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Abstract
Reinforcement learning can bias decision-making toward the option with the highest expected outcome. Cognitive learning
theories associate this bias with the constant tracking of stimulus values and the evaluation of choice outcomes in the
striatum and prefrontal cortex. Decisions however first require processing of sensory input, and to date, we know far less
about the interplay between learning and perception. This functional magnetic resonance imaging study (N = 43) relates
visual blood oxygen level–dependent (BOLD) responses to value beliefs during choice and signed prediction errors after
outcomes. To understand these relationships, which co-occurred in the striatum, we sought relevance by evaluating the
prediction of future value-based decisions in a separate transfer phase where learning was already established. We decoded
choice outcomes with a 70% accuracy with a supervised machine learning algorithm that was given trial-by-trial BOLD from
visual regions alongside more traditional motor, prefrontal, and striatal regions. Importantly, this decoding of future
value-driven choice outcomes again highlighted an important role for visual activity. These results raise the intriguing
possibility that the tracking of value in visual cortex is supportive for the striatal bias toward the more valued option in
future choice.
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Introduction
In decision-making, our value beliefs bias future choices. This
bias is shaped by the outcomes of similar decisions made in
the past where the action, or stimulus chosen, becomes associ-
ated with a positive or negative outcome (“value beliefs”). The
evaluation of value after an outcome, or the comparison of
value in decisions, is traditionally associated with activity in the
prefrontal cortex and striatum (O’Doherty et al. 2004, 2017; Daw
et al. 2006; Kahnt et al. 2009; Hare et al. 2011; Jocham et al. 2011;
Klein et al. 2017).

To underset the bias in action selection, midbrain dopamine
neurons are thought to send a teaching signal toward the
striatum and prefrontal cortex after an outcome (Montague
et al. 1996; Schultz et al. 1997; Tobler et al. 2005). In the striatum,
future actions are facilitated by bursts in dopamine after positive
outcomes or discouraged by dopamine dips after negative
outcomes. The dorsal and ventral parts of the striatum are
known to receive differential, but also overlapping, inputs
from midbrain neurons (O’Doherty et al. 2004; Atallah et al.
2007). Ventral and dorsal striatum have also been ascribed
a differential role during learning by reinforcement learning
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theories. Here, the ventral parts of the striatum are involved
with the prediction of future outcomes through the processing
of prediction errors, whereas the dorsal striatum uses the
same information to maintain action values as a way to bias
future actions toward the most favored option (Joel et al.
2002; Kahnt et al. 2009; Collins and Frank 2014). Intriguingly,
however, before many of these value-based computations can
take place, stimuli first have to be parsed from the natural
world, an environment where most reward-predicting events
are perceptually complex. This suggests that sensory processing
might be an important integral part of optimized value-based
decision-making.

Here, we investigate whether choice outcomes can modulate
the early sensory processing of perceptually complex stimuli
to help bias future decisions. Recent neurophysiological stud-
ies find visually responsive neurons in the tail of the caudate
nucleus, which is part of the dorsal striatum (Kim and Hikosaka
2013; Hikosaka et al. 2014). These neurons encode and differ-
entiate stable reward values of visual objects to facilitate eye
movements toward the most valued target, while at the same
time inhibiting a movement toward the lesser valued object
(Kim et al. 2017). Critically, differential modulations are also
observed in the primary visual cortex where stronger cortical
responses are seen for objects with higher values (Serences
2008; Serences and Saproo 2010), which is consistent with the
response of visual neurons in the caudate. As visual cortex is
densely connected to the striatum (Fernandez-Ruiz et al. 2001;
Kravitz et al. 2013), prioritized visual processing of high-value
stimuli could aid the integration of information regarding the
most-valued choice in the striatum (Lim et al. 2011, 2013; Jahfari
et al. 2015; Jahfari and Theeuwes 2017). To understand these
visual–striatal interactions, we focus on a more detailed parsing
of the underlying computations.

Specifically, we explored two questions by reanalyzing
functional magnetic resonance imaging (fMRI) data from a
probabilistic reinforcement learning task using faces as visual
stimuli (Jahfari et al. 2018; Fig. 1a). First, we focus on the
interplay between learning and visual activity in the fusiform
face area (FFA) and occipital cortex (OC). Here, with the use of a
Bayesian hierarchical reinforcement learning model (Fig. 1b),
we outline how trial-by-trial estimates of action values (Q-
value) and reward prediction errors (RPEs) relate to the blood
oxygen level–dependent (BOLD) response of visual regions and
the striatum (O’Doherty et al. 2007; Daw 2011) (Fig. 1c). Second,
we analyze data from a follow-up transfer phase, where the
learning of value was already established. In our analysis,
the importance of visual brain activity in the prediction, or
decoding, of future value-based decisions is evaluated by using
a supervised Random Forest (RF) machine learning algorithm
(Breiman 2001, 2004). Specifically, transfer phase single-trial
BOLD estimates from anatomically defined visual, prefrontal,
and subcortical regions are combined by RF to predict, or decode,
choice outcomes in a separate validation set. We focus on
classification accuracy and the relative importance of each
brain region in the correct classification of future value-based
decisions.

Materials and Methods
To understand how value learning relates to the activity pattern
in perceptual regions, we reanalyzed the behavioral and fMRI
recordings of a recent study (Jahfari et al. 2018). In this study,

BOLD signals were recorded while participants performed
a reinforcement learning task using male or female faces
and a stop-signal task (which was discussed in Jahfari et al.
(2018)). The FFA was localized using a separate experimental
run.

Participants

Forty-nine young adults (25 male; mean age = 22 years; range 19–
29 years) participated in the study. All participants had normal
or corrected-to-normal vision and provided written consent
before the scanning session, in accordance with the Declaration
of Helsinki. The ethics committee of the University of Ams-
terdam approved the experiment, and all procedures were in
accordance with relevant laws and institutional guidelines. In
total, six participants were excluded from all analyses due to
movement (2), incomplete sessions (3), or misunderstanding of
task instructions (1). In total, data from 43 participants were
analyzed.

Reinforcement Learning Task

Full details of the reinforcement learning task are provided in
Jahfari et al. (2018). In brief, the task consisted of two phases
(Fig. 1a). In the first learning phase, three male or female face
pairs (AB, CD, and EF) were presented in a random order, and
participants learned to select the most optimal face (A, C, E) in
each pair solely through probabilistic feedback (“correct”: happy
smiley, “incorrect”: sad smiley). Choosing face A lead to “correct”
on 80% of the trials, whereas a choice for face B only lead to the
feedback “correct” for 20% of the trials. Other ratios for “correct”
were 70:30 (CD) and 60:40 (EF). Participants were not informed
about the complementary relationship in pairs. All trials started
with a jitter interval where only a white fixation cross was
presented and had a duration of 0, 500, 1000, or 1500 ms to obtain
an interpolated temporal resolution of 500 ms. Two faces were
then shown left and right of the fixation cross and remained on
screen up to response or trial end (4000 ms). If a response was
given on time, a white box surrounding the chosen face was then
shown (300 ms) and followed (interval 0–450 ms) by feedback
(500 ms). Omissions were followed by the text “miss” (2000 ms).
The transfer phase contained the three face pairs from the
learning phase and 12 novel combinations, in which participants
had to select which item they thought had been more rewarding
during learning. Transfer phase trials were identical to the learn-
ing phase, with the exception that no feedback was provided. All
trials had a fixed duration of 4000 ms, where in addition to the
jitter used at the beginning of each trial, null trials (4000 ms)
were randomly interspersed across the learning (60 trials; 20%)
and transfer (72 trials; 20%) phase. Each face was presented
equally often on the left or right side, and choices were indicated
with the right-hand index (left) or middle (right) finger. Before
the magnetic resonance imaging (MRI) session, participants per-
formed a complete learning phase to familiarize with the task
(300 trials with different faces). In the MRI scanner, participants
performed two learning blocks of 150 trials each (300 trials
total; equal numbers of AB, CD, and EF) and three transfer
phase blocks of 120 trials each (360 total; 24 presentations of
each pair). All stimuli were presented on a black projection
screen that was viewed via a mirror system attached to the MRI
head coil.
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Figure 1. Design and Model. (a) Reinforcement learning task using faces. During learning, two faces were presented on each trial, and participants learned to select the
optimal face identity (A, C, E) through probabilistic feedback (% of correct is shown beneath each stimulus). The learning phase contained three face pairs (AB, CD, and
ED) for which feedback was given. In a follow-up transfer phase, these faces were rearranged into 12 novel combinations to assess learning. These trials were identical

to learning trials, with the exception of feedback. (b) Graphical Q-learning model with hierarchical Bayesian parameter estimation. The model consists of an outer
subject (i = 1, . . . .., N) and an inner trial plane (t = 1, . . . , T). Nodes represent variables of interest. Arrows are used to indicate dependencies between variables. Double
borders indicate deterministic variables. Continuous variables are denoted with circular nodes and discrete with square nodes. Observed variables are shaded in gray
(see Materials and Methods for details about the fitting procedure). (c) Illustration of the observed trial-by-trial input (i.e., the choice made and feedback received)

and output (i.e., Q for the chosen and unchosen stimulus, ΔValue, and RPE) of the model given the estimated variability in learning rates from either positive (αGi) or
negative (αLi) feedback and the tendency to exploit βi higher values.

Reinforcement Learning Model

Trial-by-trial updating in value beliefs about the face selected
in the learning phase and RPEs (signed expectancy violations)
were estimated with a variant of the computational Q-learning
algorithm (Watkins and Dayan 1992; Frank et al. 2007; Daw 2011)
that is frequently used with this reinforcement learning task
and contains two separate learning rate parameters for positive
(αgain) and negative (αloss) RPEs (Frank et al. 2007; Kahnt et al.
2009; Niv et al. 2012; Jahfari and Theeuwes 2017; Jahfari et al.
2018). Q-learning assumes participants to maintain reward
expectations for each of the six (A-to-F) stimuli presented

during the learning phase. The expected value (Q) for selecting
a stimulus i (could be A-to-F) upon the next presentation is then
updated as follows:

Qi (t + 1) = Qi(t) +
{

αgain [ri(t) − Qi(t)] , if r = 1
αloss [ri(t) − Qi(t)] , if r = 0

Where 0 ≤ αgain or αloss ≤ 1 represents learning rates, t is
trial number, and r = 1 (positive feedback) or r = 0 (negative
feedback). The probability of selecting one response over the
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other (i.e., A over B) is computed as follows:

PA(t) = exp (β ∗ Qt(A))

exp (β ∗ Qt(B)) + exp (β ∗ Qt(A))

With 0 ≤ β ≤ 100 known as the inverse temperature.

Bayesian Hierarchical Estimation Procedure

To fit this Q-learning algorithm with two learning rate param-
eters, we used Bayesian hierarchical estimation procedure.
The full estimation procedure is explained by Jahfari et al.
(2018). To summarize, this implementation assumes that
probit-transformed model parameters for each participant are
drawn from a group-level normal distribution characterized
by group-level mean and standard deviation (SD) parameters:
z ∼ N(μz, σz). A normal prior was assigned to group-level
means μz ∼ N(0, 1) and a uniform prior to the group-level SD
σz ∼ U(1, 1.5). Model fits were implemented in Stan, where
multiple chains were generated to ensure convergence.

Image Acquisition

The fMRI data for the Reinforcement learning task were acquired
in a single scanning session with two learning and three transfer
phase runs on a 3T scanner (Philips Achieva TX) using a 32-
channel head coil. Each scanning run contained 340 functional
T2∗-weighted echo-planar images for the learning phase and
290 T2∗-weighted echo-planar images for the transfer phase
(repetition time [TR] = 2000 ms; echo time [TE] = 27.63 ms; flip
angle [FA] = 76.1◦; 3 mm slice thickness; 0.3 mm slice spac-
ing; field of view [FOV] = 240 × 121.8 × 240; 80 × 80 matrix; 37
slices, ascending slice order). After a short break of 10 min
with no scanning, data collection was continued with a three-
dimensional T1 scan for registration purposes (TR = 8.5080 ms;
TE = 3.95 ms; FA = 8◦; 1 mm slice thickness; 0 mm slice spacing;
FOV = 240 × 220 × 188) and the fMRI data collection using a stop
signal task (described by Jahfari et al. (2018)) and a localizer task
with faces, houses, objects, and scrambled scenes to identify
FFA responsive regions on an individual level (317 T2∗-weighted
echo-planar images; TR = 1500 ms; TE = 27.6 ms; FA = 70◦; 2.5 mm
slice thickness; 0.25 mm slice spacing; FOV = 240 × 79.5 × 240;
96 × 96 matrix; 29 slices, ascending slice order). Here, partici-
pants viewed a series of houses, faces, objects as well as phase-
scrambled scenes. To sustain attention during functional local-
ization, subjects pressed a button when an image was directly
repeated (12.5% likelihood).

fMRI Analysis Learning Phase

The interplay between learning and perceptual activity was
examined by evaluating how trial-by-trial computations of value
beliefs and RPEs relate to BOLD responses in the OC and FFA.
To compare perceptual responses with the more traditional
literature, we first show how value beliefs and RPEs relate to the
activity pattern of the dorsal (i.e., caudate or putamen) or ventral
(i.e., accumbens) parts of the striatum. Region of interest (ROI)
templates were defined using anatomical atlases available in
FMRIB Software Library (FSL) or the localizer task for FFA. For this
purpose, the localizer scans were preprocessed using motion
correction, slice-time correction, and prewhitening (Woolrich
et al. 2001). For each subject, a general linear model (GLM) was
fitted with the following explanatory variables (EVs): for FFA,

faces > (houses and objects), for parahippocampal place area,
houses > (faces and objects), and for lateral occipital complex,
intact scenes > scrambled scenes. Higher level analysis was
performed using FLAME Stage 1 and Stage 2 with automatic
outlier detection (Beckmann et al. 2003). For the whole-brain
analysis Z (Gaussianized T/F), statistic images were thresholded
using clusters determined by z > 2.3 and P < .05 (GRFT) to define
a group-level binary FFA region. Templates used for the caudate
[center of gravity (cog): (−) 13, 10, 10], putamen [cog: (−) 25, 1, 1],
and nucleus accumbens [cog: (−)19, 12, −7] were based on binary
masks. Because participants were asked to differentiate faces,
for each participant, we multiplied the binary templates of OC
[cog: 1, −83, 5] and FFA [cog: 23, −48, −18] with the individual
t-stats from the localizer task contrast faces > (houses and
objects). All anatomical masks and the localizer group-level FFA
mask can be downloaded from github (see acknowledgments).

Deconvolution Analysis Learning Phase

To more precisely examine the time course of activation in the
striatal and perceptual regions, we performed finite impulse
response (FIR) estimation on the BOLD signals. After motion cor-
rection, temporal filtering (third-order Savitzky–Golay filter with
window of 120 s), and percent signal change conversion, data
from each region were averaged across voxels while weighting
voxels according to ROI probability masks and upsampled from
0.5 to 3 Hz. This allows the FIR fitting procedure to capitalize
on the random timings (relative to TR onset) of the stimulus
presentation and feedback events in the experiment. Separate
response time courses were simultaneously estimated triggered
on two separate events: stimulus onset and feedback onset. FIR
time courses for all trial types were estimated simultaneously
using a penalized (ridge) least-squares fit, as implemented in
the FIRDeconvolution package (Knapen and Gee 2016), and the
appropriate penalization parameter was estimated using cross-
validation. For stimulus onset events (i.e., onset presentation of
face pairs), response time courses were fit separately for the AB,
CD, and EF pairs, while also estimating the time courses of signal
covariation with chosen and unchosen value for these pairs. For
these events, our analysis corrected for the duration of the deci-
sion process. For the feedback events, the co-variation response
time course with signed and unsigned prediction errors was esti-
mated. These signal response time courses were analyzed using
across-subjects GLMs at each time-point using the statsmodels
package (Seabold and Perktold 2010). The α value for the contri-
butions of Q or RPE was set to 0.0125 (i.e., a Bonferroni corrected
value of 0.05 given the interval of interest between 0 and 8 s).

RF Classification

To specify the relevance of perceptual regions in the resolve of
future value-driven choices, a RF classifier was used (Breiman
2001, 2004). The RF classifier relies on an ensemble of decision
trees as base learners, where the final prediction (e.g., for a given
trial is the choice going to be correct/optimal? or incorrect/-
suboptimal? given past learning) is obtained by a majority vote
that combines the prediction of all decision trees. To achieve
controlled variation, each decision tree is trained on a random
subset of the variables (i.e., ROI chosen) and a bootstrapped
sample of data points (i.e., trials or rows of the matrix in Fig. 2c).
In the construction of each tree, about one-third of all trials is
left out—termed as the “out-of-bag” sample—and later used to
see how well each tree preforms on unseen data in the training
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Figure 2. Random Forest input and data-structure. (a) Trial-by-subject data matrix with the % signal change drawn for each choice trial in the transfer phase (rows)

from 9 apriori defined ROI (columns). In addition to the ROI data, the matrix contained a column with the identity of participants (sub-01, etc.) and Trial Sign, which
specified a choice between two positives (+/+; AC, AE, CE), negatives (−/−, BD, BF, DF), or between a negative and positive option (+/−, e.g., AD, CF, etc.) given the
feedback scheme in the learning phase. (b) The individual subject data frames were then combined into one matrix, in which the rows were subsequently shuffled to
randomly distribute trials and subjects across the rows. (c) This matrix was then divided into a training set (two-thirds of the data) for the creation of 2000 decision

trees of which the majority vote on each trial is then used to evaluate the predictive accuracy of optimal/suboptimal choices in a separate validation set (one-third of
the data).

set. Because in RF each tree is built from a different sample of the
original data, each observation is “out-of-bag” (OOB) for some of
the trees. As such, each OOB sample is offered to all trees where
the sample was not used for construction, and the average vote
across those trees is taken as the classification outcome. The
proportion of times that the classification outcome is not equal
to the actual choice is averaged over all cases and represents
the RF OOB error estimate. In other words, the generalized error
for predictions is calculated by aggregating the prediction for
every OOB sample across all trees. In the Results section, the OOB
errors obtained from RF during training were well matched with
the classification accuracy seen for the validation set given only
the “good learners” (OOB = 30%, RF error validation set = 31%)
or all participants (OOB = 33%, RF error validation set = 35%).
An important feature of the RF classification method is the ease
to measure the relative importance of each variable (i.e., region)
in the overall predictive performance. That is, it allows for the
ranking of all regions evaluated in the prediction of future value-
based decisions.

ROI Selection and RF Procedure

This study used the “Breiman and Cutler’s Random Forests for
Classification and Regression” package in R, termed random-
Forest (randomForest_4.6–14). RF evaluations relied on the fMRI
data recorded during the transfer phase, in a set of 9 ROIs.
These ROIs included all templates from the learning phase (i.e.,
caudate, putamen, accumbens, OC, and FFA), as well as the
ventromedial prefrontal cortex (vmPFC), dorsolateral prefrontal
cortex (DLPFC), pre-supplementary motor area (preSMA), and
the primary motor cortex (M1). The selection of these addi-
tional anatomical templates was inspired by our previous anal-
ysis of these data with those templates focusing on networks

(Pircalabelu et al. 2015; Schmittmann et al. 2015; Jahfari et al.
2018). Specifically, the DLPFC template was obtained from an
earlier study, linking especially the posterior part to action exe-
cution (Cieslik et al. 2012). The preSMA, vmPFC, and M1 mask
were created from cortical atlases available in FSL. Please notice
that we used the same anatomical ROIs for both the model-
based deconvolution analysis (Figs 4 and 5) and the decoding
analysis (Figs 2 and 6). From each ROI, a single parameter esti-
mate (averaged normalized β estimate across voxels in each ROI)
was obtained per trial, per subject. All preprocessing steps to
obtain single-trial images are described by Jahfari et al. (2018).
Single-trial activity estimates were used as input variables in RF
to predict choice outcomes (optimal/suboptimal) in the transfer
phase. Here, participants choose the best/optimal option based
on values learned during the learning phase. We defined optimal
choices as correct (i.e., when participants choose the option with
the higher value) and suboptimal choices as incorrect. Misses
were excluded from RF evaluations.

By design, the transfer phase contained 360 trials including
15 different pairs (12 novel), where each pair was presented
24 times with the higher value presented left in 12 of the 24
presentations and on the right for the other half. With so many
subtle value differences across the options presented and only
one BOLD estimate per trial/region, the prediction of future
choices is underpowered (Fig. 2a). Therefore, assuming that all
participants come from the same population, a fixed effects
approach was taken for evaluations with RF. Here, the trial ∗
region activity matrices for all participants were combined into
one big data matrix (Fig. 2b) and subsequently shuffled across
the rows, so that both participants and trials were rearranged
in a random order across rows. Besides the single-trial BOLD
estimates from the 9 ROIs, this shuffled matrix contained two
additional columns, which specified subject_id (to which subject
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does each trial belong) and Trial Sign—that is, is the choice
between the two faces about two positive (+/+; AC, AE, CE),
negative (−/−; BD, BF, DF), or a positive–negative (+/−; e.g.,
AD, CF etc.) associations given the task manipulation during
learning. Subject_id was included to control for different BOLD
fluctuations across participants, whereas Trial Sign was added
because both BOLD and choice patterns differ across these
options (please see Jahfari et al. (2018)). The shuffled fixed-
effect matrix was divided into a separate training (two-thirds
of whole matrix) and validation (one-third) set to be used for
RF evaluations (Fig. 2c). Based on our previous connectivity work
with these data (Jahfari et al. 2018), we were aware that many
of our single-trial BOLD response were correlated across time,
which potentially results from shared learning effects (Supple-
mentary Fig. 4). With RF, the problem of correlated features is
minimized for predictions with variable selection—that is, the
random selection of a set of regions to use for each tree. With
more variables selected, we get better splits in each tree but
also highly correlated decision trees across the forest, which in
essence diminishes the forest effect. To find the best balance,
this study optimized the number of variables to select with a
tuning function using the OOB error estimate. Learning was
based on the training set, using 2000 trees with the number of
variables (regions) used by each tree optimized with the tuneRF
function in R, and accordingly set to 5. For the construction
of each tree, about one-third of all trials is left out—termed
as the OOB sample—and later used to see how well each tree
preforms on unseen data. The generalized error for predictions
is calculated by aggregating the prediction for every OOB sample
across all trees. Besides this OOB approximation, we evaluated
the predictive accuracy of the whole RF on the separate unseen
validation set. Additionally, we reasoned that RF predictions can
be driven by alternative BOLD fluctuations related to e.g., the
buildup of a motor response, the ease of face distinctions, or
other to us unknown functional fluctuations. Therefore, prior to
the evaluation of region importance (or ranking), we preformed
two control analysis ensuring that RF predictions are sensitive
to the consistency of past learning and the representation of
�Value. These are the evaluations comparing “good” with “all”
learners, as well as the relationship between �Value and RF
uncertainty. In addition, while potential confounds of colinearity
on the RF ranking cannot be excluded, we tried to minimize
this with the use of permutation importance. Here, by using
the OOB samples, the importance of each variable (region) is
computed as the difference between the model’s baseline accu-
racy and the drop in overall accuracy caused by permuting that
column (region). While being slower, permutation importance is
described as more robust in comparison with the default (gini)
importance computation where only the uncertainty of predic-
tions is evaluated (with no checks on accuracy fluctuations after
region permutation). The single-trial data used as input, the RF
evaluation codes, and ROI templates can all be downloaded from
the github link provided in acknowledgments.

Results
Model and Behavior

As shown in Figure 1a, in the reinforcement learning task,
participants learned to select among choices with different
probabilities of reinforcement (i.e., AB 80:20, CD 70:30, and
EF 60:40). A subsequent transfer phase, where feedback was
omitted, required participants to select the optimal option

among novel pair combinations of the faces that were used
during the learning phase (Fig. 1a). In the learning phase,
subjects reliably learned to choose the most optimal face
option in all pairs. For each pair, the probability of choosing
the better option was above chance (P < 0.001), and the effect
of learning decreased from AB (80:20) and CD (70:30) to the

most uncertain EF (60:40) pair, F
(
2, 84

)
= 13.74, P < 0.0001. At

the end of learning, value beliefs differentiating the optimal
(A, C, E) from the suboptimal (B, D, F) action were very distinct
for the AB and CD face pairs but decreased with uncertainty,

F
(
2, 84

)
= 39.70, P < 0.0001 (Fig. 3a). Value beliefs were estimated

using the individual subject parameters of the Q-learning model
that best captured the observed data (Fig. 3b–e, reproduced from
Jahfari et al. (2018) to show performance).

BOLD Is Modulated by Reliable Value Differences
between Faces in Striatal and Visual Regions

For each pair of faces presented during the learning phase (AB,
CD, and EF), we asked how the BOLD signal time course in striatal
and visual regions relates to trial-by-trial value beliefs about
the two faces presented as a choice. First, as a reference, we
focused on the activity pattern of three striatal regions. Results
showed BOLD responses in dorsal (caudate, putamen) but not
ventral (accumbens) striatum to be differentially modulated by
the estimated value beliefs of the chosen face (Qchosen) in com-
parison with value beliefs about the face that was not chosen
(Qunchosen). Thus, BOLD responses in the dorsal striatum were
modulated more strongly by value beliefs about the chosen
stimulus (Qchosen; Fig. 4a bottom row). Critically, this differen-
tial modulation was only observed with the presentation of
AB faces where value differences were most distinct because
of the reliable feedback scheme. Next, we evaluated the rela-
tionship between value and BOLD in the FFA and OC. Again,
only with the presentation of the AB face option, trial-by-trial
BOLD fluctuations were differentially modulated by values of
the chosen versus unchosen face option (Fig. 4b, bottom row).
These evaluations highlight how the BOLD response in striatal
and perceptual regions is especially sensitive to values of the (to-
be) chosen stimulus when belief representations are stable and
distinct.

RPEs in Striatal and Visual Regions

Our findings so far described relationships between BOLD and
value time-locked to the moment of stimulus presentation—
that is, when a choice is requested. Learning occurs when an
outcome is different from what was expected. We therefore
next focused on modulations of the BOLD response when
participants received feedback. Learning modulations were
explored by asking how trial-by-trial BOLD responses in
perceptual and striatal regions relate to either signed (outcome
was better or worse than expected) or unsigned (magnitude
of expected violation) RPEs (Fouragnan et al. 2018). Consistent
with the literature, BOLD responses in all striatal regions
were modulated by signed RPEs, with larger responses after
positive RPEs or smaller responses after negative RPEs (Fig. 5a,
bottom row). Activity in the accumbens (ventral striatum) was
additionally tied to unsigned RPEs in the tail of the BOLD time
course, with larger violations (either positive or negative) tied to
smaller dips. Consistently, estimated BOLD responses in both
visual regions were modulated by the signed RPE and once
more mirrored the striatal modulations with stronger positive
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Figure 3. Value differentiation and model performance. (a) Value differentiation (ΔValue) for the selection of the optimal (A, C, E) stimuli over the suboptimal (B, D, F)
stimuli decreased as a function of feedback reliability and was smallest for the most uncertain EF stimuli. ∗∗∗P < 0.0001, Bonferroni corrected. (b) Group-level posteriors
for all Q-learning parameters. The bottom row shows model performance, where data were simulated with the estimated individual subject parameters and evaluated
against the observed data for the AB (c), CD (d), or EF (e) pairs. Bins contain ±16 trials. Error bars represent standard error of the mean.

RPEs eliciting stronger BOLD responses (Fig. 5b bottom row).
FFA BOLD responses were additionally modulated by unsigned
RPEs. However, in contrast to the relationship found between
unsigned RPEs and the accumbens, the FFA modulation was
positive and co-occurred with the modulation of the signed
RPE. That is, bigger violations and more positive outcomes each
elicited a stronger response in the FFA.

Can Past Learning in Visual Regions Support the
Prediction of Future Value-Based Decisions?

Stable value representations and RPEs both modulated the activ-
ity of visual and striatal regions. These modulations in the stria-
tum are described to bias future actions toward the most favored
option (the dorsal striatum) or to predict future reward outcomes
(the ventral striatum). To better understand the value and RPE
modulations observed in visual regions, we next assessed the
importance of these visual regions alongside the striatum in the
correct classification (decoding) of future value-driven choice
outcomes. Here, activity of prefrontal regions was added to
the importance evaluation based on our previous work with
these data in the transfer phase (Jahfari et al. 2018) (please see
Supplementary Figs 1 and 2 for the evaluation of these regions
during learning).

In the transfer phase, participants had to make a value-
driven choice based on what was learned before, that is, during

the learning phase. To specify the relevance of visual regions
in the resolve of value-driven choice outcomes, in the transfer
phase, a RF classifier was used (Breiman 2001, 2004; please see
Fig. 2a–c for the procedure). The RF classifier was trained to
predict the participant’s choice, on each trial, given trial-by-trial
BOLD estimates from striatal, prefrontal, and visual regions. The
RF classifier relies on an ensemble of decision trees as base
learners, where the prediction of each trial outcome is obtained
by a majority vote that combines the prediction of all decision
trees (Fig. 6a). To achieve controlled variation, each decision tree
is trained on a random subset of the variables (i.e., subset of
columns shown in Fig. 2a) and a bootstrapped sample of data
points (i.e., trials). Importantly, we ensured that the forest was
not simply learning the proportion of optimal choices in the
transfer phase by training all models on balanced draws from
the training set with equal numbers of optimal and suboptimal
choices.

Evaluation of all participants resulted in a classifica-
tion accuracy of 65% Area Under the Curve (AUC = 0.75)
using the trial-by-trial BOLD estimates from the ROIs and
increased to 70% with the evaluation of the good learners
(AUC = 0.76; N = 34, criteria: accuracy > 60% across all
three learning pairs). Hence, in 65 (all participants) or 70
(good learners) out of 100 trials, the forest correctly classified
whether participants would pick the option with the highest
value (optimal choice) or not (suboptimal choice) in the
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Figure 4. BOLD and the modulation of ΔValue in the learning phase. Top row shows the BOLD signal time course, time-locked to presentations of AB (80:20, red lines),
CD (70:30, green lines), and EF (60:40, blue lines) face pairs, for three striatal regions (a) and two perceptual regions (b). Bottom row displays differential modulation by
value (ΔValue = modulation Qchosen—modulation Qunchosen). Horizontal lines show the interval in which modulation was significantly stronger for Qchosen. With the

presentation of AB faces, BOLD responses in the dorsal striatum (caudate and putamen) and visual regions (FFA and OC) were modulated more by values of the chosen
stimulus when compared to values of the unchosen stimulus. Differential AB value modulation was not significant in the ventral striatum (i.e., accumbens). Nor did
we observe any differential value modulations with the presentation of the more uncertain CD and EF pairs. Confidence intervals were estimated using bootstrap
analysis across participants (n = 1000), where the shaded region represents the standard error of the mean across participants (bootstrapped 68% confidence interval).

validation set. RF predictions were substantially lower when
labels of the validation set were randomly shuffled (accuracy:
all participants = 52%; good learners = 56%).

The improvement of accuracy with the evaluation of only
the good learners is remarkable because the classifier was given
less data to learn the correct labeling (fewer subjects/trials) and
implied that the 2000 decision trees were picking up information
related to the consistency of past learning. Further support
for this important observation was found by asking how the
uncertainty of each prediction (defined as the proportion of
agreement in the predicted outcome among the 2000 trees for
each trial) relates to the difference in value beliefs (ΔValue)
about the two options presented on each trial (computed using
the end Qbeliefs of participants at the end of learning about face
A-to-F; Fig. 6c, left side). As plotted in Figure 6c on the right
side, the uncertainty in predicting that a trial choice outcome
is optimal—defined as the proportion of disagreement among
the 2000 decision trees—decreased with larger belief differences
in the assigned values (please see Supplementary Fig. 3 for the
evaluation of all participants).

Besides providing insights into how BOLD responses in the
transfer phase contribute to predict value-driven choice out-
comes (i.e., whether participants would choose the option with
the highest value given past learning), the RF algorithm addi-
tionally outputs a hierarchy, thereby ranking the contribution
of each region in the achieved classification accuracy. Figure 6d

shows the ranking of all ROIs for good learners where the model
had the highest predictive accuracy. First, regions in the dorsal
striatum were most important, which aligned well with both
the literature and the BOLD modulations we found by ΔValue
and RPE during the learning phase. These regions were next
followed by the preSMA. Evaluation of this region during the
learning phase showed no modulations by ΔValue or RPE on
BOLD (Supplementary Figs 1 and 2). Nevertheless, this region
is typically associated with choice difficulty/conflict and might
be essential in the resolve of a choice when value differences
are small. Remarkably, the third region in this hierarchy was
the FFA. In a task where participants pick the most valued
face based on past learning, this ranking of the FFA just above
the vmPFC implies that the ΔValue and RPE modulations of
BOLD observed during learning could function to strengthen
the recognition of valuable features. With the evaluation of all
participants—including some who were less good in learning—
the ranking of both the FFA and vmPFC was much lower (please
see Supplementary Fig. 3b), which might be caused by more
noise across the group in learning.

Further insights into the role of perceptual regions came from
the separate evaluation of RF for only the easiest (with �Value
between the two choice options being large) or hardest (with
small �Value) choices (Supplementary Fig. 6). Results showed
that when �Value is large, that is, the choice is easy, RF pre-
dictions are best served by BOLD fluctuations in both dorsal
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Figure 5. RPEs modulate BOLD in striatal and visual regions. The top row shows the FIR-estimated BOLD signal time course, which was time-locked to the presentation

of choice feedback and evaluated for three striatal regions (a) and two perceptual regions (b). Bottom row displays modulations of the estimated BOLD time course
by signed (green lines) or unsigned (orange lines) RPEs. The horizontal lines represent the interval in which signed or unsigned RPEs contributed significantly to the
modulation of BOLD in the multiple regression. Note that both variables were always evaluated simultaneously in one GLM.

and ventral striatum, followed by vmPFC, the preSMA, and M1.
With easy choices, regions involved with evidence accumulation
(DLPFC) or perceptual processing (FFA and OC) rank last. More
specifically, the processing of BOLD from OC even has a negative
effect on RF accuracy, which means that running RF without OC
will improve decoding. At the same time, with the evaluation of
the most difficult choices—where participants decide between
two very close in value positive (e.g., A or C) or negative (e.g., B or
D) faces—we instead find perceptual regions to rank in the top.
With difficult choices, where ΔValue is very small, the caudate
is followed by the FFA and OC in serving RF predictions. We will
return to the interpretation of these different rankings in the
discussion.

Finally, we focused on two sets of control analysis. First, we
evaluated RF accuracy and ranking with an additional random

variable that was sampled from N
(
0, 1

)
, and unrelated to the

BOLD activity of any region, or ΔValue. Here, the added ran-
dom control region ranks last with negative importance, mean-
ing that removing it improves model performance with 0.5%
(good learners) or 0.3% (all learners) points (right side Fig. 6d,
or Supplementary Fig. 3). Second, RF performance was evalu-
ated with the removal of perceptual, striatal, or frontal regions.
Despite the positive ranking of each region shown in Figure 6d
(or Supplementary Fig. 3b), RF decoding was not affected by
the removal of just one or two regions (Supplementary Fig. 5).
However, accuracy is reduced when striatal (putamen, caudate,
and accumbens), frontal (vmPFC, M1, DLPFC, and preSMA), or

perceptual (FFA and OC) regions are evaluated in isolation. These
alternative evaluations show not only that RF works best when
trial-by-trial BOLD across multiple “learning” brain regions is
combined but also that neither of the regions in isolation is
crucial for the accuracy of predictions. Moreover, these control
checks highlight that when a variable is unrelated to learning,
or single-trial BOLD, ranking drops to last (as is to be expected)
with counterproductive effects on RF accuracy.

Discussion
This study provides novel insights into how reinforcements
modulate visual activity and specifies its potential in the predic-
tion of future value-driven choice outcomes. First, by focusing
on how participants learn, we find BOLD in visual regions to
change with trial-by-trial adaptations in value beliefs about
the faces presented and then to be subsequently scaled by the
signed RPE after feedback. Next, the relevance of these observed
value and feedback modulations was sought by exploring the
prediction of future value-driven choice outcomes in a follow-
up transfer phase where feedback was omitted. Our machine
learning algorithm here shows a classification accuracy of 70%
for participants who were efficient in learning by combining
trial-by-trial BOLD estimates from perceptual, striatal, and pre-
frontal regions. The evaluation of region importance in these
predictions ranked the FFA just after the dorsal striatum and the
preSMA, thereby showing an important role for visual regions in



2014 Cerebral Cortex, 2020, Vol. 30, No. 4

Figure 6. Random Forest performance and importance ranking. Prediction of value-driven choice outcomes in the transfer phase using trial-by-trial BOLD responses
from striatal, perceptual, and prefrontal cortex regions. (a) Overview of the Random Forest approach where the training set is used to predict choice outcomes for each

trial by using the majority vote of 2000 different decision trees. Each tree is built using a different set, or sample, of trials and predictors from the training set. The
forest is trained on a training set sampled from all participants (N = 43) or only “the good learners” (N = 34). (b) The classification, or decoding, accuracy (green) given the
separate unseen validation sets, for all participants and good learners. (c) On the left, overview of the feedback scheme in the learning phase, and the new combination
in transfer about which the RF is making a prediction with an illustration of how ΔValue is computed for each trial. ΔValue was computed for each trial in the transfer

phase by using the end beliefs (Q) that participants had about each stimulus (A-to-F) at the end of the learning phase. On the right side, plotted relationship between
forest uncertainty (i.e., proportion of agreement across 2000 trees) on each prediction/trial (x-axis) and ΔValue (y-axis) for the model with the highest accuracy (i.e.,
the good learners). Forest uncertainty is defined as the proportion of trees saying “yes! the choice on this trial was optimal/correct.” When this ratio is below 0.5, the

forest will predict “no” (suboptimal/wrong choice), otherwise the prediction is “yes! the choice on this trial was optimal/correct” (optimal). R2=adjusted R2. Note that
the same pattern was found for all participants (R2 = 0.41∗∗∗, please see Supplementary Fig. 3). (d) Ranking of the ROIs in their contribution to the predictive accuracy
of the best performing model (i.e., good learners). Left, The original ranking. On the right, we evaluate ranking with all 9 original regions, but now add a control region
that was sampled randomly from N

(
0, 1

)
, and unrelated to the activity of any region, or ΔValue. Notice that the random variable has negative importance in the

ranking, meaning that removing it improves model performance with 0.5%.
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the prediction of future value-driven choice outcomes in a phase
where learning is established.

In a choice between two faces, BOLD responses in both the
dorsal striatum and perceptual regions were affected more by
values of the chosen face, relative to the unchosen face. Across
three levels of uncertainty, we only observed the differential
modulation of value on BOLD when belief representations were
stable. This specificity aligns with neuronal responses to per-
ceptual stimuli in the caudate tail (Kim et al. 2017), visual cortex
(Shuler and Bear 2006; Weil et al. 2010; Cicmil et al. 2015), and
imaging work across sensory modalities (Serences 2008; Pleger
et al. 2009; Serences and Saproo 2010; Kahnt et al. 2011; Vickery
et al. 2011; FitzGerald et al. 2013; Lim et al. 2013; Kaskan et al.
2016), where it fuels theories in which the learning of stable
reward expectations can develop to modulate, or sharpen, the
representation of sensory information critical for perceptual
decision-making (Roelfsema et al. 2010; Kahnt et al. 2011; Cicmil
et al. 2015).

After a choice was made, feedback modulations of signed
(“valence”) and unsigned (“surprise”) RPEs (Fouragnan et al.
2018) were evaluated on BOLD responses, by using an orthog-
onal design where the unsigned and signed RPE compete to
explain BOLD variances. Both visual and striatal regions respond
to prediction errors (Den Ouden et al. 2012). In the striatum,
both valence and surprise are thought to optimize future action
selection in the dorsal striatum or the prediction of future
rewards in the ventral striatum. In perceptual regions, a mis-
match between the expected and received outcome is often
explained as surprise where a boost in attention or salience
changes the representation of an image without a representa-
tion of value per se. We found positive modulatory effects of
signed RPEs in all striatal regions, as well as in the FFA and OC.
Concurrently, modulations of unsigned RPEs were only observed
in the accumbens (ventral striatum) and FFA, where notably the
direction of modulation was reversed. We speculate that this
contrast arises from the differential role of the regions. In the
FFA, specialized and dedicated information processing is essen-
tial to quickly recognize valuable face features. Complementary
boosts of surprise and valence here could prioritize attention
toward the most rewarding face feature to strengthen the reward
association in memory or help speed up future recognition
(Gottlieb 2012; Gottlieb et al. 2014; Störmer et al. 2014). In the
accumbens, boosted effects of positive valence on BOLD were
dampened by larger mismatches. Large mismatches in what
was expected are rare in stable environments. We therefore
reason that in the accumbens the contrast between valence and
surprise could function as a scale to refine learning, eventually
leading to more reliable predictions of future rewards.

Whereas BOLD in the ventral striatum was shaped by both
signed and unsigned RPEs, the dorsal striatum was sensitive
to differential value up to a choice and signed RPEs with the
presentation of feedback (Kaskan et al. 2016; Lak et al. 2016,
2017; McCoy et al. 2018; Van Slooten et al. 2018). The concurrent
modulation of differential value in the primary motor cortex
(please see M1 in Supplementary Fig. 1) associates the dorsal
striatum with the integration of sensory information (Ding and
Gold 2010; Yamamoto et al. 2012; Hikosaka et al. 2013; Kim et al.
2017), where increased visual cortex BOLD responses to faces
with the highest value could potentially help bias the outcome
of a value-driven choice.

We explored this line of reasoning with the prediction of
value-driven choice outcomes in a follow-up transfer phase after
learning. In recent years, machine learning approaches have

become increasingly important in neuroscience (Naselaris et al.
2011; Hassabis et al. 2017; Hebart and Baker 2018; Snoek et al.
2019), where the ease of interpretation has often motivated a
choice for linear methods above nonlinear methods (Naselaris
et al. 2011; Kriegeskorte and Douglas 2018). Despite that nonlin-
ear methods are less constrained, and therefore sometimes able
to reach a better classification accuracy by capturing nonarbi-
trary or unexpected relationships (King et al. 2018). Value-driven
choices after a phase of initial learning are influenced by the
consistency of past learning, memory updating, and attention.
All of these processes are affected by both linear and nonlinear
neurotransmitter modulations (Aston-Jones and Cohen 2005; Yu
and Dayan 2005; Cools and D’Esposito 2011; Beste et al. 2018). Our
RF approach was unconstrained by linearity with classification
accuracies well above chance and improved with the evalua-
tion of only the good learners, despite substantial decreases
in data given to the algorithm to learn the correct labeling.
Critically, we additionally found that the uncertainty of trial-
by-trial predictions made by RF is tied to the differentiability of
value beliefs—an index that we could compute for the novel pair
combination in the transfer phase by using the value (Q) beliefs
that participants had about each face at the end of learning.
These results showcase how trial-by-trial BOLD fluctuations in
striatal, prefrontal, and sensory regions can be combined by
machine learning, or decoding, algorithms to reliably predict
the outcome of a value-driven choice. In addition, we combine
the RF output with the cognitive computational modeling of the
learning process to refine the interpretation of the nonlinear
decoding predictions. With this combination, we essentially
show how the uncertainty of RF predictions is tied to value
beliefs acquired with learning in the past.

An important evaluation intended with our machine learn-
ing approach was the ranking of regions by their contribution
to the predictive (decoding) accuracy in the transfer phase.
After the observed modulations of BOLD in the learning phase,
this explorative analysis sought the relevance of learning-BOLD
relationships in the resolve of future choices. Here, the rank-
ing made by RF first identified signals from the dorsal stria-
tum (putamen and caudate) as most important followed by
the preSMA and, then most notably, visual regions. That is,
when the quality of learning was high across participants, FFA
ranked just above traditional regions such as the vmPFC and
the accumbens (O’Doherty et al. 2003, 2017; Hare et al. 2011;
Niv et al. 2012; Klein et al. 2017). Notably, FFA was replaced by
OC in ranking with the evaluation of all participants (please
see Supplementary Fig. 3b). This difference could occur because
the quality of learning was more variable across all participants
or because RF predictions based on the heterogeneous data
from all participants were less accurate. In general, the shift
in ranking implies that when learning is less consistent choice
outcomes are better predicted by fluctuations in OC—perhaps
with the identification of rewarding low-level features. With
better or more consistent learning, however, participants should
increasingly rely on memory and specialized visual areas. Thus,
search for specific face features associated with high value by
recruiting the FFA in the visual ventral stream. Consistent with
this reasoning, recent neuronal recordings show rapid visual
processing of category-specific value cues in the ventral visual
stream. These specific value cues are only seen for well-learned
reward categories and, critically, precede the processing of value
in prefrontal cortex (Sasikumar et al. 2018).

Additionally, in the learning phase, both OC and the FFA
were modulated more by values of the (to be) chosen stimulus
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when belief representations were stable and distinct—that is,
we only observed differential Q-value modulations for the most
reliable and easy to learn AB pair. This combined with the RPE
modulations found in the same regions suggests an effect of
value and learning on perceptual regions that is both specialized
(FFA) and global (OC). Note however that this possibility must
be studied further with designs that can zoom in on specificity
with the separation of different perceptual dimensions (e.g.,
houses vs. faces). Our transfer phase results imply a differential
role for the specialized FFA, and the more low-level general
OC, with the comparison of good versus all learners. Tasked
with predicting the outcome of future value-driven choices,
RF rankings showed a specialized and prominent FFA role for
good/efficient learners, whereas OC was more important with
the evaluation of all participants (where learning was less con-
sistent or noisier across participants). Recent work on the inter-
play between learning and attention suggests a bidirectional
relationship between learning and attention: we learn what
to attend from feedback and, in turn, use selective attention
to constrain learning toward relevant value dimensions (Leong
et al. 2017; Rusch et al. 2017). In our study, better learning helps
a more refined identification of rewarding features in a face,
which we interpret as a narrower focus of selective attention in
the FFA during learning (Niv et al. 2015). With past learning being
more noisy, or less established, extraction of relevant features is
less straightforward with attention being more spread to both
specialized and global regions. Additionally, we observed both
FFA and OC to only rank in the top (just after the caudate) when
ΔValue was very small (Supplementary Fig. 6). With easy choices,
this effect was reversed where processing of OC BOLD even
declined the RF accuracy. This contrast suggests that especially
when the options to choose from are just too similar in value
(i.e., think of the options A:C or B:D), past learning in percep-
tual regions could serve the striatum with a selective boost to
highlight the most rewarding face features. In contrast, when
the distinction is easy and clear-cut, choices depend far more
on inputs from the ventral striatum and vmPFC.

We note that although BOLD fluctuations in the preSMA
ranked second in the prediction of value-driven choice out-
comes, no reliable modulations of BOLD were observed by either
differential value or RPEs in the learning phase. The preSMA
is densely connected to the dorsal striatum and consistently
associated with action-reward learning (Jocham et al. 2016) or
choice difficulty (Shenhav et al. 2014). The lack of associations
in this study might result from our noisier estimates of the
BOLD response that is typical for regions in the prefrontal cortex
(Pircalabelu et al. 2015; Bhandari et al. 2018), the anatomical
masks selected, or smaller variability across trials in the learning
phase (i.e., 3 pairs in learning phase vs. 15 pairs in transfer
phase). Nevertheless, the importance indicated by RF, combined
with our previous analysis of this transfer phase data (Jah-
fari et al. 2018), implies an important role for the preSMA in
the resolve of value-driven choices in concert with the stria-
tum. More research with optimized sequences to estimate BOLD
in PFC is required to clarify the link between learning and
transfer.

To summarize, we find an important role for perceptual
regions in the prediction of future value-driven choice outcomes,
which coincides with the sensitivity of BOLD in visual regions to
differential value and signed feedback. With the integration of
value and feedback, visual regions could learn to prioritize the
processing of high-value features to support optimal response
selection via the dorsal striatum in future choices.
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