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Abstract

Spatially explicit phylogeographic analyses can be performed with an inference framework that employs relaxed random
walks to reconstruct phylogenetic dispersal histories in continuous space. This core model was first implemented 10 years
ago and has opened up new opportunities in the field of phylodynamics, allowing researchers to map and analyze the
spatial dissemination of rapidly evolving pathogens. We here provide a detailed and step-by-step guide on how to set up,
run, and interpret continuous phylogeographic analyses using the programs BEAUti, BEAST, Tracer, and TreeAnnotator.
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Introduction
Bayesian Evolutionary Analysis by Sampling Trees (BEAST)
(Suchard et al. 2018) is one of the most widely used software
packages for Bayesian phylogenetic inference. The ability to
perform phylogeographic reconstruction has at least partly
contributed to its popularity. BEAST offers both discrete and
continuous phylogeographic approaches. The first approach
(Lemey et al. 2009) uses a continuous-time Markov chain to
model the movement of viral lineages among a set of discrete
locations, whereas the second approach (Lemey et al. 2010)
exploits a two-dimensional relaxed random walk (RRW) to
reconstruct viral dispersal history in continuous space.
Inspired by uncorrelated relaxed clock models (Drummond
et al. 2006), the development of the RRW model allows
branch-specific variation in dispersal velocity (Pybus et al.
2012; Holbrook et al. 2020), which provides more flexibility
as compared with a standard Brownian diffusion model. In
practice, it means that in the RRW model, dispersal velocity
can vary across the tree but remains constant along each
branch. As with the discrete approach implemented in
BEAST, continuous phylogeographic analyses involve a joint
inference of both the phylogenetic tree (representing the
evolutionary relationships between sampled sequences) and
the geographic locations of unsampled common ancestors

(fig. 1), thereby producing a spatially explicit history of dis-
persal of the sampled population (Faria et al. 2011).

The continuous approach to phylogeography in BEAST
remains less frequently used than its discrete counterpart,
even though the latter can present several methodological
disadvantages (Dellicour, Vrancken, et al. 2018). First, the dis-
crete phylogeographic method often requires an arbitrary
grouping of sampling locations that may lead to oversimpli-
fied abstraction or unrealistic subdivision of the study area.
Second, heterogeneous sampling effort or sampling bias can
severely compromise discrete phylogeographic reconstruc-
tions (De Maio et al. 2015; Baele et al. 2017). Under- or over-
sampling efforts can affect the estimates of transition rates
between sampled locations and hence also the phylogeo-
graphic reconstruction. However, although the impact of het-
erogeneous sampling effort has mostly been analyzed for
discrete models, Kalkauskas et al. (2020) have recently inves-
tigated how it can affect continuous phylogeographic recon-
structions. Their results confirm that continuous models can
also be affected by the lack of sampling in certain areas
(Kalkauskas et al. 2020). Finally, the restriction that the loca-
tions of all ancestors of the sampled viruses can only corre-
spond to the sampled locations in the discrete approach can
limit the realism of the inferred dispersal history. For these
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reasons, the continuous phylogeographic approach can pro-
vide a more realistic alternative.

The less frequent application of the continuous phylogeo-
graphic model could in part be due to the difficulty of obtain-
ing sampling geographic coordinates for all sequences of
interest, the challenges of modeling dispersal as a continuous
process (Faria et al. 2011), or lower familiarity with the instal-
lation and interpretation of a continuous diffusion model. To
remedy the latter issue, we describe here how to prepare and
run such a continuous phylogeographic analysis. For illustra-
tion, we provide a step-by-step protocol based on the analysis
of a data set of yellow fever virus (YFV) genomic sequences
sampled during one of the largest YFV epidemics in Brazil
(Faria et al. 2018).

Data Set Description
This protocol provides a detailed guide for reconstructing the
spatial dynamics of the YFV epidemic in Brazil through the
analysis of a set of viral genome sequences that were sampled
at different points in time (Faria et al. 2018). YFV is respon-
sible for 29,000–60,000 deaths annually in South America and
Africa and is the most severe mosquito-borne infection in the
tropics. Recently, Brazil experienced its largest recorded yel-
low fever outbreak in decades. In that context, Faria et al.
(2018) analyzed a data set of 65 YFV genomes collected be-
tween January and April 2017 in order to characterize the
dispersal history and viral transmission dynamics of this out-
break. The continuous phylogeographic method imple-
mented in BEAST was used to estimate the ancestral YFV
locations in continuous space.

Protocol

Step 1: Using BEAUti to Set Up the BEAST Analysis
The program BEAUti is distributed in the BEAST package and
is a user-friendly interface for specifying model and Markov

chain Monte Carlo (MCMC) settings for a BEAST analysis.
The sequence alignment is first uploaded by selecting the
Import Data option from the File menu. Here, we load an
alignment of 65 YFV genomes 10,236 nucleotides in length.
BEAST analyses that model evolution according to a single
bifurcating tree assume the absence of recombination events
within the genomic sequence alignment under consideration.
Recombination can be detected through the U-test (Bruen
et al. 2006) or using RDP (Martin et al. 2015) for example, and
can sometimes be filtered from the data. Once loaded, the
sequence data are listed under the Partitions panel and we
next specify the sampling date information, which starts by
selecting the box labeled Use tip dates in the Tips panel
(fig. 2A). By default, all taxa are assumed to have a date of
zero, which means that sequences are assumed to be sampled
at the same time. That is not the case for the YFV sequences
which were sampled on different days during 2017. The sam-
pling time in years is encoded in the name of each taxon and
we could simply edit the value in the Date column of the
table to reflect these. However, if the taxa names contain the
calibration information, then a convenient way to specify the
dates of the sequences in BEAUti is to use the Parse Dates
button at the top left of the Tips panel. Clicking this will make
a dialog box appear (fig. 2A). This operation facilitates the
extraction of date information contained within the taxon
names: it works by trying to find a numerical field within each
name. If the taxon names contain more than one numerical
field, then we can specify how to find the one that corre-
sponds to the date of sampling. We can 1) specify the order
that the date field comes (e.g., first, last, or various positions in
between), 2) specify a prefix (some characters that come im-
mediately before the date field in each name) and the order of
the field, or 3) define a regular expression (REGEX). There is
also an option to parse calendar dates with various precisions.
For the YFV sequences, dates values have to be parsed as

A

B

FIG. 1. Link between inferred
phylogeny (A) and inferred dis-
persal history of phylogenetic
branches (B; inspired by Pybus
et al. [2012] and Holbrook
et al. [2020]). Filled circles repre-
sent sampled sequences for
which locations and dates of
sampling are known. Squares
represent unsampled ancestral
nodes for which locations and
dates are estimated. Branch
lengths in (A) reflect the time
elapsed in each lineage and
thin colored lines in (B) show
the RRW (i.e., allowing branch-
specific variation in dispersal ve-
locity) undertaken by each line-
age. In (B), straight arrows
indicate the direction and dis-
tance of the movement trajec-
tory defined by each lineage.
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calendar dates by specifying the format “dd-MM-yyyy.” The
sampling dates will appear in the appropriate column of the
main window. In addition, the Height column will list the ages
of the tips relative to time 0 (in our case 2007.63). Finally, the
Uncertainty column allows us to specify with what precision
the sampling time is known. This is not useful in our case
because all sampling dates are known exactly, but BEAST
allows us to integrate over uncertainty in sampling dates
(e.g., when only the sampling month or year is known).

We now move on to the Trees panel, to set the Tree Prior
that describes how population size is expected to change over
time according to a coalescent model (fig. 2B). The default
tree prior is set to a constant size coalescent prior. Here, we
will select the flexible skygrid coalescent model (Gill et al.
2013; Hill and Baele 2019) as demographic tree prior
(Coalescent: Bayesian SkyGrid), with 36 grid points
(Number of parameters) and a time at last transition point
set to 0.6948424. By doing so, the grid points approximate the
number of epidemiological weeks spanned by the duration of
the phylogeny (Faria et al. 2018).

The next step is to click on the Traits panel at the top of
the main window (fig. 2C). A trait can be any characteristic

that is inherent to the specified taxon, for example, geograph-
ical location or host species. Here, we will assign a latitude and
longitude as bivariate geographical location to each taxa
based on the trait specification for each sequence. To associ-
ate the sequences with the traits, we need to click on Import
Traits, which will open a new window that allows us to im-
port a file with the trait values, that is, tab-delimited file that
links each taxon with its sampling coordinates (latitude and
longitude). After the import, we have to select both the lat-
itude and longitude traits in the left window and click on
Create partition from trait. In the window that pops up, we
can then enter a name for this partition, for example,
“location.” The resulting new partition with two Sites and a
continuous Data Type will be shown under the Partitions
panel.

Next, we click on the Sites panel to set the sequence and
trait evolutionary models. For the Nucleotide Substitution
Model, we will here keep the default HKY substitution model
and the Base frequencies to be Estimated, specify the Site
Heterogeneity Model to Gamma, and keep the default
Partition into codon positions to Off. We subsequently set
the substitution model for the location partition by selecting

A
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D

FIG. 2. Setting up the continuous phylogeographic analysis in BEAUti: specifying the sampling date associated with each sampled sequence (A),
setting up the coalescent model (B), entering the sampling coordinates (C), and specifying the RRW model (D). Zoomed versions of these figures
can be found in our detailed online protocol: https://beast.community/workshop_continuous_diffusion_yfv.
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the Cauchy RRW model and by specifying that Bivariate
trait represents latitude and longitude (fig. 2D). The latter
option allows estimating diffusion statistics that are specific
for bivariate spatial traits (with latitude and longitude in that
order). “Cauchy” refers to the name of the probability distri-
bution that is here used to accommodate dispersal velocity
variation among phylogeny branches. We also select the op-
tion Add random jitter to tips, which adds noise to sampling
coordinates. With this option, the noise is drawn uniformly at
random from a particular Jitter window size to duplicated
(location) traits. Here, we set the jitter window size to 0.01,
which will add a small noise that will avoid a poor perfor-
mance of the RRW model when not all sequences are asso-
ciated with unique sampling coordinates. The choice of the
jitter value is arbitrary, but it should remain sufficiently small
to avoid alternating too much the actual geographic origin of
each sample (see also our discussion below about alternatives
to the jitter option).

The Molecular Clock Model can be subsequently set in
the Clocks panel where we can choose between a strict and a
relaxed (uncorrelated lognormal or uncorrelated exponential)
clock model. We will perform our analysis using the
Uncorrelated relaxed clock model with an underlying
Lognormal distribution. In the States panel, we only need
to check that the location partition is set to Reconstruct
states at all ancestors (default option). In this case, there is
no need to change the default parametrization in the Priors
and Operators panels, but further detail on this setting can
be found in the detailed tutorial for this protocol (see the
Data Availability section).

The MCMC panel in BEAUti provides settings to control
the MCMC chain. We can first define the Length of the
chain, which is the number of steps the MCMC will make
in the chain before finishing. The length of the chain should
depend on the size of the data set, the complexity of the
model, and the precision of the answer required. The default
value of 10,000,000 is entirely arbitrary and should be adjusted
according to the size of the considered data set. As described
below, the resulting log file can be analyzed using the program
Tracer in order to examine whether a particular chain length
is adequate. The next couple of options specifies how often
the current parameter values should be displayed on the
screen (Echo state to screen every) and recorded in the
log file (Log parameters every). The screen output is simply
for monitoring the program’s progress and can therefore be
set to any value (although if set too small, the sheer quantity
of information being displayed on the screen will slow the
program down). For the log file, the value should be set rel-
ative to the total length of the chain. Sampling too often will
result in very large files with little extra benefit in terms of the
precision of the estimates. Sample too infrequently will result
in the log files containing insufficient information about the
distributions of the parameters. Overall, we aim to store no
more than 10,000 sampled states. For the present data set, we
will set the Length of the chain to 500,000,000 and the pa-
rameter Log parameters every as well the Echo state to
screen every 50,000 states.

The next option in the MCMC panel allows the user to set
the File name stem which is here set to “YFV_RRW_cauchy”
(for “relaxed random walk Cauchy diffusion model”). The
next two options set the file names of the log files for the
parameters and the trees but are by default based on the File
name stem. Finally, one can select to perform marginal like-
lihood estimation to assess model fit (Baele et al. 2016), which
is not needed in this exercise. At this point, we are ready to
generate a BEAST XML file and to use this to run the Bayesian
evolutionary analysis. We can do this by clicking on the but-
ton labeled Generate BEAST File. . . at the bottom of the
window.

Step 2: Performing the Analysis in BEAST
Once the input XML file has been created, we launch BEAST
to perform the analysis itself. The exact instructions for run-
ning BEAST depends on the computer used, but in most
cases a dialog box will appear in which we can select the
XML file. We can also launch BEAST by using its command
line version. In that case, the name of the XML file is specified
after the name of the BEAST executable and detailed infor-
mation about the progress of the analysis will be written to
the terminal. When it has finished, the log file and the trees
file will have been created in the same location as your XML
file. It is important to note that BEAST requires the installa-
tion and use of the BEAGLE library (https://github.com/bea-
gle-dev/beagle-lib), which enables fast likelihood computation
via parallel computing (Ayres et al. 2019).

Step 3: Using Tracer to Assess Convergence and
Mixing
We employ the user-friendly program Tracer (Rambaut et al.
2018) to analyze the results of the BEAST run (fig. 3A). We first
use the Import Trace File. . . option from the File menu of
Tracer to load the log file generated by BEAST (here called
“YFV_RRW_cauchy.log”). On the left-hand side is the name
of the log file loaded and the traces that it contains. Selecting
a trace on the left brings up various summary analyses of this
trace on the right-hand side, according to which tab is se-
lected. In the top right of the window, there is a table of
summary statistics for the selected trace, for example, the
mean and median values of the parameter states excluding
the burn-in, the 95% highest posterior density (HPD) interval
(95% HPD interval), the auto-correlation time (ACT) de-
fined as the average number of states in the MCMC that two
samples have to be separated by for them to be uncorrelated
(i.e. independent samples from the posterior, and the effec-
tive sample size (ESS), which is the chain length (excluding
the burn-in) divided by the ACT, and represents the number
of independent samples that the trace is equivalent to.

When the ESS values are small (ESS values <100 are
highlighted in red by Tracer and values >100 but <200 are
in yellow), it indicates that the posterior sample is equivalent
to relatively few independent samples and thus may not ac-
curately represent the posterior distribution. A simple strat-
egy to remedy this problem is to run the MCMC chain for
longer, until sufficient ESS values are achieved. Largely
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independent of the use of the RWW model, the runtimes of
BEAST analyses are highly dependent on the size of the data
set, both in terms of number of samples and genomic se-
quence length, and can range from a few hours to several days
or even longer. For instance, the analysis of the YFV data set
used as an example required 5 � 108 iterations to achieve
sufficient ESS values (i.e., all ESS values >200). This corre-
sponded to a runtime of approximately 30 h on a MacBook
Pro 3.1 GHz Quad-Core Intel Core i7.

Step 4: Summarizing the Posterior Tree Distribution
BEAST samples time-scaled trees as well as the model param-
eters. The trees are written to a separate NEXUS format file
with a “.trees” extension (here “YFV_RRW_cauchy.trees”).
The program TreeAnnotator is provided as part of the
BEAST package and can be used to summarize the informa-
tion within our sampled trees (fig. 3B). TreeAnnotator takes a
single “target” tree and annotates it with the summarized
information from the entire sample of trees, such as average
node ages (along with their HPD intervals) and the posterior
support and the average rate of evolution on each branch (for
relaxed clock models). Prior to running Tree Annotator, sev-
eral options have to be specified: the number of steps in the
MCMC chain (Burnin as states), or the number of trees
(Burnin as trees) that should be excluded from the summa-
rization, the minimum posterior probability for a node in

order for TreeAnnotator to store the annotated information
(Posterior probability limit), the Target tree type (see be-
low), the Node heights specifying what node heights (times)
should be used for the output tree, the Target Tree File to
select a NEXUS file containing the target tree (when the User
target tree option is selected, which is not the case here), the
posterior distribution of trees to consider (Input Tree File),
and the name for the output tree file (e.g.
“YFV_RRW_cauchy_MCC.tree”).

We keep the default Posterior probability limit set to 0.0
so every node, no matter what its support, will have its in-
formation summarized. For the Target Tree File, there are
two options: Maximum clade credibility tree (MCC tree) or
User target tree. We here select the first option so that
TreeAnnotator will examine every sampled tree and select
the tree with the highest product of the posterior probabil-
ities across all of its nodes. We will also select the Keep target
heights option to keep node heights as in the selected tree,
but note that node heights can also be summarized as a mean
or a median over the sample of trees. In the latter case, how-
ever, a mean or median height for a node may sometimes be
higher than the mean or median height of its parental node
(because particular ancestral-descendent relationships in the
MCC tree may still be different compared with a large num-
ber of other sampled trees), resulting in artifactual negative
branch lengths.

A

C

B

D

FIG. 3. Analyzing the outputs of the continuous phylogeographic inference: assessing convergence and mixing with Tracer (A), summarizing the
posterior trees by using TreeAnnotator to find and annotate the MCC tree (B), visualizing the resulting MCC tree with FigTree (C), and using
spreaD3 to visualize the phylogeographic reconstruction (D). Zoomed versions of these figures can be found in our detailed online protocol:
https://beast.community/workshop_continuous_diffusion_yfv.
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The tree generated by TreeAnnotator is in standard
NEXUS tree file format that can be loaded into any tree
drawing package that supports this. However, it also contains
additional information that can only be displayed using the
FigTree program (fig. 3C). On the left-hand side of the FigTree
window are the options and settings which control how the
tree is displayed. In the Layout panel, we can, for instance, not
only select the check-box Align Tip Labels to increase clarity
but also plot a time scale axis for this evolutionary history (by
selecting Scale Axis and deselecting Scale Var).

Step 5: Visualizing the Continuous Phylogeographic
Reconstruction
The program spreaD3, which stands for “Spatial Phylogenetic
Reconstruction of EvolutionAry Dynamics using Data-Driven
Documents” (D3), can be used to visualize the output from
continuous phylogeographic inference (Bielejec et al. 2016). It
is a user-friendly application to analyze and visualize phylody-
namic reconstructions resulting from Bayesian molecular
clock inference of sequence and trait evolutionary processes.
This program also allows for visualization on custom maps
and generates HTML pages for display in browsers, such as
Firefox, Safari, and Chrome. One of the functions of spreaD3
that relates to continuous phylogeographic analysis is the
visualization of location-annotated MCC trees (fig. 3D). A
detailed tutorial for this particular step can be found on
the program website (https://rega.kuleuven.be/cev/ecv/soft-
ware). A second option is to use the R functions implemented
in the package “seraphim” (Dellicour, Rose, Faria, et al. 2016)
to map the MCC and associated credible intervals onto cus-
tomized maps. A detailed tutorial for using “seraphim” to
map the outcome of the continuous phylogeographic infer-
ence performed in this protocol can be found on the corre-
sponding GitHub repository (https://github.com/sdellicour/
seraphim).

Related Models and Methods
Since its initial implementation, several additional models for
continuous phylogeography and trait evolution have been
implemented in BEAST, with similar steps for carrying out
analyses. Notably, the relaxed directional random walk model
extends the RRW model by accommodating directional
trends in spatial diffusion that can vary along the phyloge-
netic tree (Gill et al. 2017). This model has, for instance, been
used to infer the phylogeographic history of the porcine del-
tacoronavirus while accommodating latitudinal (South–
North) drift of its spread in China (He et al. 2020).

A common issue in continuous phylogeography is deal-
ing with sampling locations that are unavailable or not
known with sufficient precision. Although the RRW model
conditions on unique sampling coordinates for each sample,
publicly available sequences are frequently only associated
with relatively large administrative regions (or even coun-
tries). In such situations, polygons can be defined and used
to specify prior ranges of sampling coordinates. This can be
done by defining a uniform sampling probability within the
unique polygon associated with a sampled sequence

(Nylinder et al. 2014) or alternatively by using prior knowl-
edge in order to specify heterogeneous sampling probabili-
ties over a collection of subpolygons assigned to each
sequence (Dellicour et al. 2020). In the latter approach, ex-
ternal data, such as outbreak locations or host species dis-
tributions, can be used to subdivide the administrative area
of origin into a collection of subpolygons associated with
different sampling probabilities. These polygons can also be
used as an alternative to the default “jitter” option (intro-
duced above) that is used to avoid duplicate sampling coor-
dinates. When several sequences share the exact same
sampling coordinates (e.g., when sequences are sampled
from the same city and all assigned a location correspond-
ing to the city’s centroid), this option adds uniformly drawn
noise from a user-defined window to location coordinates.
However, using the jitter option to add noise may present
problems such as sampling coordinates for pathogens with
terrestrial hosts falling in areas of water (Dellicour, Baele,
et al. 2018).

Finally, a range of post hoc analyses for continuous phy-
logeography have been implemented in the R package
“seraphim” (Dellicour, Rose, and Pybus 2016; Dellicour,
Rose, Faria, et al. 2016). These include extraction of the
spatiotemporal information embedded in posterior trees
obtained by continuous phylogeographic inference, estima-
tion of dispersal statistics (e.g., lineage dispersal velocity,
diffusion coefficient, evolution of the maximal wavefront
distance), as well as investigation of the impact of environ-
mental factors on the dispersal velocity (Dellicour et al.
2017), frequency (Dellicour, Baele, et al. 2018), and position
(Dellicour et al. 2019) of viral lineages. The package
“seraphim” can also be used to generate graphical represen-
tations of continuous phylogeographic reconstructions
(Faria et al. 2018; Rakotomalala et al. 2019; Candido et al.
2020).

The RRW model has been recently applied in numer-
ous phylogeographic analyses aimed at understanding the
dispersal history of viruses responsible for notable epi-
demics, such as bluetongue virus (Jacquot et al. 2017),
Ebola virus (Dellicour, Baele, et al. 2018), HIV (Faria
et al. 2019), foot-and-mouth disease virus (Duchatel
et al. 2019), and Lassa virus (Ehichioya et al. 2019).
Although the development of the RRW model was pri-
marily motivated by phylogeographic applications, it has
also been frequently used to study the evolutionary his-
tory of other continuous traits such as phenotypic meas-
ures (Bedford et al. 2014; Hassler et al. 2020; Monjane et al.
2020; Zhang et al. 2020).
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Data Availability
A related and detailed tutorial focusing on the present YFV
example has been added to the BEAST community website:
https://beast.community/workshop_continuous_diffusion_yfv.
All input files required for this tutorial and associated
with our step-by-step protocol are available on the tuto-
rial web page.
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