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Privacy protection for health data is more than simply stripping datasets of specific

identifiers. Privacy protection increasingly means the application of privacy-enhancing

technologies (PETs), also known as privacy engineering. Demands for the application of

PETs are not yet met with ease of use or even understanding. This paper provides a scope

of the current peer-reviewed evidence regarding the practical use or adoption of various

PETs for managing health data privacy. We describe the state of knowledge of PETS for

the use and exchange of health data specifically and build a practical perspective on the

steps needed to improve the standardization of the application of PETs for diverse uses

of health data.
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HIGHLIGHTS

- Expert determination for health data de-identification requires understanding current
approaches in privacy engineering, specifically the forms and risks or benefits of specific privacy
enhancing technologies.

- Expert research on application of privacy enhancing technologies (PETs) to health data is
unevenly distributed with respect to applicability to types of health data, actionable guidance
on the privacy-data utility tradeoff, and evidence for application to real-world health contexts,
including public health.

- Best practices are evolving, but a combination of PETs is currently believed to be most
privacy protective.

MAIN

Real-world evidence drawn from health data resources is arguably one of the most valuable types
of data. The use of real-world data, also referred to as real-world evidence or health “big data,”
facilitates research and product development within clinical healthcare and community public
health (1–3). Health data is also the most fraught. It is highly sensitive, revealing facts about
an individual’s health conditions, facts about a person’s family members, health practitioners’
judgments about a person’s psycho-social and health history. With the COVID-19 pandemic,
individual health data and public health data can even describe the place of an individual within a
state’s description of persons permitted or not permitted to access certain amenities (4–6).
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Generally, acceptable and lawful uses of real-world health
data require that the health data be treated according to the
highest privacy standards. In some settings, those lawful uses are
more apparent than in others. In most cases, four characteristics
determine the sensitivity of real-world evidence:

1. The data is sufficiently granular to identify a specific individual
or reveal a particular sample of a population;

2. The level of privacy and security features designed into data
collection devices or data transfer systems;

3. The choices that subjects are given to protect the privacy of
their data within a single data collection point or multiple and
interoperable systems; and

4. The stringency of the governance—law, regulation, policy—of
the privacy and security standards for the collection, sharing,
and use of real-world evidence.

In the United States specifically, which is the setting for our
present analysis, this means abiding by the privacy and de-
identification requirements of the Health Insurance Portability
and Accountability Act (HIPAA) (7–11). But, HIPAA is mainly
silent on precisely what constitutes the highest levels of privacy
protections: outside of removing the 18 HIPAA identifiers, other
privacy protections are to be decided by an expert. Under the
HIPAA expert determination de-identification pathway, it is
stated that a “person with appropriate knowledge and experience
with generally accepted statistical and scientific principles and
methods for rendering information not individually identifiable”
(7) can adequately determine that data is de-identified to the
point that there is a minimal privacy risk associated with the
use of that data (12). Within the context of justifying such
determinations, statistical and scientific experts should rely on
their knowledge to apply any of several technical methods to
achieve a balance between “disclosure risk and data utility.”
This includes knowledge of the various privacy engineering
techniques and their applicability to health data types and their
uses, such as minimizing re-identification risks when data is
shared or used to build predictive models (13).

How many PETs should an expert know of? What is the
scope of their application? Is there reliable evidence to judge
the reliability of the available PETS in a real-world health data
use case? To answer these questions, we provide a practitioner’s
perspective on the relevant research addressing the applicability
of seven forms of PETs to minimize re-identification risks in
health data use. In this review we intend to share knowledge
beyond the simplistic assertions, often seen in commercial
literature, that suggests health data protection experts simply
transfer differential privacy techniques from protection of [US]
Census data for researchers’ use to use cases involving electronic
health records data. Instead, we suggest that PETs must be
tuned to the data environment, including the relevant ethical
constraints of the clinical setting, such as fairness, accuracy, and
precision of data use.

PETS DEFINED AND EXPLAINED

Wide and varying definitions of PETs persist in the research
and practice of privacy engineering due, in part, to the

multidisciplinary nature of the field. Privacy engineering,
which also encompasses “privacy by architecture,” “privacy by
policy,” and “privacy by interaction (14),” brings techniques and
theories in from computer science, public policy, cybersecurity,
and science and technology studies at least. For example,
Wang defines Privacy Enhancing Technologies (PETs) as, “a
wide array of technical means for protecting users’ privacy
(15).” They describe PETs as encompassing everything from
privacy policy languages to algorithmic forms of privacy
protection, which unify “privacy-engineering methods,”
“privacy-engineering techniques,” and “privacy-engineering
tools,” and “privacy-by-design (16).”

The wide array of definitions, terminology, and actors
make it difficult to identify sources for privacy engineering
benchmarking and expertise. Importantly, as we uncovered,
the proliferation of disciplines means that there are agreed
upon metrics for reporting privacy gains or re-identification
risk protections from application of one PET vs. another.
Likewise, there are no benchmark datasets against which privacy
engineering test can be applied to establish a state of the art. Even
when different PETs are applied to machine learning benchmark
datasets, such as CIFAR-10 or MIMIC-III, the degree to which
they protect privacy while improving algorithmic performance
(e.g., ROC-AUC curves) is not described consistently enough
to permit rigorous comparison (17–21). Finally, there are few
review resources that describe, in comparable language, the
applicability of specific PETs to particular forms of health
data (22–27).

To get beyond the state of confusion, we accept the broad
definition of PETs but arrange them into a framework of three
general categories: algorithmic, architectural, or augmentation
based. Other efforts to categorize PETs focus primarily on the
intersection between hardware types (e.g., mobile devices) and
applicable PETs for data types, mostly outside of the health data
space (e.g., social media advertisements) (28–30).

Algorithmic PETs include:

1. Homomorphic encryption
2. Differential privacy
3. Zero-knowledge proofs

Architectural PETs include:

1. Federated learning
2. Multi-party computation

Augmentation PETs include:

1. Synthetic data
2. Digital twinning

Algorithmic PETs protect privacy by altering how data is
represented (e.g., encryption, summary statistics) while still
containing the necessary information to enable use. They
provide mathematical rigor and measurability to privacy. Unlike
algorithmic PETs, Architectural PETs are grounded in the
structure of data or computation environments. The focus is
on confidential exchange of information among multiple parties
without sharing the underlying data. Augmentation PETs protect
privacy by using historical distributions to direct generation of
realistic data that augments existing data sources. Augmentation
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PETs can be used to enhance small datasets or to generate
fully synthetic datasets, including multiple interrelated datasets
constitutive of a simulated system, which can augment the overall
range of useful and available datasets. Although we arrange the
landscape of PETs into different categories, it is important to note
that they are often used in combination to fill privacy, security, or
data sovereignty needs as the use case requires.

STATE OF THE PEER-REVIEWED
LITERATURE

If experts must make a determination regarding the privacy
techniques necessary for use of real-world health data, where
should they turn for guidance? Apart from direct consultation
with other experts, examination of the peer-reviewed literature
on the topic would be defensible sources of guidance. As domain
experts in health data privacy, machine learning, and computer
science, we are concerned that there is inconsistency, opacity,
or outright absence of clear discussions about the usefulness
of PETs for health data use in the peer-reviewed literature. In
our examination of the state of peer-reviewed literature below,
we focused on the intersections between PETs and health data
applications, in three domain expert repositories: ACM Full-Text
Collection, IEEE Xplore, and PubMed. From the list of retrieved
articles, we selected primary-research papers that described the
development or use of a PET(s) for health data applications,
then categorized the articles based on the primary PET they
investigated. We went a step further to evaluate the usefulness of
the results for a practitioners’ audience, as described in the next
section of the paper.

Table 1, ”A Survey of the Peer-Reviewed Literature on Use of
PETs for Healthcare Data” below shows the variation of search
terms used for each PET and health data application, as well as
the number of articles retrieved from each database.

CHALLENGES FOR EXPERT
DETERMINATION OF USEFULNESS OF
PEER-REVIEWED LITERATURE ON PETS
AND HEALTH DATA

We adopted a two-step approach to classifying of articles with
practical utility for individuals working with health data. First,
we ranked each article for its applicability to the health data
context and then weighted each article according to the level of
testing rigor described in the article. Applicability to the health
data context was demonstrated by description of application of
any of the PETs examined here to specific types of health data,
such as GenomeWide Association Studies (GWAS) or electronic
health records (EHRs). The level of rigor for testing of the PET
was measured on a three-point scale based upon whether the
article reported only theoretical application of a specific PET,
used a single source of health data or strictly benchmark datasets
from other fields, or whether the article described application of
the PET to analyses using multiple datasets including benchmark
and health-specific data. We also initially evaluated the articles
according to the detail given about the privacy-utility tradeoffs

and the computational time or hardware required to use the PET,
but found that this was a rare feature in the literature we found.

Application of our two-step method for evaluation of
the literature revealed a weakness in applicability of the
recommendation, common among privacy engineers and
machine learning experts, that domain expertise should guide
privacy decision-making, such as determining appropriate
thresholds for privacy performance (33). We found that our
small team of three researchers, whose academic and professional
background includes engineering, privacy engineering, computer
science, machine learning, health data de-identification and
health data privacy, evaluated the PET literature differently,
even when working with a similar rubric and consulting one
another often. We found that our individual determinations of
the relevance of research reviewed was dependent on knowledge
of health conditions, recognition of the names of benchmark
datasets (e.g., the Wisconsin Breast Cancer dataset), or ability to
interpret machine learning performance metrics, such as such
as ROC-AUC curves, in this context (34). Evaluation of the
rigor of testing was also uneven between us as articles often
failed to elaborate clearly on the meaning of performance metrics
for privacy preservation generally, for privacy protection of
health data, or for resolving the practical task of determining a
privacy parameter in the face of practical data analysis. Whether
measured as similarity of scores for healthcare relevance or for
rigor of testing, our team achieved only 66% similarity on over
80% of the resources reviewed. Our experience raises specific
questions regarding the application of the “expert determination”
clause for HIPAA, namely “what makes a relevant expert?,”
and also echoes the existing general questions about the limits
to expert collaboration in engineering and computation task
domains (35).

ALGORITHMIC PETS

Differential Privacy
Differential privacy (DP), which is a set of rigorous mathematical
changes made to mask sensitive data points is known widely
due to its application to the US Census 2020 data. DP is one of
the few PETs with known methods and measures to define and
guarantee privacy (36, 37). In the case of DP, privacy is defined
as an adversary’s inability to tell whether an individual is part of
a dataset or not, even if the adversary has complete knowledge
of the individual’s data, as well as over all the other entities
in the dataset. Differential privacy ensures privacy by making
individuals’ data obscure so that the inclusion or exclusion of
one individual’s record makes no statistical difference on the
output. Data is made differentially private by adding noise,
through either mathematical transformations of data points (e.g.,
Laplacian, neighbor distance) or modification of data through
algorithmic manipulations (e.g., genetic algorithms). Selection of
the transformations or algorithmic changes must be compatible
with the type of data ranging from genome-wide association
studies (GWAS) to physical sensor data.

DEFINITION 1. (Differential Privacy (6)) A randomized

function A gives ǫ-differential privacy if for all datasets D and D
′

differing at most one row, and all S⊆ Range (A) Pr [A(D) ∈ S]≤

e ǫ Pr[A (D
′

) ∈ S]
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TABLE 1 | A survey of the peer-reviewed literature on use of PETs for healthcare data.

Keywords/Search strategy Privacy-preserving computational method: number of Articles retrieved per database per search query

“zero-knowledge

proof”

“homomorphic

encryption”

(“federated learning” OR

“federated deep learning”

OR “federated machine

learning”)

(“secure multiparty

computation” OR

“secure computation”

OR “multi-party

computation”)

“differential privacy” “synthetic data”

AND (”electronic health record“

OR ”electronic medical record“

OR ”EHR“ OR ”EMR“ OR “PHR”)

IEEE: 0 ACM: 0

PubMed: 0

IEEE: 2

ACM: 33

PubMed: 3

IEEE: 6 ACM: 8 PubMed: 9 IEEE: 27

ACM: 30

PubMed: 1

IEEE: 7 ACM: 80

PubMed: 5

IEE: 27

ACM: 101

PubMed: 17

AND (”direct to consumer

genetic testing“ OR ”consumer

genetic testing“ OR ”ancestry

testing“ OR ”genetic testing“ OR

”personalized medicine“)

IEEE: 0 ACM: 0

PubMed: 0

IEEE: 4

ACM: 7

PubMed: 4

IEEE: 0 ACM: 2 PubMed: 3 IEEE: 4

ACM: 25

PubMed: 2

IEEE: 1 ACM: 31

PubMed: 0

IEEE: 9

ACM: 21

PubMed: 4

AND (“medical” OR “health”)

AND (”direct to consumer

artificial intelligence“ OR

”consumer artificial intelligence“

OR “artificial intelligence” OR

“machine learning”)

IEEE: 0 ACM: 0

PubMed: 0

IEEE: 2

ACM: 16

PubMed: 3

IEEE: 3 ACM: 7 PubMed: 17 IEEE: 4

ACM: 22

PubMed: 2

IEEE: 3 ACM: 36

PubMed: 4

IEEE: 87

ACM: 153

PubMed: 40

AND (”medicine“ OR ”medical“

OR ”health“) AND (”mobile app“

OR ”mobile application“ OR

“mobile”)

IEEE: 5 ACM: 0

PubMed: 0

IEEE: 1

ACM: 27

PubMed: 1

IEEE: 28 ACM: 82 PubMed: 4 IEEE: 3

ACM: 122

PubMed: 1

IEEE: 15 ACM: 274

PubMed: 4

IEEE: 11

ACM: 271

PubMed: 6

AND (”medicine“ OR ”health“ OR

“medical”) AND (”x-ray“ OR

”imaging“ OR ”CT“ OR ”MRI“ OR

”PET")

IEEE: 0 ACM: 0 IEEE: 8

ACM: 197

PubMed: 1

IEEE: 0 ACM: 11 PubMed: 72 IEEE: 58

ACM: 56

PubMed: 0

IEEE: 0 ACM: 89

PubMed: 1

IEEE: 0

ACM: 249

PubMed: 145
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DP is a demanding privacy standard, even when epsilon,
the constraining mathematical constant, is large (>1). To
address the challenges of meeting DP while maintaining data
utility, researchers have modified epsilon values and other DP
constraints to create new measurable privacy standards, such
as crowd-blending privacy, coupled-worlds privacy, membership
privacy, and differentiability. However, these modifications of
the strong assumptions of DP create weaker protections against
adversaries, and thus introduce greater risks of privacy loss.
Differential privacy is mathematically rigorous and relatively well
known, but the application of DP presents problems for health
data use. The data use problems of DP include the inapplicability
of DP to time-series data and that DP may homogenize outliers
in a dataset, thus reducing the diversity in the dataset (17).
Diversity problems can raise unique problems for applicability
of DP in healthcare as outliers’ values are often clinically and
financially meaningful. Further, use of DP is not well suited to
cases where firms are seeking an off-the-shelf privacy solution
for use in health care, for example where non-linear models
are used or where the effect of DP “washing out” group
influence is detrimental to answering questions about a diverse
client population.

While many of the articles reviewed here were explicit about
the tradeoffs in utility, privacy, and computational time at specific
values of epsilon (e.g., 1.0, 0.01, 0.001) and with weaker variations
of DP, the reporting about what types or granularity of private
information could be revealed at each level was incomparable.
This made it difficult to draw an expert judgment about whether
a specific level or form of DP is acceptable for the privacy
and utility needs of the health data. When blended with other
PETs, DP has promise for the healthcare setting. But the cost
of combining these approaches, whether measured as loss of
data utility or increase in computational resources, is not well
described in the research literature. As a result, experts are
unable to reliably use this research to substantiate an expert
determination that DP should be used.

Homomorphic Encryption
Health data privacy demands can be met through excellent
cybersecurity and data encryption practices. However, securing
data through encryption could cause complications for
organizations that want to perform analyses on their encrypted
data. They are faced with the dilemma that decrypting data
opens that data to the risk of discovery but analysis of data while
encrypted is severely limited. Homomorphic encryption is a
highly secure, strongly privacy-preserving method that allows
computational analysis over encrypted data. But those operations
are limited to multiplication or addition of encrypted values.

A scheme is additively homomorphic if [x] ⊕ [y] = [x +

y] and multiplicatively homomorphic if [x] ⊗ [y] = [x · y]
where [x or y] denotes the encrypted or ciphertext value of
plaintext x or y, ⊕ denotes homomorphic addition, and ⊗

denotes homomorphic multiplication. Put simply, encryption
after computation is equivalent to computation after encryption.

Homomorphic encryption schemes can be partially,
somewhat, or fully homomorphic. Fully homomorphic

encryption (FHE) schemes are the most computationally
complex, as they can perform arbitrary addition and
multiplication over encrypted data. They are often based
on strongly non-linear functions and modular arithmetic
over large numbers. Partially homomorphic encryption (PHE)
schemes perform one operation (e.g., addition or multiplication)
an arbitrary number of times over encrypted data. Somewhat
homomorphic encryption (SHE) schemes perform specific
numbers of rounds of computation using one operation
over encrypted data or allows for a mixture of operations on
limited data.

Homomorphic encryption is first and foremost used to
provide strong security to sensitive data while enabling private
computation. There are two core security features:

1. One-wayness: No efficient adversary has any significant
chance of linking the corresponding plaintext to the ciphertext
when they only see the ciphertext and the public key of the
patient held by the data owner.

2. Semantic security: An adversary will be unable to distinguish
whether a given ciphertext is the encrypted version of two
different plaintexts.

Here, plaintext refers to unencrypted data, and ciphertext refers
to encrypted data.

How has HE been used in health data research? One way is
within third-party computation services where an objective is to
maintain the highest level of data privacy, harden the service
provider’s algorithm or model against discovery, and restrict
access to the computation results.

For example, Vizitiu implemented a modified FHE scheme
called MORE (Matrix Operation for Randomization or
Encryption) based on linear transformations to support third-
party deep learning (38), that demonstrated that neural networks
be trained a wide range of homomorphically encrypted data
types including whole-body circulation multivariate data, X-ray
coronary angiography images, and the MNIST handwritten
digits images. Those networks can use virtually any algorithmic
type, such as regression and multiclass classification problems.
The client’s sensitive medical data stays private during training,
the client’s result stays private during inference, and the neural
network parameters remain confidential to the model owner.
When comparing this privacy-preserving scheme with a neural
network trained and operating on unencrypted data, the
computational results were found to be indistinguishable, and
runtimes increase only marginally.

HE can also support secure data storage and processing in
which patient data is kept private from medical units, medical
units can only access parts of patient data for which it is
authorized, and the medical units’ tests and analyses are kept
private from patients. For example, Ayday et al. implemented
privacy-preserving disease susceptibility test (PDS) that stores
patients’ encrypted genomic data and pseudonymized identifiers
at a storage and processing unit (39). Medical units can retrieve
encrypted genomic data to which they are authorized and
compute their susceptibility tests using homomorphic operations
such as weighted averaging on encrypted SNPs. However, and
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importantly for insider threat mitigation, a curious party at the
storage processing unit would be unable to infer the contents
of the patient’s DNA from their stored data. They evaluated the
system using a real human DNA profile (40) and markers for real
diseases (41, 42). They found that the encryption, homomorphic
operations, and decryption computation times and the memory
requirements did not diminish the practicality of the algorithm,
with all operations being several orders of magnitude faster than
the sequencing and analysis of a sequence.

Over the past few years, researchers have proven that HE
can rigorously meet security requirements for sensitive medical
data. However, the high security benefits come with a dramatic
tradeoff in performance, as encrypted computations are often
several orders of magnitude slower than plaintext computations
and schemes require high levels of memory. This limits the
PET’s practicality in the real world, especially in resource-
constrained environments such as mobile or IoT devices (43).
We may overcome this barrier by using simpler or modified HE
strategies, but at the cost of weaker security. We recommend that
this performance-privacy tradeoff be considered carefully before
deciding which HE scheme to implement, and that the research
field explore more diverse variations of HE and examine their
performance-privacy tradeoff in diverse application spaces.

Zero-Knowledge Proofs
One of the reasons why health data is de-identified in the first
place is for it to be securely transferred between organizations
with a legitimate use for the data. A challenge for health data
privacy engineers is determining who is a legitimate user. While
there are stipulations in the HIPAA regulations that address
data access for “business associates” and so forth, verifying
the digital identity of data receivers is a technical challenge
not covered under the applicable regulations. One of the PETs
discussed in privacy engineers—zero-knowledge proofs (ZKP)—
represent a method for verification of sensitive healthcare data
between collaborators without explicitly transferring the data.
ZKP may be particularly for medical Internet of Things (IoT)
applications (44). Alas, ZKPs are the least well characterized and
most infrequently discussed in research papers addressing health
data privacy.

ZKP is a method for ensuring security and privacy of data
that is borrowed from cryptography. According to (43), “A zero-
knowledge proof enables the prover (P) to make sure the verifier

(V) is certain that some statements are correct, but the verifier
(V) does not learn anything except the validity of the statement.”
ZKP theoretically allows sharing of data securely and privately
across multiple devices but with potentially high computational
and communications costs.

The most fruitful application of ZKPs for healthcare data will
likely emerge in the areas of identity and attribute verification
(44–46). Creating secure communications across medical devices
will becomemore relevant with the increase in diversity and span
of medical sensor networks, including body area networks (47).
Overcoming the architectural challenges posed by the medical
internet of things, such as device diversity and communications
latencies and the variability of computational resources available
to validate proofs is a key challenge to moving ZKP from
theoretical to practical application (46).

ARCHITECTURAL PETS

Federated Learning
Following the maxim that personal information privacy
is best maintained when individuals control their own
information, privacy engineers turned to distributed computing
to circumnavigate the challenge of protecting users’ data by
putting data protection into the hands of local data owners.
Federated Learning (FL) localizes the control of data and even
the control of models running on that data. To the extent that
data owners prefer strict sovereignty over their data and prefer
models that are trained with the most diverse data, even where
that data is not strictly available to them, then FL is a useful PET
to employ.

Federated Learning (FL)is an architectural PET that confers
a few advantages over algorithmic PETs (see Table 2, Figure 1).
These advantages are primarily data use related: first, FL is data
agnostic; there are no a priori restrictions on the types of data
that can be made more private through this PET. Second, FL is
(theoretically at least) algorithmically agnostic: it can be used as
a data architecture in the background of any form of machine
learning and the various algorithmic PETs described elsewhere in
this resource can be applied with FL. Third, in a decentralized FL
system, an honest-but-curious adversary or an adversary intent
on data exfiltration has limited access to the data present in one
node. This reduces the size of the privacy loss from data breach.
Fourth, FL can improve model performance by giving access to a

TABLE 2 | Typology of federated learning.

Typology of federated learning (31)

Data Models

Decentralized Data remains on users’ devices or on facility servers and models are

sent to those devices or servers for training. Weights are sent back to

the model server in raw or aggregate form. This may also be called

cross-silo federated learning.

Model components are partitioned and sent to a sample

of devices, which train model partitions on device and

returns weights to the model server directly or via an

intermediate aggregation server. (32)

Centralized Data is centralized then partitioned for sharing out to others to boost

their data and local model training. This may also be called data center

distributed learning.

Data from decentralized devices is ingested into a central

location for model training and new models are sent

back to disaggregated locations after training on the

centralized data and servers. (20)
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FIGURE 1 | Federated multi-task learning topology. (A) Cloud-based distributed learning; (B) Centralized ederated learning; (C) Decentralized federated learning; (D)

Centralized communication topology with decentralized parameter exchanging topology. Adopted from He et al. (48).

greater diversity of training data, provided that the challenges of
interoperability are addressed as well.

FL invites some disadvantages because it is an architectural
privacy solution. First, it is not clear when a federated approach is
the best choice for the specific reason of protecting data privacy.
While the architectural approach allows for data sovereignty,
this choice decentralizes the protection of data at each node
to that node, creating challenges for balancing both privacy
and security. This presents a challenge for establishing a true
baseline of privacy across the learning system. Second, the
decision to apply centralized vs. decentralized FL must be
constrained by other side constraints, such as data owners’
preference for strict or loose data sovereignty, communications
latencies, device and data heterogeneity, and the ability of
collaborators to agree on interoperable terms for raw data or
features (48). Third, although FL works with virtually any form
of data, from electronic health records to medical images, the
data collected from disaggregated clients are often coming from
different distributions. As a result, the data is not independent
and identically distributed (IID), which is a key assumption for
many statistical tests and machine learning models. For example,
medical institutions in different neighborhoods would likely see
patients of different demographics and thus are unlikely to have
the same distributions. FL with non-IID data may present the
challenge of achieving high model accuracy and generalization

in some health data applications (18, 21, 49). Other strategies
such as data similarity clustering have demonstrated potential in
overcoming this challenge without increased data centralization
(50). Additionally, it’s important to note that FL with IID data
does not always outperform that with non-IID data, and it is
unclear what characteristics of health data may result in superior
model performance with non-IID data.

A unique feature of Federated Learning (FL) is its utility
for privacy-preserving machine learning. Federated learning
is used for collaborative training of machine-learning models
over a set of training or testing data sources that are kept
local to the data owners. Applied in the medical space, it
enables patients, medical professionals, and medical institutions
to gain insights collaboratively without moving private data,
whether records, images, or sensor data, beyond the security
parameters and risk appetites of the data owners. As Kairouz et al.
describe it,

“One of the primary attractions of the federated learning
model is that it can provide a level of privacy to participating
users through data minimization: the raw user data never leaves
the device, and only updates to models (e.g., gradient updates)
are sent to the central server. These model updates are more
focused on the learning task at hand than is the raw data (i.e.,
they contain strictly no additional information about the user,
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and typically significantly less, compared to the raw data), and
the individual updates only need to be held ephemerally by the
server. While these features can offer significant practical privacy
improvements over centralizing all the training data, there is still
no formal guarantee of privacy in this baseline federated learning
model (31).”

Distributed computing carries costs, such as latency from
transfer. However, there are also benefits: FL models perform
consistently better than local models trained on just a single
party’s data (51). In fact, FL performs comparably to explicit data-
sharing, with models trained in an FL architecture being almost
perfectly comparable on model quality indicators achieved with
centralized data.

While federated learning is gathering attention from health
data experts intent to protect privacy, particularly for mobile
health applications, there are important differences in the
privacy, security, and feasibility costs of implementing different
varieties of FL, specifically centralized vs. decentralized federated
learning (52). First, it is important to emphasize that centralized
and decentralized can mean both adaptations to the topology or
structure of a federated learning system or to the arrangement
of data in that system. For example, centralization in some
federated learning systems means that a central server directs
the distribution of model training across the multiple devices or
institutions collaborating. The central server coordinates training
and updates, including the selection of nodes for participation
based upon pre-defined eligibility criteria, such as the presence of
a trusted network key. One challenge with this approach is that it
may be infeasible to have a center that is trusted by all potentially
collaborating nodes.

With respect to decentralization, decentralization may mean
disaggregation of data, whether because the data is never
aggregated to begin with, or it may mean decentralization
of model training. Decentralizing the training of models may
introduce problems of communication between servers and
devices and may also present challenges for maintaining high
levels of privacy when data is stored and shared by users. In a
peer-to-peer topology, which is a highly decentralized form of
FL, communication is between clients and edges on a dynamic
network graph. In this network, each node communicates with
only a few of the other nodes, potentially limiting the rate of
learning due to communications bottlenecks between nodes with
different resource constraints. However, there are three general
advantages to decentralized federated learning: “(1) data privacy
could be preserved better than the centralized case; (2) the
computational burden is released by SGD and parallel computing
compared with the centralized GD/SGD processing (a linear
speedup); (3) the communication efficiency can be increased
significantly by adopting FL (32).”

Limitations to federated learning are that the scalability of
FL is dependent on collaboration and stable communication
between otherwise “sovereign” and asymmetrical devices or
institutions. As the scale or diversity of a federated network
increases, performance loss may impair the performance of
the model learned whether that performance loss is due
to communications lags, device heterogeneity, inefficient data

partitioning, or poor choice of hyperparameters that restrict
model updating and communication rounds. The FL research
has not delivered consistent reporting of the number of nodes,
diversity of nodes, optimal communication speed and rounds,
and whether these parameters affect the privacy gains proposed
as the reason for using FL.

Secure Multiparty Computation
Secure multiparty computation, variously described as SMC
or SMPC, is a form of distributed computing that enables
computation across multiple encrypted data sources while
ensuring no party learns the private data of another. The two
fundamental properties of SMC protocols are:

1. Input privacy: no party can make inferences about the private
data held by other parties from the messages being sent.

2. Correctness: either the protocol is robust and honest and
parties are guaranteed to compute the correct output, or the
protocol aborts if they find an error.

Under the umbrella of SMPC, there are two-party and multi-
party computation protocols. Protocols include, but are not
limited to, garbled circuits, secret sharing, and oblivious transfer.
Secret sharing protocols distribute data to collaborators to allow
them to perform necessary computations but without granting
direct access to the data. Garbled circuit protocols two parties, a
garbler and an evaluator, to compute a known function on their
jointly held data. To do so, the garbler sends encrypted truth
tables to the evaluator which can only be decrypted using a key
(token) sent via oblivious transfer.

How has SMC been used in health data research? While
research into SMC applied directly to healthcare data is still in
its early stages, existing literature has demonstrated its ability to
support collaborative inference and third-party model training
for image and multivariate data.

For the application of collaborative inference, Ismat et al.
presented PRICURE, a system to enable privacy-preserving
collaborative prediction between multiple parties holding
complementary datasets on the same machine learning task.
In other words, clients can receive a single aggregated result
constructed from several private machine-learning model
owners (22). Thanks to additive secret sharing, the system keeps
the client’s input private from the model owners, and the model
parameters private from the clients. Their experiments used
image-based and multivariate data—the well known MNIST,
Fashion-MNIST, IDC breast cancer, and MIMIC in-ICU length-
of-stay datasets—as well as feed-forward neural network models.
Their performance evaluation demonstrated a very minimal
tradeoff on inference accuracy, tested scalability of up to 50
model owners, and negligible overhead for secret-sharing.

For the application of third-party model training, Wang et al.
leveraged PHE and designed seven secure computation protocols
to allow a cloud server to efficiently and securely compute simple
computations for multiple parties (53). To demonstrate the
protocols’ utility, they outsource Secure Vector Machine (SVM)
training on a heart disease dataset and a diabetic retinopathy
Debrecen dataset. In this demonstration, both the data samples
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and training parameters for the SVMmodel are kept private from
the cloud server responsible for model training.

There have been efforts to leverage SMC in genomic
testing and genome-wide association studies meta-analysis (54–
56). However, these applications so far are mostly theoretical
and seem to simply take a well established non-healthcare
SMC solution and apply it directly to genomic data without
much consideration to the specific requirements of the
healthcare space.

Although SMC offers one of the strongest privacy protections
for all the participating parties, the communication and
computational complexity of SMC is too high to be used
reasonably on computations at scale and in resource-constrained
environments such as wearables and mobile devices. PRICURE
was shown to be scalable, but only until the computational
burden of inference overwhelms the system. Although Wang
et al.’s solution is more efficient than previous work, the
experimental overhead for training was still too high for real-
world deployment. Both articles stressed the importance of using
optimization through hardware acceleration, parallelization, and
efficiency advances to enable real-world deployment of SMC.

We recommend that more research focus on practical
SMC solutions for both resource-constrained environments
as well as computations at scale to overcome challenges
in performance efficiency. Presently, SMC cannot be easily
leveraged in healthcare.

AUGMENTATION PETS

Synthetic Data [SD]
Synthesizing data (SD) may be the most effective way to
maximize privacy for patients or providers: whether it is fully
or partially synthetic, SD does not contain direct, identifiable
measurement of actual patients or events. Fully synthetic data
involves the synthesis of all records while partially synthetic
data entails the synthesis of only sensitive information. With
an increasing number of data synthesis packages in commonly
used languages like Python and R, data synthesis is becoming
easier and more cost-efficient, allowing organizations to build
statistically defensible, privacy-preserving, data to support the
rapid development of ML on more balanced datasets. Synthetic
data can be particularly useful when data needs to be rebalanced
to address class imbalances that arise due to a dearth of data
from small samples of persons who, if their data were included
in available datasets, could be easily re-identified due to the rarity
of their condition. It is also useful when efforts to create models
for healthcare applications should not be trained on real patient
data due to re-identification risks. For example, synthetic data
could be used to truly measure the utility loss that arises from
the use of algorithmic PETs or to measure the risk for data loss
from architectural PETS.

Limitations to the use of synthetic data arise frommethods for
generating data, types of data that can be synthesized (categorical
and discrete vs. image via GANS), and the need to validate
that the synthetic data is representative of real data (57). Other
limitations include findings suggesting that “compared with
models trained and tested on real data, almost all machine
learning models have a slightly lower accuracy when trained on

synthetic data and tested on real data across all synthesizers and
for all machine learning models analyzed (34)” Other challenges
to the uses of synthetic data are non-realistic occurrences that
arise in synthetic data (58) including that synthetic data is
simply more refined than “wild type” data (59). Finally, for
individuals grappling with the challenge of creating synthetic
data for privacy-preserving healthcare applications, there are
relatively few resources available in the peer-reviewed literature
that describes methods for synthesizing data from messy, multi-
source, health data sources. With these limitations in mind, uses
of SD should be restricted to secondary uses that require realistic
but not real data.

Digital Twins [DT]
In our review of the privacy enhancing technologies literature,
there was an emerging, but limited, discussion of the applications
of “digital twins” (DTs) to the protection of data about healthcare
institutions and healthcare systems (60). Digital twins are “virtual
representations of what has been manufactured” that serve as
virtual counterparts to physical entities ranging from persons to
hospitals against which new systems or products can be tested or
integrated without threat of failure (61). DT combines AI, IoT,
and sensor networks into a “digital cocktail” (62) that creates a
real-time simulated environment in which various tools can be
tested without potentially exposing real persons or facilities to
unknown harms. Invokingmethods akin to partial data synthesis,
digital twins rely on real-time data flows to build virtual models
of behavior against which other machine learning models could
be tested without opening an attack surface that could expose the
patient’s or physical plant’s true data (63).

At present, the privacy protections of digital twins are
not well characterized; whether a digital twin of a patient or
patient population effectively protects the physical patient or
patients from re-identification from an external adversary who
is otherwise unaware of the identity of the physical twin has not
been tested. As digital twins unify multiple forms of data and
many different systems, characterization of the overall privacy
risks of digital twins will turn on key questions already invoked
in this Perspective piece. For example, whether there are additive
or multiplicative benefits from the joint use of digital twins
and another PET, such as differential privacy, creates significant
loss of data utility, significant drag on computational time, or
significant privacy risks through creation of the system is also
unknown. At present, the application of digital twinning as a PET
in healthcare should be considered primarily theoretical.

EXPERTLY CHOOSING PETS FOR HEALTH
DATA

Experts in health data management, public health, computer
science, and privacy engineering may face certain challenges
in their collaborative attempts to ascertain the state of the
literature on PETs and health data. Our present experience lends
us to recommend that further collaborative attempts to scope
or systematically review the literature on PETs and health data
should leverage a broader range of literature search tools and
databases (e.g., Google Scholar and Web of Science Scopus)
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TABLE 3 | Key characteristics and considerations for each pet.

PET Description Use-cases Pros Cons Future research

Differential Privacy Adds noise to a dataset to reduce an

adversary’s ability to tell whether an

individual is part of the dataset Some

variations improve data utility at the

cost of weaker privacy protection

Publishing or sharing data to

satisfy research needs

Provides measurable

privacy guarantees

Privacy-utility tradeoff

Inapplicable to time-series data

Under-represented or “unique”

minority data may not be

well-characterized

Comparable and consistent

reporting between DP

variations of types and

granularity of at-risk private

information

Homomorphic

Encryption

Encryption scheme that enables

private computation over encrypted

sensitive data Partial, somewhat,

and fully homomorphic encryption

Third-party computation

Data storage and processing

Provides a high level

of privacy Compatible with

most data types

Inefficient, expensive, and complex

Not well-suited to

resource-constrained environments

Explore more diverse and

lightweight variations of HE

especially for resource-

constrained environments

Analyze

performance-privacy

tradeoffs carefully

Zero-knowledge

proofs

Verification of sensitive data between

collaborators without explicitly

transferring data

Identity and attribute

verification

No direct transfer of

sensitive health data Space,

power, and

computationally efficient

Poorly characterized and

infrequently discussed in health

data research

Explore practical

applications with health data

and characterize

performance and privacy

Federated learning Collaborative ML modeling while

keeping training data local to

data owners Decentralized or

centralized for both data and model

Collaborative ML with

theoretically any type of

algorithm or data

Enables ML training with

more diverse data Reduced

computational load for

institutions or devices

Private data never moves

beyond the firewalls of

institutions or devices

Provides a high level of data

sovereignty to owners

Hard to establish a true baseline of

privacy across learning system

Scalability is dependent on

collaboration and stable

communication between otherwise

sovereign and asymmetrical

devices or institutions

Aggregated data is not independent

and identically distributed

Identify when a federated

approach is the best choice

for the specific reason of

protecting data privacy

Address challenges

of interoperability

Consistently characterize

the tradeoffs between

privacy, utility, and

performance across

different FL approaches to

aid decision-making

Multi-party

computation

Computation across multiple

encrypted data sources while

ensuring no party learns the private

data of another Includes secret

sharing, garbled circuits,

oblivious transfer

Collaborative inference

Third-party model training

Strong privacy protections

for all participating parties

No need for a

trusted third-party High

accuracy and precision

Communication and computational

complexity are too high to use

reasonably at scale and in

resource-constrained environments

Privacy-accuracy tradeoff

Develop more practical

SMC solutions for

resource-constrained

environments and

computations at scale

Synthetic Data Synthesizing data to use instead of

or in addition to real health data

Supports rapid development

and benchmarking of ML

algorithms

Balance data that has uneven

representation

Augment datasets

Measure utility loss of

algorithmic PETs

It may be the most effective

way to maximize privacy

Increasingly easy and

cost-efficient to implement

Limited methods to generate

realistic data

Limited types of data that can be

synthesized

Need to validate that synthetic data

is representative of real data

Should be restricted to secondary

uses

Develop diverse methods to

generate realistic synthetic

data of all data types

Digital twinning Virtual representations of what has

been manufactured

A virtual counterpart to

persons or hospitals to test

tools like ML models

A real-time simulated

environment without risk of

exposing private data

Application in healthcare is primarily

theoretical

Privacy protections (e.g., risk of

re-identification) are not well

characterized

Develop practical

applications of digital twins

in healthcare Characterize

privacy protections

PET(s), privacy enhancing technology(ies); ML, machine learning; FL, federated learning; SMC, Secure multiparty computation.
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for a potentially greater chance at reaching expert consensus or
determination in choosing PETs for health data management
and use.

Most resources available to assist data scientists with HIPAA
privacy compliance focus on applying the HIPAA “Safe Harbor”
method, under which the 18 personal identifiers are removed (7).
However, experts on data re-identification have challenged the
effectiveness of the Safe Harbor standard to ensure privacy or at
least reduce the risk of re-identification to the “very small risk”
level expected (64).

Alternatively, the expert determination provision in HIPAA
offers opportunities for experts to push for the application of
novel techniques, such as any of the PETs described above.
Under the HIPAA expert determination pathway, addressing
inherent privacy risks while preserving data utility through
obscuring patient identifiers is the goal. Therefore, as the expert
determination pathway continuously requires experts to rely on
their knowledge of state-of the art technical methods to balance
disclosure risk and data utility, the following themes from the
literature are important to remember:

1. Not all types of health data can be protected with each PET
without significant loss of data utility or significantly more
computational resources required.

2. While architectural PETs create opportunities for data
sovereignty and privacy in the aggregate, these do not protect
data privacy in the local environment.

3. The state of the art of research on PETs for health data often
uses well worn benchmark datasets from other domains (e.g.,
CIFAR-10) or specific health data types (e.g., MIMIC-III) that
cannot be easily extended to health data in the wild.

4. The combination of architectural and algorithmic approaches
is the emerging best practice in the research literature. Which
combinations achieve the highest privacy protections with the
lowest utility loss are dependent on the data, computational
resources, and thresholds for data utility loss.

5. When to use a specific PET is context-dependent—the choice
of PET in a pre-inferential setting will vary from the choices to
be made in a post-inference setting—and steady use of a single
method will result in unintended privacy loss.

6. None of the algorithmic and architectural PETs can guarantee
the privacy of individuals represented in the data. Fully
synthetic data is the closest to providing such guarantees,
but there remains the possibility that fiction may mimic fact,
leading to phantom re-identification (65).

DISCUSSION: PETS IN PUBLIC HEALTH
PRACTICE

Public health entities and their key health system stakeholders
should fully consider the application of PETs and privacy
engineering overall to better protect health data privacy. Mindful
integration of digital technologies into health can help to
remove the gaps in the real-world evidence base needed to
improve global health. But, this should be done in a way that
minimizes harmful disruptions to health infrastructure and re-
centers the value of health privacy for people and communities.

Integration of novel technologies, like PETs, must re-invigorate
the mission of public health and health care entities to ensure
privacy throughout the management, use, and sharing of health
and health-relevant data during and beyond the COVID-19
pandemic (66). Understanding both the stated benefits and
limitations to each PET is mission-critical to these goals.

Our review of the literature leads us to the unfortunate
conclusion that there remains much work to be done to make
PETs a normal part of everyday expert practice of privacy and
security for health data. Instead, we found an uneven collection of
research articles from multidisciplinary experts in a burgeoning
field who struggle to define health data privacy benchmarks,
performance metrics, and common vocabulary. In the absence
of better and standardized guidance, an expert determination of
which privacy engineering approach to take may be a matter of
taste or convenience.

To move the health data privacy community forward on
this topic, we provide the above review and also the summary
in Table 3. Table 3, “Key Characteristics and Considerations of
Each PET” is an overview of each algorithmic, architectural, and
data augmentation PET described, specific use cases, pros and
cons associated with the use of each PET in health data contexts,
and opportunities for future research.We recommend that public
health entities collaborate with policymakers and healthcare
system stakeholders to deeply explore possibilities of leveraging
the expert determination provision in HIPAA and determine
which PET method(s) and respective use case(s) best apply.

Although we were unable to draw clear “expert
determinations” that could be delivered to decision-makers
concerned about both privacy and computational or engineering
performance, identified three promising examples of work that
we each considered path-breaking in their treatment of PETs
for health or health-relevant data (17, 22, 38). These articles
carefully describe a PET, its applications, and the research
performed to reach their conclusions, rendering both their
methods and findings useful, of sufficient quality, and rigorously
reported. Therefore, we strongly recommend that moving
forward, multidisciplinary experts in privacy engineering and
public health data begin by exploring the intricacies of these
three studies, build on this work to bring relevance and internal
validity to the fields of public health research and practice, and
ultimately collaborate to provide formalized recommendations
regarding the potential, utility, and acceptability of PETs to
support public health research and practice.
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