlinearity, and nonperiodicity.

5. Conclusions

Epilepsy may be caused by a number of unrelated conditions,
including damage resulting from high fever, stroke, toxicity,
or electrolyte imbalances. An algorithm capable of effective
real-time epileptic seizure prediction will allow the patient
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Table 5: Comparison of the foresting error rates and the execution time between the existing methods and the proposed method.

Forecasting
time points Electrodes

RMSE Execution time (sec)
500 (training) 1000 (training) 500 (training) 1000 (training)

ANN NN CA-AR
(5) ANN NN CA-AR

(5) ANN NN CA-AR
(5) ANN NN CA-AR

(5)

1000

4 0.091 0.020 0.047 0.13 0.023 0.05 1.01 7.44 0.08 5.34 9.11 0.06
8 0.039 0.006 0.043 0.055 0.016 0.051 0.08 7.75 0.03 5.01 8.86 0.06
35 0.228 0.072 0.039 0.192 0.062 0.045 0.90 7.64 0.08 4.90 8.78 0.05
70 0.057 0.010 0.056 0.049 0.011 0.054 0.10 7.57 0.08 4.48 8.63 0.06
95 0.091 0.032 0.044 0.145 0.038 0.034 0.94 7.44 0.06 4.70 8.75 0.05

Average 0.101 0.028 0.046 0.114 0.03 0.047 0.61 7.57 0.07 4.88 8.83 0.06

2000

4 0.217 0.021 0.046 0.245 0.03 0.038 1.11 20.55 0.08 4.87 20.14 0.05
8 0.060 0.019 0.047 0.082 0.027 0.018 1.11 20.64 0.08 5.55 20.87 0.05
35 0.253 0.063 0.052 0.191 0.088 0.048 0.83 20.31 0.06 4.91 21.03 0.05
70 0.058 0.015 0.049 0.046 0.012 0.033 1.01 20.12 0.08 4.52 20.94 0.04
95 0.173 0.037 0.048 0.198 0.038 0.048 0.92 20.58 0.08 5.12 20.47 0.05

Average 0.152 0.031 0.048 0.152 0.039 0.037 1.00 20.44 0.07 5.00 20.69 0.05

3000

4 0.376 0.029 0.052 0.399 0.019 0.051 0.92 32.74 0.08 5.79 38.31 0.05
8 0.094 0.015 0.051 0.112 0.032 0.051 1.22 32.39 0.03 5.68 36.47 0.05
35 0.259 0.070 0.049 0.213 0.087 0.047 0.98 32.40 0.08 4.76 36.57 0.05
70 0.055 0.023 0.048 0.044 0.013 0.046 1.33 32.79 0.08 5.13 37.53 0.05
95 0.227 0.049 0.050 0.233 0.059 0.049 0.94 33.29 0.11 4.88 37.47 0.05

Average 0.202 0.037 0.050 0.2 0.042 0.049 1.08 32.72 0.07 5.25 37.27 0.05

to take appropriate precautions minimizing the risk of a
seizure attack or injuries resulting from such an attack.
Conventional methods for forecasting or prediction of data
require periodicity in the observed data. However, when we
applied the cepstrum, seizure activity signals did not exhibit
periodicity. In addition, we could distinguish whether the
epilepsy EEG data is random or nonrandom using the lag
plot. If the lag plot has a nonrandom pattern, it can be used
for prediction by conventional approaches.However, our data
appears to have a random distribution.

This study proposed the random coefficients appropriate
for random distribution data. Further, we used the log-log
plots (box-counting) using the concept of fractal dimensions
to forecast epilepsy EEG data to estimate the vital forecasting
optimal order 𝑝 in our CA-AR model. Our experimen-
tal results demonstrate that CA-AR (coercively adjusted
autoregressive) is the most suitable forecasting method for
nonperiodic data. It does not require complex calculations
and conducts fast forecasting compared to other methods. In
addition, ourmethod generates future valuesmore accurately
or similar than other methods. The experiments on epilepsy
EEG data show that our method is not only fast and scalable
but also accurate in achieving low prediction errors.

Future research could focus on extending CA-AR to
perform forecasting on a multiple, coevolving time series
which includes linear or non-linear correlations and period-
icity or nonperiodicity. A more ambitious direction would
be to automatically readjust the parameter and coefficient
equations.
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