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Abstract
1. World- wide declines in pollinators, including bumblebees, are attributed to a mul-

titude of stressors such as habitat loss, resource availability, emerging viruses and 
parasites, exposure to pesticides, and climate change, operating at various spatial 
and temporal scales. Disentangling individual and interacting effects of these 
stressors, and understanding their impact at the individual, colony and population 
level are a challenge for systems ecology. Empirical testing of all combinations and 
contexts is not feasible. A mechanistic multilevel systems model (individual- 
colony- population- community) is required to explore resilience mechanisms of 
populations and communities under stress.

2. We present a model which can simulate the growth, behaviour and survival of six 
UK bumblebee species living in any mapped landscape. Bumble- BEEHAVE simu-
lates, in an agent- based approach, the colony development of bumblebees in a 
realistic landscape to study how multiple stressors affect bee numbers and popu-
lation dynamics. We provide extensive documentation, including sensitivity anal-
ysis and validation, based on data from literature. The model is freely available, 
has flexible settings and includes a user manual to ensure it can be used by 
 researchers, farmers, policy- makers, NGOs or other interested parties.

3. Model outcomes compare well with empirical data for individual foraging behav-
iour, colony growth and reproduction, and estimated nest densities.

4. Simulating the impact of reproductive depression caused by pesticide exposure 
shows that the complex feedback mechanisms captured in this model predict 
higher colony resilience to stress than suggested by a previous, simpler model.

5. Synthesis and applications. The Bumble- BEEHAVE model represents a significant 
step towards predicting bumblebee population dynamics in a spatially explicit 
way. It enables researchers to understand the individual and interacting effects of 
the multiple stressors affecting bumblebee survival and the feedback mechanisms 
that may buffer a colony against environmental stress, or indeed lead to spiralling 
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1  | INTRODUC TION

World- wide declines in pollinators, including bumblebees, are at-
tributed to the chronic exposure of populations to a multitude of 
stressors such as habitat loss and resource availability, emerging 
viruses and parasites, exposure to pesticides, and climate change 
operating at various spatial and temporal scales (Baude et al., 2016; 
Goulson, 2015; IPBES, 2016; Kerr et al., 2015; Williams & Osborne, 
2009). Disentangling the individual and interacting effects of these 
stressors and understanding their effects at the individual, colony and 
population level are a considerable challenge for systems ecology. Yet 
it is essential to inform policy and management recommendations to 
support pollinators and the pollination service they provide to crops 
and wild flowers (Vanbergen et al., 2013). Crone and Williams (2016) 
pointed out that in the case of bumblebees, this challenge is ampli-
fied by our lack of knowledge of their population dynamics. Despite 
being a well- studied taxon, we have few estimates of colony densi-
ties in the landscape (Goulson et al., 2010; Osborne, Martin, Shortall, 
et al., 2008), and we do not have means of predicting future patterns 
of population change. This is primarily because of their annual and 
social life history and the difficulty of locating colonies and measuring 
reproductive success in the field. Added to this, the systematic em-
pirical testing of the combined and synergistic effects of stressors on 
bumblebee colonies is largely infeasible (Becher, Osborne, Thorbek, 
Kennedy, & Grimm, 2013; Goulson, Nicholls, Botias, & Rotheray, 
2015; Henry et al., 2017). We propose that a mechanistic multilevel 
systems model (individual- colony- population- community) is required 
to explore the resilience mechanisms of bumblebee populations and 
communities under stress, and inform management decisions. We 
present such a model, Bumble- BEEHAVE, and explain how it is radi-
cally different to other published bumblebee models.

Six contrasting bumblebee models have recently been published 
(Banks et al., 2017; Bryden, Gill, Mitton, Raine, & Jansen, 2013; 
Cresswell, 2017; Crone & Williams, 2016; Häussler, Sahlin, Baey, 
Smith, & Clough, 2017; Olsson, Bolin, Smith, & Lonsdorf, 2015). 
However, while useful in exploring the impact of individual stress-
ors, such as food availability (Crone & Williams, 2016) or pesticides 
(Bryden et al., 2013; Cresswell, 2017), none as yet have the structural 
realism to incorporate multiple stressors or competition, operating 
at different organisational levels (individual or colony or population). 
They have limited flexibility to incorporate feedback mechanisms 
that may buffer the colony against environmental stress, or indeed 
lead to spiralling collapse. This mechanistic richness is essential for 
deep and broad understanding of risk (EFSA, 2015)—indeed Crone 

and Williams (2016) and Banks et al. (2017) noted that further pro-
cesses and stage structure need incorporation. Most existing studies 
do not model multiple colonies (Bryden et al., 2013; Cresswell, 2017; 
Häussler et al., 2017; although see Banks et al., 2017) or capture 
the spatio- temporal dynamics of resource availability (although see 
Häussler et al., 2017; Olsson et al., 2015; Polce et al., 2013) which 
are essential to make accurate predictions in real landscapes. Table 1 
summarises the approach and capability of each model in contrast to 
the Bumble- BEEHAVE model presented here.

Bumble- BEEHAVE is an open source model (www.beehave-model.
net) based on bumblebee behaviour and life history, designed to sim-
ulate colony growth and survival in any landscape where nectar and 
pollen sources can be approximated from maps with the intention 
of predicting the effects of multifactorial stressors on bumblebee 
survival at the individual, colony and population levels (Figure 1). 
We have taken a broadly similar approach to that used for develop-
ment of the well- used BEEHAVE model of honeybee colony dynam-
ics (Becher et al., 2014; EFSA, 2015), incorporating our BEESCOUT 
model of bees searching for forage in landscapes (Becher et al., 2016) 
and including substantial Supporting Information. Bumble- BEEHAVE 
is an agent- based model (Grimm & Railsback, 2005) where individual 
behaviour is determined by stimuli and thresholds that scale up to 
colony-  and population- level processes. Bumble- BEEHAVE is built on 
empirical data describing colony dynamics and foraging in realistic 
digitised landscapes. It has basic parameterisation for six common 
UK species, and is structured so that it can be updated as data for 
further life stage parameters become available. We present sensitiv-
ity analyses and compare simulations with empirical data to illustrate 
the potential of Bumble- BEEHAVE in predicting (a) individual foraging 
behaviour, (b) colony growth and reproduction and (c) population nest 
density, in realistic landscape settings.

2  | MATERIAL S AND METHODS

2.1 | The Bumble-BEEHAVE model

Here we provide a condensed overview of the Bumble- BEEHAVE 
model. The Supporting Information provides the complete, detailed 
description of the model, following the Overview, Design concepts, 
Details (ODD) protocol (Grimm et al., 2006, 2010), the scheduling of 
the procedures, lists of all variables, full explanation and references 
used for parameterisation (Appendix S03), and a user manual (Appendix 
S02). Bumble-BEEHAVE itself is available in Appendix S01 and free to 
download at www.beehave-model.net. To ensure it is suitable for a 

colony collapse. The model can be used to aid the design of field experiments, for 
risk assessments, to inform conservation and farming decisions and for assigning 
bespoke management recommendations at a landscape scale.

K E Y W O R D S

agent-based modelling, Bombus terrestris, bumblebees, colony decline, cross-level interactions, 
foraging, multiple stressors, pollination
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wide range of users, it is implemented using the free open source soft-
ware platform NETLOGO (5.3.1; Wilensky, 1999) and licensed under 
the GNU General Public Licence (Appendix S09).

2.2 | Purpose

The purpose of the model is to explore the colony and population 
dynamics of bumblebees as a result of the spatial and temporal distri-
bution of resources. It also has the potential for use in understanding 
risks of pathogen prevalence and pesticide exposure. Weather and/or 
foraging conditions, predation by badgers and social- parasitism from 
cuckoo bees are implemented in a relatively simplified way in the cur-
rent version of the model, but could be developed in later versions.

Bumble- BEEHAVE simulates, in an agent- based approach, the life 
cycle of bumblebees, foraging for nectar and pollen from a variety 
of plant species in a spatially explicit landscape (Figure 1). Starting 
with an initial number of hibernating queens of up to six European 
bumblebee species, the foundation of nests in suitable habitat, and 
raising of brood by the queen, and later by worker bees, is modelled 
(parameterisation in Appendix S04). The population dynamics then 
result from the number of reproductives, particularly queens, pro-
duced by colonies of the same species. Here we focus simulations on 
Bombus terrestris L. but if several species are included in the simula-
tion then community dynamics also emerge.

2.3 | Environment

Time in the model proceeds in daily steps, during which bees can per-
form different tasks of various durations. The modelled landscape 
comprises a number of food sources, seasonally providing nectar 
and pollen of varying quality and quantity and can be created using 

the BEEHAVE landscape module BEESCOUT (Becher et al., 2016). 
Weather is not explicitly implemented in the model but it is repre-
sented by specifying the daily allowance of foraging hours (i.e. the 
maximal time foragers can spend every day on foraging). Furthermore, 
climate and weather conditions are implicitly taken into account by 
the phenology of flower patches and the timing of queen emergence 
from hibernation. Optionally, predation by badgers can be simulated 
by distributing badger setts in the landscape and, with a certain prob-
ability, destroying colonies within the foraging range of the badgers.

2.4 | Bees

Each “bumblebee” in the model represents either a single individ-
ual or a 1- day age cohort. Adult queens are always implemented as 
individuals. Bees differ in their age, caste (worker, queen, male or 
undefined), their activity and their size (which affects their tongue 
length and forage loads). Furthermore, bees belong to a defined spe-
cies and are member of a certain colony (except for hibernating and 
nest searching queens).

Bumblebee species in the model differ in the number of eggs laid 
by the queen (batch size), durations and weights of developmental 
stages, tongue lengths (and hence the floral rewards that are avail-
able to them), suitable nesting habitat and period of emerging from 
hibernation. Parameterisation (and associated references) for the six 
most common bumblebee species in the UK and for a generic cuckoo 
bee are provided in Appendix S04.

2.5 | Model processes

A simulation starts on the first of January with an initial number of 
hibernating queens for each bumblebee species. After emergence, 

F IGURE  1 Overview of the Bumble- 
BEEHAVE model structure. Starting with 
an initial number of hibernating queens, 
the colony, population and community 
dynamics of up to six UK bumblebee 
species can be simulated. In an agent- 
based approach, nest search and colony 
foundation by the queen are modelled. 
Brood needs incubation as well as nectar 
and pollen to develop. Foraging takes 
place in a realistic landscape of crop or 
seminatural habitat patches in which a 
number of flower species provide nectar 
and pollen. Foraging efficiency of the 
bees depends on their size, tongue length 
and flower morphology. Successful 
colonies produce males and/or queens, 
allowing the model to run over a number 
of years [Colour figure can be viewed at 
wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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queens need to find a nest site in a suitable habitat, which can take 
several days. If they are successful, they collect and store nectar and 
pollen before laying their first batch of eggs. The brood needs to 
be incubated and larvae additionally need to be fed. Once the first 
batch of larvae has developed into pupae, a second batch of eggs can 
be laid. When the first adult workers emerge, the queen stops forag-
ing and specialises in egg laying. The activities of bees are based on 
stimuli in the colony and individual thresholds (See Appendix S03 
ODD: p. 14—Tasks and activities; p. 76—ActivityProc) for each of the 
three main tasks:

1. Egg laying: eggs are produced in batches (e.g. B. terrestris lays 
12) and can be male or female, with female brood either 
 developing into workers or queens.

2. Nursing: reflects the time a bee spends on the brood for incuba-
tion and feeding.

3. Foraging (for nectar or pollen): foraging bees leave the colony to 
collect food.

While naive bees first have to find a food source, with the detection 
probability depending on the distance to the colony, experienced bees 
typically know a number of food sources already. Successful foragers 
remove the collected nectar or pollen from the food source (which is 
replenished overnight), and return it to the colony’s stores. Depending 
on the duration of the foraging trip and the foraging mortality per sec-
ond, the survival of the forager is determined at each trip. The foraging 
choices of the bees are based on efficiency, which decreases during the 
day as the food source is depleted. Flower handling times depend on 
the flower specifications and the bee’s tongue length (Harder, 1983) and 
affect the probability that a foraging bee switches to (or searches for) 
a more profitable food source (Appendix S03, ODD: p. 16—Foraging).

Eggs require a species- specific minimum age and minimum incuba-
tion energy to hatch. As larvae, they need to be fed and will develop into 
pupae when they reach a certain minimum age, minimum weight and 
when summed minimum incubation energy has been received. A larva 
will develop into a worker, unless the colony reaches conditions appro-
priate for queen production (Appendix S03, ODD: p. 34—Production of 
males and queens) and the larva has already reached a species- specific 
minimal weight. Pupae finally develop into adults, when they reach 
a minimum age and summed amount of incubation energy received. 
The weight a bee has gained during larval development determines its 
size and hence the size of its honey stomach, the size of pollen pellets 
that can be collected, and the proboscis length, affecting its foraging 
efficiency (Appendix S03, ODD: p. 49—CropAndPelletSizeREP; p. 
106—ProboscisLengthREP). If bees are unable to proceed to the next 
developmental stage within a certain time frame, they die.

The timing of queen production in the model is derived from data 
on B. terrestris by Duchateau and Velthuis (1988). At the beginning 
of the colony development, female larvae develop into workers, 
whereas later, they may develop into queens. The onset of queen 
production follows, with c. 5 days of delay, the queen’s switch from 
laying diploid eggs to haploid, male eggs. However, this requires also 
a sufficient number of workers relative to larvae (larvae to worker 

ratio less than 3) in the colony. Diploid larvae of 3 days of larval age 
can then develop into queens instead of workers.

As soon as young queens have developed into adults, they leave 
their mother’s colony and mate with an adult male. They then go into hi-
bernation and will not be active until they emerge in the following year.

2.6 | Key output of the model and emerging  
patterns

Outputs and patterns can emerge at all organisational levels:

1. Individual level: bee activities and foraging decisions (when 
and where to go in the landscape, which plants they exploit) 
emerge as a result of the needs of a colony and the resources 
available in the landscape. Bee life spans emerge from their 
individual behaviour (mainly time spent foraging) and the colony 
performance.

2. Colony level: colony dynamics, number and sex ratio of reproduc-
tives produced emerge from the activities of colony members and 
resources available in the landscape.

3. Population level: the number of hibernating queens shaping the 
population dynamics, genetic diversity, and overall sex ratios 
emerge from colony performances and individual behaviour of 
the bees.

4. Landscape level: the number of visits to the various food sources 
(flower patches and flower species), the locations where colonies 
produced males and queens, and the colony densities emerge, 
again based on colony performances and individual bees’ 
behaviour.

2.7 | Default settings

All simulations were run using the default settings (Appendix S04) un-
less stated otherwise. Simulations start on 1 January with a user- defined 
number of B. terrestris colonies and number of days (see Appendix S10 
for simulation settings). Simulations were run using the RNetLogo pack-
age (Thiele, 2014) in r (version 3.2.3, R Core Team, 2015).

2.8 | Model inputs

2.8.1 | Realistic spatially explicit forage landscapes

Creation of the realistic spatially explicit forage landscapes required 
the combination of digitised landscape maps, a habitats input file of 
flower species composition in the different habitats and crop types, 
calculated flower patch characteristics (size and distance from colony), 
average patch detection probability (using BEESCOUT) and a flower 
species input file of resource characteristics (nectar and pollen quan-
tity, quality and availability) (Appendix S03, ODD: p. 27—Input data).

One 25- km2 digitised landscape map of Sussex, UK was created 
in ArcMap (Version 10.2) consisting of suitable nesting habitat and 
sources of pollen and nectar. Polygon data from Land Cover Map 2007, 
Ordnance Survey and Google Maps were used to classify habitats 
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that provided suitable nesting habitat (Appendix S03, ODD: p. 32—
Searching nests) and floral resources for bumblebees, and included 
permanent grassland, seminatural scrub, hedgerows and woodland 
(gardens were not included in this first stage as pollen and nectar data 
are not available, but can be incorporated when data allow). Hedgerows 
were manually digitised using Google Earth. The location of mass flow-
ering crops considered as sources of nectar and/or pollen of oilseed 
rape, field beans and maize (pollen only) was recorded from field sur-
veys of the landscapes during 2014. Areas categorised as manmade 
(e.g. buildings and roads), freshwater, cereal crop and bare ground were 
assumed to be devoid of resources. These maps were converted to 
Raster 25- m grid cells and then converted to Ascii text files to be used 
as map input files for BEESCOUT (version 2.0, Appendix S05).

The habitats input file was created using the flower species 
abundance per m2 of 34 major bumblebee forage plants and the 
three mass flowering crops in the different flower patch types which 
were identified and surveyed in the field. Flower patch characteris-
tics were calculated as the area, X and Y coordinates, and detection 
probability of each patch, and the flower species input file was cre-
ated using the quantity of nectar (ml) and pollen (g), quality of nec-
tar sugar (mol/l) and pollen (percentage protein), available during 
the specified flowering period of the different flower species and 
their phenology and morphology (Appendix S07, Fowler, Rotheray, 
& Goulson, 2016; R. E. Fowler, E. L. Rotheray, & D. Goulson, unpub-
lished data). Then the habitat input file and flower patch character-
istics were combined to create the Bumble- BEEHAVE input text file 
and a new compatible map image file.

Detection probability (Becher et al.,  2016; Appendix S03, ODD: 
p. 88—DetectionProbREP) for each patch was calculated from its 
distance to the colony using BEESCOUT (version 2.0, Appendix S05) 
and assuming approximate maximal foraging range of 758 m for B. 
terrestris (Knight et al., 2005).

2.9 | Model testing

2.9.1 | Verification of the code

The model code was checked throughout all stages of model devel-
opment by both developers (MB, TP). Visual testing was performed 
using the Bumble- BEEHAVE output plots (graphs showing the emerg-
ing results of the model) to verify model behaviour. “Assertions” are 
included at various locations in the code to halt a simulation run if 
state variables go beyond a defined range.

2.9.2 | Sensitivity analysis

We examined Bumble- BEEHAVE model sensitivity to biologically 
relevant parameters defined as numeric, noninteger global variables 
(either on the interface or the code) with a Default value of less or 
more than zero. For each run, we multiplied a parameter’s Default 
value by either 0.5, 0.75, 1, 1.25, 1.5 or 2 separately and left all other 
parameters at Default values. Each combination was run for 1 year, 
20 different times (aka Random Seeds), and the number of queens 

and males produced at the end of each run were recorded (full re-
sults in Appendix S08).

2.9.3 | Empirical testing of the model

We compared graphical outputs of Bumble- BEEHAVE simulations with 
empirical data at the individual level (Stelzer, Stanewsky, & Chittka, 
2010), colony level (Duchateau & Velthuis, 1988; Duchateau, Velthuis, 
& Boomsma, 2004; Gosterit & Gurel, 2016; Lopez- Vaamonde et al., 
2009) and at the population level (Knight et al., 2005). For clarity, we 
present the setup of the simulations in the result section. We do not 
present statistical analyses since the data on the environmental vari-
ables underpinning the empirical results, e.g. forage availability in the 
landscape, are not available so the model cannot be calibrated exactly 
to those conditions. It is therefore most appropriate to describe data 
trends and match patterns (Grimm & Railsback, 2005).

2.9.4 | Model applications

To illustrate the applications of Bumble-BEEHAVE, we determined 
the number of colonies supported by habitats with differing forage 
quantity and quality. These could then be used to estimate B. ter-
restris colony densities in any landscape based on the areas of semi-
natural habitats of grassland, hedges, scrub or woodland. We also 
simulated the impact of a reduction in colony foundation on popula-
tion dynamics as a potential effect of pesticide exposure.

3  | RESULTS

3.1 | Sensitivity analysis

We comment on the three most sensitive parameters here: further 
details are in Table 2 and Appendix S08. Similar to the honeybee 
model BEEHAVE, Bumble- BEEHAVE is most sensitive to changes in 
the probability of foraging mortality as it directly affects the work 
force and food influx of the colony.

Parameter QueenDestinedEggsBeforeSP_d defines when the col-
ony starts to raise queens rather than workers, relative to the switch 
point (when the queen lays haploid instead of diploid eggs). While an 
earlier onset of queen production increases the number of queens, 
it reduces the number of males produced and hence has the biggest 
impact on the sex ratio of all parameters tested. NestSearchTime_h 
describes the time in hours a queen spends on searching a nest site 
per day, which is associated with a high mortality.

3.2 | Empirical testing of the model

3.2.1 | Individual- level comparison

Setting
We compared modelled individual forager behaviour to that meas-
ured by Stelzer et al. (2010) who recorded foraging trip duration for all 
foraging flights of one individual. We ran simulations with 7,500 initial 
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B. terrestris queens to increase the competition; other settings were 
kept at default. (n = 1 simulation run, 365 time steps; Appendix S10).

Output
We selected the first bee that had foraged (>5 min) for at least 200 trips 
and plotted the foraging trip duration against the foraging trip number 
for that individual to compare to Stelzer et al. (2010). Figure 2a shows 
that the increasing durations of foraging trips throughout each day in 
the model and empirical data follow a similar pattern, although the ab-
solute trip durations in the empirical data are considerably higher until 
ca. trip 115, where the experimental bee (as suggested by Stelzer et al., 
2010) might have found a rich food source close to the colony. This 
could either indicate that the modelled landscape is rather beneficial 
for the bees or that the handling times are somewhat underestimated.

3.2.2 | Colony- level comparison

Setting
For colony- level comparison, we compared modelled colony invest-
ment in queen production and the days when colonies produced 

queens, switched to producing males and when workers started to 
lay their own eggs to data from Duchateau et al. (2004), Duchateau 
and Velthuis (1988) and Gosterit and Gurel (2016) (n = 7,500 simula-
tion runs, 365 time steps; Appendix S10).

We compared the number of workers produced by a colony with 
empirical datasets from Duchateau and Velthuis (1988) and Lopez- 
Vaamonde et al. (2009). These experimental colonies were located in 
a (climate) room but had access to either the outside environment or a 
flight arena and received additional food at least during colony initiation.

We simulated the colony development in the realistic landscape 
with one initial B. terrestris queen, implemented in the fully individual- 
based mode (Appendix S03 ODD, p. 66—CreateColoniesProc). 
Simulations ran for 365 days with 7,500 replicates (Appendix S10). 
We recorded the days of major colony events and developmental 
traits of the colony, including the number of males and queens pro-
duced to calculate the colony investment in queens (Table 3).

Output
For colonies where workers were produced (919), the average 
simulated timings of colony events, such as the day when a colony 

TABLE  2 The complete sensitivity analysis can be found in Appendix S08. We present the difference in the number of queens (Δ queens) 
and males (Δ males) produced, calculated as default value × 2—default value × 0.5, e.g. when ForagingMortalityFactor (default 1) is set to 2, 
1,239 queens less are produced than when it is set to 0.5. Parameters are sorted by their impact on the number of queens produced  
(Δ queens). Δ (males/queens) described how the sex ratio is affected, with negative numbers indicating a smaller proportion of males. 
Under default setting, 590.4 hibernating queens and 757.2 adult males are produced (ratio m:q = 1.3)

Parameter (default value) Description Δ queens Δ males Δ (males/queens)

ForagingMortalityFactor (1) Factor to modify the foraging mortality −1,239 −1,796 −0.17

QueenDestinedEggsBeforeSP_d 
(5 days)

Max. days before switch point when queen 
destined eggs may be laid

853 −953 −6.24

NestSearchTime_h (6 hr) Time a queen spent on searching for a nest site 
per day

−473 −439 0.22

DailySwitchProbability (0.13) Daily probability that a queen switches to lay 
haploid eggs (only if larvae:worker ratio is <3)

−448 579 1.60

Lambda_detectProb (−0.005) From BEESCOUT: describes how detection 
probability of a food source increases with 
distance

247 466 0.19

Weather (8 hr) Constant, daily foraging allowance 239 458 0.05

AbundanceBoost (1) Factor to modify the amount of nectar and 
pollen at each food source

203 310 0.09

LarvaWorkerRatioTH (3) max. larvae:worker ratio under which switching 
to lay haploid eggs and queen production is 
possible

172 −550 −1.05

EnergyRequiredForPollenAssimilation_
kJ_per_g (6.2 kJ/g)

Energy required to digest and assimilate 
proteins from pollen consumed

145 −866 −2.66

ForagingRangeMax_m (758 m) Maximal foraging distance −125 −350 −0.26

FoodSourceLimit (25) Approx. number of trips a food source must be 
able to supply with nectar or pollen, 
otherwise it is removed

121 232 0.13

MetabolicRateFlight_W/kg  
(488.6 W/kg)

Metabolic rate during flight (depends on 
weight of bee)

−86 −211 −0.16

MaxLifespanMales (30 days) Maximal lifespan (days) of male bumblebees 47 −5 −0.11

EnergyFactorOnFlower (0.3) Reduces energy spent on flying while a bee is 
in a flower patch

39 −48 −0.16
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produces queens, switches to producing males or when work-
ers start laying their own eggs, are approximately in the range of 
those reported in the literature (Table 3), although there is strong 
variation in reported data for experimental colonies which were 
kept in climate rooms and fed supplementary pollen and sugar 
water. The number of workers produced in the model matched 
the data from the literature quite well and the colony growth in 
model showed a similar pattern to experimental colonies with a 
roughly sigmoid curve (Figure 2b). We calculated the queen in-
vestment ratio, accounting for differences in average biomass be-
tween queens and males (Appendix S11). The simulations resulted 
in an average queen investment ratio of 0.46–0.49 (depending on 
estimated cost ratio), matching the empirical range of 0.44–0.51 
(Duchateau & Velthuis, 1988; Duchateau et al. 2004; Table 3). 
The simulations also captured the overall bimodal distribution in 

queen investment per colony that was found by Duchateau et al., 
2004 (Appendix S11).

3.2.3 | Population- level comparison

Setting
We compared predicted nest densities of simulated colonies 
of B. terrestris to estimated field nest densities (Knight et al., 
2005). Simulations (n = 3) started with 7,500 queens and ran for 
10 years in the realistic landscapes (Appendix S03 ODD, p. 66—
CreateColoniesProc, Appendix S10).

We recorded the number of colonies in the landscape per km2 
and calculated the maximum colony density per year and then aver-
aged this over the last 5 years for each simulation run. We compared 
modelled mean nest densities to nest densities calculated from ge-
netic data, and based on an approximate foraging range of 758 m for 
B. terrestris (Knight et al., 2005).

Output
At the population level, the modelled average peak nest of 34 nests/
km2 is close to the empirical average of 28.7 nests/km2 (range 26.6–
30.7) for B. terrestris in agricultural landscapes (Knight et al., 2005). 
Figure 2c shows how this changes over the 10- year simulation.

3.2.4 | Model applications

Setting 1: single habitat maps
To determine the number of colonies supported by different habi-
tats, an artificial, single- patch landscape was simulated, starting 
with 1,000 B. terrestris queens. The patch had a size of 1 km2 and 
represented one habitat: grassland, hedgerows, scrub or woodland. 
Simulations ran for 10 years (n = 20).

Output 1. The number of all adult bees produced in the last (10th) 
year, including hibernating queens, and the peak number of colonies 
in the last year (of the simulations are shown in Table 4. The peak 
nest densities (per ha) were 0.4 for grassland, 7.0 for hedgerows, 3.6 
for scrub and 0.3 for woodland. These habitat specific population 
measures can be used to estimate bumblebee population sizes on 
a larger spatial scale, based on the landscape composition. For ex-
ample, we could predict from the habitat specific colony densities 
a peak colony number of 974.0 colonies in the realistic landscape, 
which, however, is higher than the peak of 857.7 colonies from the 
actual simulations in this landscape. The reason for this discrepancy 
seems to be that hedgerows are represented by a large number of 
very small patches in the model, but inefficiently small food sources 
are automatically removed when the map is processed (see SI03 
ODD: p. 44—CreateLayersProc). So linear features such as hedge-
rows, and the forage they afford to bees, are potentially underrepre-
sented in this model version.

Setting 2: effects of pesticide exposure
Additionally, we simulated reproduction depression as a result of 
colony- level pesticide exposure. Baron, Jansen, Brown, and Raine 

F IGURE  2  Individual, Colony and Population comparison 
of Bumble- BEEHAVE model simulations of Bombus terrestris to 
empirical data. (a) Foraging trip duration for all foraging trips made 
by one individual bee (solid lines) compared to empirical data 
(open circles) from Stelzer et al. (2010). Trips during the same day 
are shown in the same colour and colours alternate daily between 
black and grey. (b) Number of workers (mean ± SD) produced since 
first worker eclosion (solid line) compared to empirical data from 
Duchateau and Velthuis (1988) and Lopez- Vaamonde et al. (2009). 
Lopez- Vaamonde et al. (2009) provided two datasets (a, b and c, 
d) and distinguished colonies producing queens (a, c) or not (b, d). 
(c) Nest densities over 10 years compared to empirical average of 
28.7 nests per km2 (grey arrowed line) from Knight et al. (2005), for 
realistic landscape (solid line) and when applying the Baron et al. 
(2017; dashed line) pesticide exposure effect on reproduction, 
resulting in 26% of emerged queens being unable to found a colony
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(2017) reported a 26% reduction in colony foundation after queens 
have been treated with field- relevant levels of a neonicotinoid pesti-
cide. We simulated the population dynamics based on 7,500 (or 500) 
initial B. terrestris queens and removed 26% of those queens emerg-
ing from hibernation every year (n = 20, time steps 3,650, all other 
settings default, see Appendix S10).

Output 2. The annual removal of 26% of emerging queens (from 
an initial population of 7500) led to a strong reduction in the number 
of colonies (Figure 2c). However, unlike Baron et al.’s (2017) predic-
tion, the population does not go extinct. Repeating these simulations 

with 500 initial queens results in an increase in nest densities (results 
not shown).

4  | DISCUSSION

We have described a new agent- based systems model, Bumble- 
BEEHAVE, rich in structural realism and mechanism that can be used 
to examine the effects of multiple stressors on bumblebee colo-
nies and populations over multiple years, in realistic landscapes. It 

TABLE  3 Results of simulations in a realistic landscape compared to empirical data from literature (Duchateau & Velthuis, 1988; Gosterit 
& Gurel, 2016). Mean (±SD) of each output per colony or replicate is given. At the colony level: ncolony = number of replicates where workers 
were produced; colony establishment prob = ncolony/7,500; Colony foundation = day on which colony was founded by the queen; Worker 
eclosion = the first day on which workers emerge (i.e. eusocial phase); queen production = first day new queens are produced; switch 
point = first day male eggs are produced; competition date = when workers lay their own eggs. The average values for total colony weight 
gain (Weight gain) and the average total numbers of brood (Eggs), (Larvae) and (Pupae) produced by the colony were calculated on day 365. 
The number of reproductives (males and queens) (Duchateau & Velthuis, 1988 E = Early male production; L = late male production); and the 
sex ratio when using Queen investment conversion of 1.69 (Duchateau et al., 2004). At population level: mean (±SD) nest density per km2 for 
the realistic landscape is shown. Nreplicates = number of replicates and compared to Knight et al. (2005)

Measure Simulations mean (±SD) Empirical data (M ± SD)

Colony Duchateau and Velthuis (1988) Gosterit and Gurel 
(2016)

ncolony 919 25–41

Colony establish prob 0.12

Colony foundation (day) 95.6 (27.0)

Worker eclosion (day) 119.3 (27.0) 

After foundation/initiation 23.7 21 33.4 (5.3) 

Queen production (day) 125.1 (33.0)

After eusocial phase 5.8 7.9 (11.4)

After foundation/initiation 29.5 30.4a

Switch point (day) 129.0 (31.2)

After eusocial phase 9.7 E: 9.8 (2.4), L: 23.4 (4.6) −6.42 (14.9)b

After foundation/initiation 33.4 16.1a

Competition point (day) 138.3 (32.9)

After eusocial phase 19.0 E: 29.6 (4.0), L: 32.0 (5.2) 

After foundation/initiation 42.7 52

Weight gain (g) 111.5 (36.7)

Workers (no.) 76.2 (57.5) E: 136.9 (58.8), L: 284.3 (145.0) 86.3 (50.9)

Eggs (no.) 379.3 (124.8)

Pupae (no.) 118.6 (55.3)

Larvae (no.) 119.5 (55.0)

Males (no.) 21.8 (18.7) E:164.5 (130.4), L: 70.4 (89.7) 30.1 (28.2)

Queens (no.) 19.1 (19.1) E: 9.5 (19.1), L: 55.8 (72.8) 24.8 (15.8)

Queen investment 1.69 0.46 E: 0.06, L: 0.44 0.45

Population Knight et al. (2005)

nreplicates 3

Max. nest density (colonies/km2) 34.31 (2.4) 28.7 (range 
26.6–30.7)

Note. aCalculated from table II in Gosterit and Gurel (2016).
b6.42 days before eusocial phase.
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includes the option of modelling up to six different bumblebee spe-
cies. We illustrate that individual, colony and population level pro-
cesses of bumblebee colonies can be predicted by Bumble-BEEHAVE 
within the boundaries of independent empirical data. Indeed the val-
ues for different life stages and key time points (Table 3) show strong 
agreement with published data. Despite some values for parameters 
still being approximate in the literature, the design and structure of 
Bumble-BEEHAVE means that a user can add or alter those values as 
they become available to run the model in future.

In addition, Bumble-BEEHAVE is the only model to our knowl-
edge to incorporate energy budgets and depletion of resources in 
mapped landscapes so that interspecific and intraspecific competi-
tion can emerge. Also, because the flower patches are spatially ex-
plicit, then the patchy exposure to pesticides in the landscape can 
be simulated in future, by programming different pesticide applica-
tions to different crops, and implementing differential mortality and 
sublethal effects depending on when and where the bees are forag-
ing—a pesticide module of this type is currently being implemented 
for BEEHAVE and Bumble- BEEHAVE.

Our simulations demonstrate that colony dynamics and popula-
tion are driven by the spatio- temporal availability of resources as 
expected (Crone & Williams, 2016; Goulson, Hughes, Derwent, & 
Stout, 2002; Williams, Regetz, & Kremen, 2012).

While the comparative simulations are promising, without du-
plicating the realistic spatially explicit forage landscape of the 
independent empirical studies, we were unable to replicate all 
absolute values and trends in the empirical data. Additionally, 
when we do have a landscape map that replicates an empirical 
landscape, this is a simplification of the full range of resources 
that pollinators utilise in the wild. It is vital for pollinator models 
to operate in realistic landscapes (EFSA, 2015) at a scale rele-
vant to bumblebee ecology and to policy and land management. 
Bumble-BEEHAVE input maps represent a 5 km × 5 km landscape 
covering the likely foraging range of bumblebees of up to 2 km 
(Osborne, Martin, Carreck, et al., 2008), and so provide a flexi-
ble tool for scientists and practitioners to explore the effects of 
multifactorial stressors and their potential mitigation at relevant 
scales. The outputs can include documentation of which forag-
ers, and how many, have foraged on different resource patches 
in the landscapes and the results can be compared to other 

landscape- scale pollination service models (Lonsdorf et al., 2009; 
Olsson et al., 2015; Polce et al., 2013), but the novelty of Bumble- 
BEEHAVE is that because it explicitly programmes the life cycle 
of the colony via individual behaviours, it includes resource de-
pletion, and has the potential to include predation, pathogen and 
pesticide exposure effects. Importantly, we simulated the impact 
of reproductive depression caused by a pesticide, as measured 
by Baron et al. (2017). They used a simple model to predict that 
the impact could be colony extinction. Our simulations gave a 
more nuanced result, suggesting that the impact will depend on 
the initial population size: so while colony numbers might reduce, 
the population is likely to stabilise, though at a lower density than 
for control.

4.1 | Applications

Bumble-BEEHAVE is open- source (Appendix S01 and via www.bee-
have-model.net), thoroughly documented and has flexible settings, 
enabling even nonspecialist users to simulate the effects of stressors 
by adjusting and/or updating parameters as data become available. 
The predecessor honeybee model, BEEHAVE (Becher et al., 2014) is 
being used by regulators, industry and land managers for risk assess-
ment and decision support relating to honeybees. Thus, we foresee 
the integration of Bumble-BEEHAVE beyond academia to industry, 
conservation and policy.

Bumble-BEEHAVE can be used to:

1. Explore how stressors combine, resulting in emergent properties 
of colony and population success in realistic landscapes.

2. Identify tipping points as a result of multiple stressors that lead to 
colony failures as well as the feedback mechanisms that can 
buffer the effects of stressors.

3. Predict pollination services for current and/or future cropping 
patterns in realistic landscape settings.

4. Test the relative effects of specific policy recommendations for 
pollinators in agricultural landscapes, such as planting pollen and 
nectar strips (Dicks et al., 2015).

5. Explore multiple landscapes comprising various habitat types 
with unique forage species composition in combination with the 
UK nectar database (Baude et al., 2016).

TABLE  4 The number of hibernating queens (n. hibernating queens) and the peak number of colonies (n. colonies (peak)) (M ± SD, N = 20) 
predicted in year 10 of the simulation. We used an artificial, single- patch landscape with 1 km2 of the respective habitat and show the 
number of foraging trips per million (n. million foraging trips) and the percentage of nectar foragers (% nectar). Number of bees (n. bees) 
refers to the total number of adult workers, queens and males produced during the last (10th) year

No. hibernating queens No. colonies (peak)
No. million foraging trips  
(% nectar) No. bees

Grassland 399 (197.9) 40.6 (18.7) 3.2 (76) 134,707.8 (24,019.1)

Hedgerows 7455.6 (530.3) 704.25 (54.9) 31.1 (72) 1,467,027.6 (68,561.1)

Scrub 3752.4 (431.8) 361.6 (43.2) 17.2 (73) 795,631.2 (40,067.7)

Woodland 281.4 (211.6) 30.6 (23.9) 2.7 (77) 107,839.2 (34,476.1)

http://www.beehave-model.net
http://www.beehave-model.net
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5  | CONCLUSIONS

Bumble- BEEHAVE represents a significant step towards predicting 
individual to population level effects of multiple stressors operating 
at multiple scales in a spatially explicit way and is designed to leave 
scope for future model comparison and development. With sensi-
tivity analysis and verification, we have demonstrated that Bumble- 
BEEHAVE makes realistic predictions, and thus has the potential 
to be a powerful decision support tool to be used by scientists and 
stakeholders to explore a range of questions in bumblebee ecology 
and conservation—used to aid the design of field experiments, for 
risk assessments and for assigning bespoke management recom-
mendations at a landscape scale.
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