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ABSTRACT

Motivation: We present a method for directly inferring transcriptional
modules (TMs) by integrating gene expression and transcription
factor binding (ChIP-chip) data. Our model extends a hierarchical
Dirichlet process mixture model to allow data fusion on a gene-
by-gene basis. This encodes the intuition that co-expression and
co-regulation are not necessarily equivalent and hence we do not
expect all genes to group similarly in both datasets. In particular, it
allows us to identify the subset of genes that share the same structure
of transcriptional modules in both datasets.
Results: We find that by working on a gene-by-gene basis,
our model is able to extract clusters with greater functional
coherence than existing methods. By combining gene expression
and transcription factor binding (ChIP-chip) data in this way, we are
better able to determine the groups of genes that are most likely to
represent underlying TMs.
Availability: If interested in the code for the work presented in this
article, please contact the authors.
Contact: d.l.wild@warwick.ac.uk
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Approaches to the elucidation of gene regulatory networks have
often relied on the use of clustering methodologies, grouping genes
on the basis of expression patterns over time, treatments and/or
tissues. The genes in a given cluster are usually assumed to be
potentially functionally related or to be influenced by common
upstream factors. For example, Eisen et al. (1998) found that in the
yeast Saccharomyces cerevisiae, genes that clustered together did
indeed often share similar biological function, and a large number
of subsequent authors have found the same, sometimes even being
able to verify the results experimentally (e.g. Ihmels et al., 2002).

Application of these approaches to gene expression data have
led to the recognition that gene regulation is often performed by
regulatory programmes or transcriptional modules (TMs); sets of
co-regulated genes that share a common biological function and are
regulated by a common set of transcription factors. Ihmels et al.
(2002) devised a method for identifying TMs by assigning genes to
clusters in a context-dependent manner. A gene could be assigned
to several clusters, resulting in overlapping TMs, a feature which is
biologically meaningful since a gene could be involved in multiple
biological processes.

Clustering on the basis of expression data alone, however, only
indicates co-expression, and does not directly identify co-regulation.

∗To whom correspondence should be addressed.

The expression patterns of genes in the same cluster may be
correlated for reasons other than co-regulation—the effects of
experimental measurement error may be important, for example.
Due to the complexity of gene regulatory networks, as well as
the limitations of any given source of noisy experimental data, it
is advantageous to make TM inferences using multiple sources of
data. In addition to gene expression data, a range of other data types
have been used to enhance the reconstruction of gene networks.
These include information about transcription factor binding derived
from experimental techniques such as ChIP-chip, sequence data and
even information derived from relevant scientific literature. Both
Segal et al. (2003a) and Kundaje et al. (2005) have described
methods to integrate expression and sequence data within the
framework of a probabilistic graphical model, using the method
of expectation maximization —a statistical technique for maximum
likelihood estimation of model parameters from incomplete data.
Segal et al. (2003b) applied a variant of this approach to infer
regulatory modules in S.cerevisiae, together with their component
regulators, under the assumption that the regulators themselves are
transcriptionally regulated, at least under a subset of conditions. Bar-
Joseph et al. (2003) described a method to integrate ChIP-chip and
expression data based on an exhaustive iterative search over possible
combinations of regulators, which identifies a subset of gene targets
with highly correlated expression patterns.

Dirichlet process mixture models (DPMs; Antoniak, 1974;
Ferguson, 1973) are a class of Bayesian non-parametric models that
has been widely used for clustering (Dahl, 2006; Liu et al., 2006;
Medvedovic and Sivaganesan, 2002; Medvedovic et al., 2004; Qin,
2006; Rasmussen et al., 2009; Rasmussen, 2000; Wild et al., 2002).
DPMs have the interesting property that the prior probability of
a new data point joining a cluster is proportional to the number
of points already in that cluster, thus encoding a natural clustering
tendency. Clustering strength is controlled via a hyperparameter α,
which sets the expected number of clusters as a function of the
number of clustered items. By inferringαwe can therefore determine
the posterior distribution of the number of clusters.

Hierarchical Dirichlet Process models [HDPMs as defined by Teh
et al. (2006)] are the hierarchical extension of DPMs. They consist
of a DPM for each of a number of different contexts, with the
mixture components for each context being drawn from a master
list of mixtures from the next level of the hierarchy. A wider range
of HDPMs are reviewed in Teh and Jordan (2010). Reid et al.
(2009) use a type of HDPM to identify TMs from transcription
factor binding site sequence data. Gerber et al. (2007) use HDPMs
to model gene expression programs in a variety of tissues.

Effective combination of different datasets can be an effective
way to identify TMs. Liu et al. (2007) introduced a HDPM that
assigns a DPM to each of a pair of datasets (e.g. gene expression
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and ChIP-chip) and connects them via a common hyperparameter, α.
By producing combined results from the sampled clustering for both
contexts, they are able to produce a form of flexible data integration.
As we shall see below, the Liu et al. approach is a special case of
the model we present in this article.

2 METHODS
Our aim is to cluster genes together on the basis of both gene expression
and ChIP-chip (transcription factor binding site) information. We wish to
identify the genes that possess the same clustering structure across both
datasets, as these are more likely to represent underlying TMs and hence
share specific biological function/s. We expect that the information coming
from each dataset will be uncertain and possibly contradictory. Therefore,
we wish to distinguish (on a gene-by-gene basis) between genes that can
sensibly have their data fused and those for which there is contradiction.

2.1 The model
We construct our model (shown in Fig. 1) from a two-level hierarchy of
DPMs. This model can be regarded as a modified version of the HDPM
presented in Teh et al. (2006). A naïve use of HDPMs for data integration
may fail since it assumes that all data sources are clustered identically. Our
principal innovation is to include, for each gene, an indicator variable that
determines whether the gene should join a cluster based on both data sources
combined (via a product of likelihoods) or whether it should be clustered
separately for each dataset.

The genes are assigned to three contexts, each defining a clustering
partition via a DPM. One context contains the genes that are fused across the
two datasets. The other two contexts are for the unfused genes, one clustering
solely on the basis of expression data and the other using the transcription
factor binding dataset. The fusion indicator variables are learnt as part of the
inference process (carried out via a Gibbs sampler), allowing us to determine
the posterior probability that any given gene will be fused.

We define our model as follows [using the same notation as Teh
et al. (2006)]. We have n genes, for each of which we have two sets
of measurements (expression and ChIP-chip). Each gene can either be
considered for the two datasets separately or we can fuse them together,
giving a single (product) likelihood. This gives us three contexts overall. Let
xji be the observed response for i-th gene in the j-th context. Note that when
sampling, genes can flip from a fused to unfused state and vice versa.

Each context j∈{1,2,3} has a countably infinite number of mixture
components, of which K are occupied. Each component k ∈{1,...,K} has
a mixture weight denoted by πjk and a parameter vector θjk , where the set of
parameters may be different for the different contexts.

Fig. 1. Graphical representation of the model presented in this article. The
parameters are defined in Section 2.

Each gene is assigned to a mixture component via the indicator variable
Zij , giving us the following equations.

P(Zij =k|π)=πjk (1)

The conditional likelihood for each gene is then:

P(xji|Zij =k,θ)=Lj(xji|θjk) (2)

where Lj is the likelihood we assign to model the data and θjk are the
parameter values for mixture component k in context j.

These are assigned the stick-breaking prior associated with the Dirichlet
process (Teh et al., 2006)

πjk =Vjk

∏
i<k

(1−Vji) (3)

where Vjk are mutually independent and Vjk ∼Be(1,α) which we write
Stick(α). Marginalizing over the mixture weights gives us a DPM for each
context. Similarly, ε are the mixture weights for the second level of the
Dirichlet process hierarchy. Again, these are assigned a stick-breaking prior
and marginalized over, so that they do not have to be considered explicitly
in the analysis.

π|α0 ∼Stick(α0) (4)

ε|γ∼Stick(γ) (5)

The hyperparameters α0 and γ are the concentration parameters for the
two levels of the Dirichlet process hierarchy. α0 is shared across all three
contexts, representing the prior belief that they are all representing the same
biological system and hence we should expect the same number of underlying
TMs. These can be inferred and therefore are assigned vague gamma priors
as follows.

α0 ∼Gamma(2,4) (6)

γ∼Gamma(2,4) (7)

We choose the component likelihoods to reflect the nature of the two
datasets. For the expression data, we discretize the measured value for each
gene into three levels, representing under-, over- or unchanged expression.
This is something of a simplifying assumption, but makes our analysis more
robust to the non-Gaussian noise typical of gene expression data, and is an
approach that has been shown to be effective (see e.g. Gerber et al., 2007;
Savage et al., 2009). We therefore choose the component likelihood for the
expression data to be a naïve Bayes model, constructed from a product of
multinomial distributions.

For the ChIP-chip data, we have statistical (P-value) information as
to whether or not a given transcription factor binds to a given gene. By
thresholding these values, we obtain sparse binary data, indicating whether
binding has occurred. We choose to model these data using a so-called ‘bag-
of-words’ model, e.g. a multinomial likelihood over transcription factors.
This has the advantage that only counts over genes are important, meaning
that a large number of zeros in the data can be handled safely. Note that in
both cases we choose to apply (conjugate) Dirichlet priors.

For the expression data, we have

L1(x)=
∏

a

�(Ba)

�(Na +Ba)

∏
b

�(xab +βab)

�(βab)
(8)

where Ba =∑
bβab and Na =∑

b xab, a is the index over features and b
is the index over discrete data values. The βab are the Dirchlet prior
hyperparameters, which in this case are all set to 0.5 (the Jeffreys’ value).

For the ChIP-chip data, we have

L2(x)= �(B)

�(N +B)

∏
a

�(xa +βa)

�(βa)
(9)

where B=∑
aβa and N =∑

a xa, and a is the index over features. The βa

are the Dirichlet prior hyperparameters, which in this case are all set to 0.5
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(the Jeffreys’value). The above two equations are obtained from Equation (2)
for a particular cluster k by integrating out the parameters θ.

We encode the notion of data fusion for a given gene i by allowing the
possibility of taking the product of likelihoods over the two datasets. So, if
the likelihood parameters for contexts one and two are given by θ1i and θ2i,
we have the following equations.

We introduce an extra latent variable ri for each gene with

P(ri =1)=w, P(ri =0)=1−w. (10)

If ri =1 (corresponding to a fused gene) then:

θi = (θ1i θ2i)∼F3 (11)

And if ri =0 (corresponding to an unfused gene) then:

θ1i ∼F1 (12)

θ2i ∼F2 (13)

This defines three contexts. Unlike the HDPM, we have

F1 ∼DP(α0,F
(1)
0 ) (14)

F2 ∼DP(α0,F
(2)
0 ) (15)

F3 ∼DP(α0,F0) (16)

F0(θ1,θ2)∼DP(γ,H) (17)

where F(j)
0 represents the marginal distribution of θj under F0. The

hierarchical Dirichlet process structure allows sharing of clusters across the
unfused and fused contexts. For example, an unfused gene can be allocated
to the same cluster as fused genes for gene expression but allocated to a
different cluster (shared by different fused genes) for transcription factors.

We choose to fix w=0.5 for the analyses in this article, representing that
we have no prior knowledge of the degree to which these datasets should
fuse. We note that it is also straightforward to sample from w and we run
a test of this, the results of which can be seen in Table 3. Details of the
algorithm to implement this model, in particular a Gibbs sampler, can be
found in Appendix A.

2.2 Special cases of the model
Our model has two special cases that are of interest and represent alternative
ways of approaching data integration. w=0 gives us the model of Liu et al.
(2007). In this model, there is no direct data fusion (in the sense that all
the ri =0). Instead, information is shared via a common hyperparameter, α0,
between the clustering for each dataset. Each dataset is therefore clustered
(almost) separately, but benefiting from this weak sharing of information
via the hyperparameter. w=1 gives us simple data integration by taking the
product of likelihoods and forcing all genes to be part of a single clustering
partition. With w=1, only the fused context is used (genes can never be
unfused) and so we have a straightforward DPM with a product of likelihoods
over the two datasets.

2.3 Extracting modules from the posterior samples
Once we have explored the model space using Markov chain Monte Carlo
(MCMC) sampling, we wish to extract useful results from the samples. In
particular, we wish to identify TMs, which in our model correspond to
groups of genes that fused with high probability and that are often found
in the same fused cluster. This is a non-trivial challenge, as each MCMC
sample contains a large number of parameters (mixture component labels
for each gene in each of three contexts, ri for each gene, plus the global
hyperparameters). We therefore require a way to summarize the results.
To do this, we choose to form a posterior similarity matrix (Fritsch and
Ickstadt, 2009). From this we will extract a clustering partition, which will
correspond to transcriptional modules. The posterior similarity matrix is an
(ngenes ×ngenes) matrix where each element gives the posterior probability

that a given pair of genes are found in the same cluster (and hence also in
the same context). These values can be estimated simply by counting the
MCMC samples in the appropriate way.

A major advantage of our model is that it identifies how likely each gene is
to be fused (estimated from the ri values over MCMC samples). By rejecting
genes with low P(ri =1|x), we can identify more tightly defined TMs. For
this article, we choose to define ‘fused’ as being P(ri =1|x)≥0.5 (the prior
value we assign to w for the full model).

From the posterior similarity matrix, we extract the most likely cluster
partition using the method of Fritsch and Ickstadt (2009), which minimizes
a defined loss function that is equivalent to maximizing the adjusted Rand
index between estimated and true clustering partitions. We note that this
represents a summarization of the full results implicit in the analysis. Some
kind of compromise of this nature is inevitable, simply due to the richness
of the posterior distribution of our model. As we shall demonstrate, this
approach still leads to superior results and hence biological insight.

We can also extract other useful quantities from the posterior MCMC
samples. For example, the 1D marginal distributions of the hyperparameters,
the number of fused clusters and the number of fused genes are all easily
determined.

2.4 Quality measures
We are interested in identifying TMs with well-defined biological function/s.
Our quality measures should therefore reflect this. We choose two measures,
both using the Gene Ontology (GO) database.

The first measure is the Biological Homogeneity Index (BHI; Datta and
Datta, 2006). This is a global measure of how biologically homogeneous
a given clustering partition is (as measured here using GO annotations).
Clusters where many genes share annotations will lead to a high BHI score
and vice versa. Perfect agreement for all GO terms (which is highly unlikely)
would lead to a score of unity.

We compute error estimates of these BHI scores by performing 10 random
combinations of the 20 MCMC chains (chosen via bootstrap sampling, eg.
so that a given chain may be selected multiple times), finding in each case
the clustering partition and hence the BHI score. This gives us a measure of
any uncertainty due to inadequate mixing of the MCMC chains.

The second measure is to find GO terms that are over-represented in
any given module, relative to the background population of genes. We
use the R package GOstats (Falcon and Gentleman, 2007) to apply a
hypergeometric test to each GO term in each cluster. We apply this analysis
to all GO terms in the three ontologies (cellular component, molecular
function and biological process). We account for the dependent, hierarchical
structure of the ontologies using the relevant option in the call to the
GOstats function ‘hyperGTest’. We correct for multiple hypotheses using
a Bonferroni correction.

2.5 Data
We perform two different analyses in this article, in each case analysing
data from S.cerevisiae. To facilitate comparison with earlier work, in both
cases we use ChIP-chip data from Lee et al. (2002) to provide information
on transcription factor binding activity. This dataset contains nearly 4000
interactions between regulators and promoter regions, representing 6270
yeast genes and 106 transcriptional regulators.1

We use two different gene expression datasets in the two analyses. The
first one (referred to subsequently as the galactose utilization data) is taken
from a subset of the expression dataset of Ideker et al. (2001), which has been
widely used for the validation of clustering methods (Savage et al., 2009;
Yao et al., 2008; Yeung et al., 2003). These data are a series of expression

1A more extensive set of ChIP-chip data from the same laboratory was later
published by Harbison et al. (2004). This use of this dataset in place of that
of Lee et al. (2002) does not materially change the conclusions of this article,
as illustrated in Table 3.
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measurements across 20 experiments representing systematic perturbations
of the yeast galactose utilization pathway. The subset used consists of
205 genes whose expression patterns reflect four functional categories
(biosynthesis, protein metabolism and modification; energy pathways,
carbohydrate metabolism and catabolism; nucleobase, nucleoside, nucleotide
and nucleic acid metabolism; transport), based on GO annotations. However,
as Yeung et al. (2003) note, since this array data may not fully reflect these
functional categories, these classifications should be used with caution.

For the other analysis (referred to as the cell cycle data), we use gene
expression measurements of the mitotic yeast cell cycle of Cho et al. (1998),
which was chosen to facilitate direct comparison with the results of Liu et al.
(2007), who also analysed this data. For this dataset, we keep only the genes
that were identified as having a Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway, following the procedure of Liu et al. (2007). We note that
there are small differences in the number of genes selected in this way (949
versus 1165 in this article), due to differences in the version of the KEGG
database used.

2.6 Data processing
For both expression datasets, we discretize the data into three levels. This has
two benefits. First, it makes our analysis more robust to the non-Gaussian
(and hence hard to model) noise distribution of the data. Secondly, it makes
the task of data modelling more straightforward. To optimize the binning
of the data, we use the Bayesian Hierarchical Clustering (BHC) package
(Savage et al., 2009) to find an optimized binning and assume that this will
then also be reasonably optimal for this analysis.

For the ChIP-chip dataset, we follow the procedure of Lee et al. (2002) and
threshold the data at a P-value of 0.001, giving us a sparse dataset where the
detections are robust, at the expense of a larger proportion of false negatives
(Lee et al. estimate 6–10% false positives and that about one-third of the
interactions are missed).

3 RESULTS
The results of each data integration analysis are rich and detailed.
In this section, we consider a number of metrics and highlight
significant aspects of the results for each dataset. For comparison,
we also run clustering analyses using the BHC algorithm (Savage
et al., 2009) to analyse the gene expression data alone. This gives us
a baseline result with which to compare the data integration results.

It is important to assess the convergence of any MCMC analysis.
All analyses on the galactose dataset comprise 20 MCMC chains,
each of 50 000 samples (after removal of 10 000 burn-in samples).
All analyses on the cell cycle data set comprise 20 MCMC chains,
each of 5000 samples (after removal of 1000 burn-in samples). To
speed up our subsequent analyses, we sparse sample each chain by
a factor of 10.

We include as Supplementary Material plots of 1D
hyperparameter posterior PDFs, both overall and for each
MCMC chain. These demonstrate that the MCMC analyses are
converging adequately. We also perform Geweke convergence tests
(Geweke, 1992) on the hyperparameters of each chain (α0 and γ)
for the w=0.5 case. For the galactose dataset, we find 30 of 40 tests
(20 chains, 2 hyperparameters) have a z-score<2, with a maximum
outlier of 3.48. For the cell cycle dataset, we find 28 of 40 tests
have a z-score <2, with a maximum outlier of 5.53. We conclude
that our chains are reasonably well (although not perfectly) mixed,
although in both cases it is important that we combine multiple
chains.

The algorithm is implemented in Matlab and run on 3 GHz cluster
nodes (20 in parallel, one per MCMC chain). On the galactose

utilization dataset (205 genes), the code produces 500 samples per
chain per hour. On the cell cycle dataset (1165 genes), the code
produces 40 samples per chain per hour. On a larger sample of
2332 genes [from the stress data of Gasch et al. (2000)], the code
produces 10 samples per chain per hour. This scaling suggests that
for large (genome-scale) datasets it may be of value to investigate
(for example) fast variational methods as an alternative to MCMC.

3.1 Galactose utilization dataset
In Table 1, we give the BHI scores for different analyses of the
galactose utilization dataset. The outcome from our model (fused
genes and w=0.5) extracts a subset of 51 genes with an overall
BHI score that is 9% (3 SDs) higher than for any other method,
indicating a greater degree of biological functional coherence. We
note that all methods are superior to the BHC result for expression
data alone (BHI = 0.323), except for the ChIP only analyses.

Figure 2 shows the variation of the BHI with the clustering
partition resulting from keeping the top n genes, as sorted by
P(ri =1|x). There is a clear enriching effect on the BHI (and hence
biological homogeneity) by selecting a subset of genes in this way.

In Figure 3, we show a matrix of the significantly over-represented
GO terms in each of the clusters we extract for the model (fused
genes and w=0.5). Notable are the density of hits, and also the
distinct block structure, which reflects that each cluster is tending
to capture all the significance for given GO terms. These GO
terms reflect the four functional categories previously identified
in this data, but detailed inspection of the functional annotations
of the genes in each cluster reveals a finer level of biological
specificity than previously identified. Cluster 1 (counted from
the left) comprises four genes involved in glycolysis and the
tricarboxylic acid (TCA) cycle. Cluster 2 represents genes involved
in replication and RNA processing, while Cluster 3 comprises
primarily ribosomal components. Cluster 4 comprises four hexose
transporters, including at least one pseudogene, which, despite being
non-functional, is nevertheless expressed.

Table 4 shows comparisons of over-represented GO terms with
those obtained from the Liu method. In general, the data fusion
GO terms are more enriched, with lower P-values and, in almost
all cases, a higher proportion of the genes being annotated with
the term.

In Figure 4, we show the ChIP-chip data for the fused genes,
sorted by cluster membership. The structure in this plot (horizontally
aligned hits) shows certain transcription factors are contributing to
the data integration and, like Segal et al. (2003b), we find that
TMs are characterized by partly overlapping but distinct motif
combinations.

Table 3 shows some comparison analyses carried out using the
Harbison et al. (2004) ChIP data in place of that of Lee et al.
While the Harbison et al. data analysis finds more fused genes
(72 versus 51), the BHI scores are comparable. We also run an
analysis where we sample over w; in this case, the BHI scores are
marginally worse and there are fewer fused genes (56) than for the
w=0.5 case.

3.2 Cell cycle dataset
In Table 2, we give the BHI scores for different analyses of the cell
cycle dataset. Again, our model (fused genes and w=0.5) gives
the best results, although in this case the method of Liu et al.
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Table 1. The BHI scores for the galactose utilization dataset

Similarity matrix w No. of genes BHI (all) BHI (bp) BHI (mf) BHI (cc)

Fused genes 0.5 51 0.49±0.03 0.43±0.05 0.40±0.04 0.49±0.03
Fused genes 1 205 0.37±0.01 0.22±0.01 0.19±0.01 0.37±0.01
Unfused (expression only) 0 205 0.38±0.01 0.26±0.02 0.22±0.02 0.38±0.01
Unfused (expression only) 0.5 154 0.37±0.03 0.30±0.02 0.23±0.02 0.37±0.03
Unfused (ChIP chip only) 0 205 0.28±0.03 0.13±0.01 0.11±0.02 0.25±0.03
Unfused (ChIP chip only) 0.5 154 0.20±0.06 0.06±0.03 0.07±0.04 0.19±0.07
Context-averaged (Liu et al.) 0 205 0.38±0.01 0.26±0.02 0.22±0.01 0.38±0.01
Context-averaged 0.5 205 0.40±0.01 0.24±0.01 0.20±0.01 0.40±0.02
Context-averaged 1 205 0.37±0.01 0.22±0.01 0.19±0.01 0.37±0.01

We compute the BHI scores for each GO (biological process, molecular function and cellular component) and an overall value. The fused genes are those with a posterior probability
of being fused of at least 0.5. All other genes are classed as unfused. Context-averaged similarity matrices are simply constructed by averaging the posterior similarity matrix over
both contexts (i.e. datasets). This is the method used by Liu et al. For comparison, the result obtained using the BHC algorithm on the gene expression data alone is 0.323.
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Fig. 2. Plots of the BHI for the galactose dataset, showing the variation with different numbers of fused genes. Shown are the BHI results for each GO
separately, plus all three combined. In all cases, selecting 100 or fewer genes leads to an increase in the BHI score. The error bars show a distribution of
randomized BHI scores where the cluster sizes and number of clusters are kept the same but gene names are drawn randomly from the 205 genes in the
galactose dataset. By comparison, this gives us a measure of the enrichment of the fused gene clusters.

provides a slightly lower BHI score. In all cases, the data integration
provides benefit over simply using gene expression data and the
BHC algorithm (BHI = 0.285).

In the Supplementary Material we show the posterior similarity
matrix, sorted by cluster membership. The block-diagonal structure

shows the core of each cluster clearly defined. In this figure,
off-diagonal blocks may indicate one of two possibilities; it may
mean that there is uncertainty in whether a set of genes should
be assigned to one of the two clusters, or it may indicate a set
of genes that should really belong simultaneously to two clusters.
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Fig. 3. Graphical representation of the significantly over-represented GO terms for each cluster of genes, for the galactose utilization (left) and cell cycle
(right) datasets. Black indicates that a given gene is annotated with the relevant GO term and that the term is over-represented in that cluster.

Table 2. The BHI scores for the cell cycle dataset

Similarity matrix w No. of genes BHI (all) BHI (bp) BHI (mf) BHI (cc)

Fused genes 0.5 266 0.33±0.01 0.18±0.02 0.17±0.01 0.23±0.01
Fused genes 1 1165 0.30±0.01 0.09±0.01 0.14±0.01 0.20±0.01
Unfused (expression only) 0 1165 0.28±0.01 0.07±0.01 0.14±0.01 0.19±0.01
Unfused (expression only) 0.5 898 0.31±0.01 0.08±0.01 0.16±0.01 0.20±0.01
Unfused (ChIP chip only) 0 1165 0.30±0.01 0.05±0.01 0.12±0.02 0.24±0.02
Unfused (ChIP chip only) 0.5 898 0.25±0.03 0.06±0.01 0.13±0.03 0.21±0.02
Context-averaged (Liu et al.) 0 1165 0.29±0.01 0.09±0.01 0.14±0.01 0.20±0.01
Context-averaged 0.5 1165 0.30±0.01 0.08±0.01 0.15±0.01 0.20±0.01
Context-averaged 1 1165 0.30±0.01 0.09±0.01 0.14±0.01 0.20±0.01

The fused genes are those with a posterior probability of being fused ≥0.5. All other genes are classed as unfused. Context-averaged similarity matrices are simply constructed by
averaging the posterior similarity matrix over both contexts (i.e. datasets). This is the method used by Liu et al. For comparison, the result obtained using the BHC algorithm on
just the gene expression data is 0.285.

Table 3. The BHI scores for galactose utilization with Harbison et al. ChIP data, for comparison with Table 1

Similarity matrix w No. of genes BHI (all) BHI (bp) BHI (mf) BHI (cc)

fused genes 0.5 72 0.49±0.01 0.42±0.01 0.35±0.01 0.49±0.01
fused genes 1 205 0.39±0.01 0.22±0.01 0.19±0.01 0.37±0.01
fused genes sampled 56 0.49±0.01 0.40±0.01 0.32±0.01 0.49±0.01

The Lee et al. ChIP data are used in this article to mimick the Liu et al. analysis. The results here show that the Harbison et al. data result in a greater number of fused genes, with
similar overall BHI scores. Also shown are results for a run where w is sampled using a Gibbs sampler. This shows a small degradation over the w=0.5 .case.

The two clusters in question (Clusters 3 and 4, counted from the
left) do indeed share common GO annotations indicating metabolic
function (Fig. 3). Cell cycle regulation is a complex interplay of
many different external signals and intrinsic cell states (Bähler,
2005). The cell cycle is composed of at least four phases: S, synthesis
phase wherein DNA is being replicated; G1, gap 1; M, mitosis
where the yeast cell physically pulls chromosomes into the daughters
and then separates; and G2, gap 2. The transitions between phases
are critical checkpoints. There cell division is blocked by various
conditions; for example, signals indicating there is DNA damage
or incomplete DNA replication will block cells from going from
S→G1. Thus, it would be expected that there may be multiple
regulatory pathways, some of which likely overlap.

In Figure 3, we show a matrix of the significantly over-represented
GO terms in each of the clusters we extract. As with the galactose
utilization dataset, there is good block structure, although in this
larger dataset there are some high-level GO terms that are significant
in more than one cluster.

We identify 12 fused clusters in the data (excluding singletons).
While the functional annotation of many of these correspond to
those previously identified by Liu et al. (2007), there are some
interesting differences. In addition to a cluster of genes involved
in methionine and cysteine biosynthesis (Cluster 9), we identify a
separate cluster for arginine and glutamine biosynthesis (Cluster 3).
Cluster 1 comprises mainly ribosomal proteins, but also includes
metabolic genes, which may be an indication of the importance
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Table 4. Over-represented GO terms for one of the fused clusters extracted from the galactose utilization dataset (with w=0.5)

GO ID Cluster P-value Count (fused) Count (Liu) GO term

4365 1 9.8×10−6 2/4 3/9 Glyceraldehyde-3-phosphate dehydrogenase (phosphorylating) activity
16620 1 5.0×10−4 2/4 3/9 Oxidoreductase activity, acting on aldehyde/oxo donors, NAD/NADP acceptor
51287 1 1.1×10−3 2/4 3/9 NAD or NADH binding

6096 1 3.6×10−8 4/4 9/9 Glycolysis
19320 1 3.3×10−7 4/4 9/9 Hexose catabolic process
46164 1 7.4×10−7 4/4 9/9 Alcohol catabolic process
16052 1 3.3×10−6 4/4 9/9 Carbohydrate catabolic process

6094 1 1.9×10−5 3/4 7/9 Gluconeogenesis
46364 1 1.2×10−4 3/4 7/9 Monosaccharide biosynthetic process
19752 1 5.7×10−4 4/4 8/9 Carboxylic acid metabolic process
42180 1 6.4×10−4 4/4 8/9 Cellular ketone metabolic process

6082 1 6.8×10−4 4/4 8/9 Organic acid metabolic process
6800 1 1.2×10−3 2/4 3/9 Oxygen and reactive oxygen species metabolic process
1950 1 1.7×10−4 3/4 7/9 Plasma membrane enriched fraction
5626 1 2.1×10−3 3/4 7/9 Insoluble fraction
5811 1 3.3×10−3 2/4 3/9 Lipid particle

16251 2 8.9×10−5 5/23 7/84 General RNA polymerase II transcription factor activity
30528 2 1.6×10−3 6/23 26/84 Transcription regulator activity
31202 2 1.6×10−3 4/23 22/84 RNA splicing factor activity, transesterification mechanism

3677 2 6.1×10−3 6/23 14/84 DNA binding
16070 2 9.2×10−12 19/23 53/84 RNA metabolic process
10467 2 1.1×10−7 22/23 78/84 Gene expression

398 2 1.5×10−4 6/23 24/84 Nuclear mRNA splicing via spliceosome
375 2 2.3×10−4 6/23 26/84 RNA splicing, via transesterification reactions

45449 2 4.1×10−4 6/23 29/84 Regulation of transcription
80090 2 7.5×10−4 13/23 40/84 Regulation of primary metabolic process
34961 2 1.2×10−3 17/23 52/84 Cellular biopolymer biosynthetic process

9059 2 2.9×10−3 17/23 52/84 Macromolecule biosynthetic process
51171 2 6.1×10−3 8/23 31/84 Regulation of nitrogen compound metabolic process

5634 2 2.6×10−8 22/23 15/84 Nucleus
32991 2 7.9×10−5 18/23 24/84 Macromolecular complex

5681 2 1.3×10−4 5/23 19/84 Spliceosomal complex
43227 2 3.9×10−4 23/23 83/84 Membrane-bounded organelle

3735 3 1.3×10−21 16/17 75/75 Structural constituent of ribosome
6412 3 3.4×10−10 13/17 49/75 Translation

43284 3 4.4×10−8 17/17 75/75 Biopolymer biosynthetic process
34645 3 1.2×10−7 17/17 75/75 Cellular macromolecule biosynthetic process

9058 3 4.2×10−6 17/17 49/75 Biosynthetic process
19538 3 7.2×10−6 13/17 49/75 Protein metabolic process
34960 3 4.8×10−4 17/17 75/75 Cellular biopolymer metabolic process
43170 3 9.4×10−4 17/17 75/75 Macromolecule metabolic process
33279 3 3.7×10−21 16/17 75/75 Ribosomal subunit

5829 3 1.1×10−13 16/17 74/75 Cytosol
22627 3 3.2×10−11 8/17 33/75 Cytosolic small ribosomal subunit
43232 3 8.3×10−10 16/17 75/75 Intracellular non-membrane-bounded organelle
22625 3 1.1×10−9 8/17 41/75 Cytosolic large ribosomal subunit
32991 3 1.5×10−6 16/17 75/75 Macromolecular complex
44422 3 1.1×10−4 16/17 75/75 Organelle part
32040 3 5.4×10−3 3/17 7/75 Small-subunit processome

51119 4 2.8×10−9 4/4 11/12 Sugar transmembrane transporter activity
5353 4 3.2×10−7 3/4 10/12 Fructose transmembrane transporter activity

15578 4 3.2×10−7 3/4 10/12 Mannose transmembrane transporter activity
5355 4 4.6×10−7 3/4 10/12 Glucose transmembrane transporter activity

22891 4 3.3×10−5 4/4 12/12 Substrate-specific transmembrane transporter activity
5215 4 1.2×10−4 4/4 12/12 Transporter activity
8645 4 1.2×10−9 4/4 9/12 Hexose transport
8643 4 9.7×10−9 4/4 11/12 Carbohydrate transport

55085 4 1.4×10−5 4/4 12/12 Transmembrane transport
51234 4 8.3×10−3 4/4 12/12 Establishment of localization

5886 4 5.0×10−3 3/4 11/12 Plasma membrane

Also shown is a comparison with the GO terms extracted by the Liu et al. method. There is a general trend that the fused clusters are more highly GO enriched. For example, we
have highlighted in bold all the cases where a cluster from one method shows a percentage of GO enrichment (for a given term) that is at least 1.5 times higher than the other
method. Note that only GO terms appearing only in both cases are shown.
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Fig. 4. The ChIP-chip data for the fused genes of the galactose utilization (left) and cell cycle (right) dataset analyses. The data have been sorted by the
clustering partition. Black pixels indicate a transcription factor that binds to that gene. The different shades of grey show the clustering partition.

of metabolic state in cell cycle progression. Interestingly, these
include the same metabolic genes that comprise Cluster 1 in the
galactose utilization dataset, suggesting that these genes represent
a TM that is being co-regulated with ribosomal proteins in the cell
cycle. This also highlights the value of perturbations (as used in the
galactose utilization data) as a better experimental design to uncover
underlying TMs than a study involving a natural biological process,
such as the cell cycle. Cluster 7 contains several key genes associated
with cell cycle regulation, as well as several genes involved with
the M-phase, chromosome structure and repair. Cluster 11 contains
several genes involved in the M→G2 phase transition.

4 DISCUSSION
Both gene expression and ChIP-chip data contain information about
the biological functions of different genes, but it is non-trivial to
combine them in a sensible way, both due to their noisy nature and
also because co-expression and co-regulation may not necessarily
be equivalent for all genes.

Our results show that by treating data fusion on a gene-
by-gene basis, the model we present here is able to produce
superior extraction of functionally coherent groups of genes
from a combination of gene expression and ChIP-chip data. Our
model also has special cases (given by w=0 and w=1) that
produce data integration results that outperform the single dataset
analyses (including a fast BHC clustering using expression data
only). However, the model we present is both more flexible and
outperforms these special cases in both the examples we have
considered in this article.

The key innovation in our model is that the data integration
is treated on a gene-by-gene basis. This allows crucial flexibility
because we can distinguish between genes that are likely to be fused
and those that are not. We can extract genes that are closely related
on the basis of both datasets, while rejecting those that are not. It is
these genes that are most likely to represent the underlying TMs.
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APPENDIX A

A.1 THE ALGORITHM
We can perform inference for this model using MCMC sampling,
by extending the sampler in section 5.1 of (Teh et al., 2006) in the
following way.

Let Zji be the allocation of gene i in context j to a cluster. We
initialize these randomly to one of K (≈ log(n)) initial clusters. Using
the notation of Teh et al., we have the following equations.

θji =ψjZji
(A1)

ψjt =φkjt
(A2)

For convenience, we define the following quantities.

n1k =#{i|ri =0,Z1i =k} (A3)

n2k =#{i|ri =0,Z2i =k} (A4)

n3k =#{i|ri =1,Z3i =k} (A5)

f −xi
j,k (xi)=

∫
fji

∏
ri=1,i′ �=i,Zi′ =k fji′∫ ∏

ri=1,i′ �=i,Zi′ =k fji′∏
ri=0,i′ �=i,Zji′ =k fji′ h(φjk)dφk∏
ri=0,i′ �=i,Zji′ =k fji′ h(φjk)dφjk

(A6)

g−xi
k (xi)=

∫ ∏2
q=1 fqi

∏
ri=1,i′ �=i,Zi′ =k∫ ∏

ri=1,i′ �=i,Zi′ =k f1i′ f2i′∏2
p=1 fpi′

∏2
m=1

∏
ri=0,i′ �=i,Zmi′ =k fmi′ h(φk)dφk∏2

m=1

∏
ri=0,i′ �=i,Zmi′ =k fmi′ h(φk)dφk

(A7)

where for compactness of notation, we make the substitutions fji =
Lj(xji|φjk) and fqi =Lq(xqi|φk) (and noting that the integrands are
split over the two lines).

Updating w: if the w is given a beta prior distribution with
parameters a and b then the full conditional distribution of w is beta
with parameters a+∑

ri and b+∑
(1−ri). We choose a=b=2,

encoding a weak preference for w=0.5.
Updating r and t: the parameters ri and t are updated jointly. ri is
the indicator as to whether or not gene i is fused. t is an identifier
for a given mixture component, such that Zi = t means that gene i
belongs to mixture component t. The full conditional distribution is

p(Z3i = t,ri =1)∝
⎧⎨
⎩ w n−i

3t
n3+α0

g−xi
k3t

(xi), t is previously used

w α
1
n3+α0

, t is not previously used
(A8)

p(Z1i =Z1,Z2i =Z2,ri =0)∝⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1−w)
n−ji

1Z1
n1+α0

f −xi
1,k1Z1

(xi)
n−ji

2Z2
n1+α0

f −xi
2,k2Z2

(xi), neither new

(1−w)
n−ji

1Z1
n1+α0

f −xi
1,k1Z1

(xi)
α
3

n1+α0
, Z2 new

(1−w)
n−ji

2Z2
n1+α0

f −xi
2,k2Z2

(xi)
α
2

n1+α0
, Z1 new

(1−w) α
4
(n1+α0)2 , Z1, Z2 new

(A9)

noting that is a given Z is not new, it has already been used
previously, and where

α
1 =α0

⎡
⎣ K∑

k=1

m·k
m··+γ

g−xi
k (xi)+ γ

m··+γ
g−xi

knew (xi)

⎤
⎦, (A10)

α
2 =α0

⎡
⎣ K∑

k=1

m·k
m··+γ

f −xi
1,k (xi)+ γ

m··+γ
f −xi
1,knew (xi)

⎤
⎦, (A11)

α
3 =α0

⎡
⎣ K∑

k=1

m·k
m··+γ

f −xi
2,k (xi)+ γ

m··+γ
f −xi
2,knew (xi)

⎤
⎦, (A12)

α
4 = α2
0

(m··+γ)(m··+γ+1)×[∑K
k2=1

∑K
k1=1;k1�=k2

m·k1
m·k2

f −xi
1,k1

(xi)f xi
2,k2

(xi)

+∑K
k=1m·k(m·k +1)g−xi

k (xi)

+γ
∑K

k=1m·k f −xi
1,knew (xi)f

−xi
2,k (xi)

+γ
∑K

k=1m·k f −xi
2,knew (xi)f

−xi
1,k (xi)

+γg−xi
knew (xi)

+γ2f −xi
1,knew (xi)f −xi

2,knew (xi)
]

(A13)

n3 =
n∑

j=1;j �=i

rj (A14)

n1 =n−1−
n∑

j=1;j �=i

rj (A15)

g−xi
knew (xi)=

∫ 2∏
q=1

f (xqi|φk)h(φ)dφ (A16)

f −xi
1,knew (xi)=

∫
f (x1i|φ1k)h(φ1k)dφ1k (A17)

f −xi
2,knew (xi)=

∫
f (x2i|φ2k)h(φ2k)dφ2k (A18)
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If new values are to be drawn then they should be drawn in the
following way. If ri =1 then

p(k3tnew =k)∝
{

m·kg−xi
k (xi) if k previously used

γg−xi
knew (xi) if k =knew.

(A19)

If ri =0 and only Z1 is new

p(k1Znew
1

=k)∝
⎧⎨
⎩

m·kf −xi
1,k (xi) if k previously used

γf −xi
1,k\new (xi) if k =knew.

(A20)

If ri =0 and only Z2 is new

p(k2Znew
2

=k)∝
{

m·kf −xi
2,k (xi) if k previously used

γf −xi
2,knew (xi) if k =knew.

(A21)

If ri =0 and Z1 and Z2 are new

p(k1Znew
1

=k1,k2Znew
2

=k2)=⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m·k1
m·k2

f −xi
1,k1

(xi)f xi
2,k2

(xi) if k1 �=k2 are previously used

m·k(m·k +1)g−xi
k (xi) if k1 =k2 =k previously used

γm·k2
f −xi
1,knew (xi)f −xi

2,k2
(xi) if k2 previously used, k1 =knew

γm·k f −xi
2,knew (xi)f −xi

1,k (xi) if k1 previously used, k2 =knew

γg−xi
knew (xi) k1 =k2 =knew

γ2f −xi
1,knew (xi)f −xi

2,knew (xi) k1 =knew,k2 =knew +1
(A22)

where k1 =knew,k2 =knew +1 represents the creation of two new
clusters of which one contains only x1i and the other only
contains x2i.
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