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Abstract

A biophysically detailed description of the mechanisms of the primary vision is still being

developed. We have incorporated a simplified, filter-based description of retino-thalamic

visual signal processing into the detailed, conductance-based refractory density description

of the neuronal population activity of the primary visual cortex. We compared four mecha-

nisms of the direction selectivity (DS), three of them being based on asymmetrical projec-

tions of different types of thalamic neurons to the cortex, distinguishing between (i) lagged

and nonlagged, (ii) transient and sustained, and (iii) On and Off neurons. The fourth mecha-

nism implies a lack of subcortical bias and is an epiphenomenon of intracortical interactions

between orientation columns. The simulations of the cortical response to moving gratings

have verified that first three mechanisms provide DS to an extent compared with experimen-

tal data and that the biophysical model realistically reproduces characteristics of the visual

cortex activity, such as membrane potential, firing rate, and synaptic conductances. The

proposed model reveals the difference between the mechanisms of both the intact and the

silenced cortex, favoring the second mechanism. In the fourth case, DS is weaker but signifi-

cant; it completely vanishes in the silenced cortex.DS in the On-Off mechanism derives

from the nonlinear interactions within the orientation map. Results of simulations can help to

identify a prevailing mechanism of DS in V1. This is a step towards a comprehensive bio-

physical modeling of the primary visual system in the frameworks of the population rate cod-

ing concept.

Author summary

A major mechanism that underlies tuning of cortical neurons to the direction of a moving

stimulus is still debated. Considering the visual cortex structured with orientation-selec-

tive columns, we have realized and compared in our biophysically detailed mathematical

model four hypothetical mechanisms of the direction selectivity (DS) known from

experiments. The present model accomplishes our previous model that was tuned to
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experimental data on excitability in slices and reproduces orientation tuning effects in

vivo. In simulations, we have found that the convergence of inputs from so-called tran-

sient and sustained (or lagged and nonlagged) thalamic neurons in the cortex provides an

initial bias for DS, whereas cortical interactions amplify the tuning. In the absence of any

bias, DS emerges as an epiphenomenon of the orientation map. In the case of a biased

convergence of On- and Off- thalamic inputs, DS emerges with the help of the intracorti-

cal interactions on the orientation map, also. Thus, we have proposed a comprehensive

description of the primary vision and revealed characteristic features of different mecha-

nisms of DS in the visual cortex with columnar structure.

Introduction

Mathematical models of primary vision, aimed to be comprehensively comparable with exper-

imental data are still under development. In the present paper we implement mechanisms of

direction selectivity (DS) of primary visual cortex neurons into a model that has already

shown its ability to reflect experimental data on cortical tissue excitability and orientation

selectivity.

Visual information processing begins in the retina and subsequently passes through the

visual thalamic structures (primarily the lateral geniculate nucleus, or LGN) to the primary

visual cortex [1,2,3]. The neurons of the primary visual cortex are selective to various charac-

teristics of a stimulus, such as orientation, the direction of motion, color, etc. [4,5,6]. Neurons

preferring a particular orientation (orientational neurons) or direction (directional neurons)

of a stimulus are unevenly distributed within the primary visual cortex and are grouped into

the so-called functional columns or modules [7,8,9]. The columnar structure constitutes so-

called hypercolumns, each including a full set of the orientational or directional columns. The

functional maps with orientation hypercolumns have been found in tree shrews, ferrets, cats,

and primates. Our modeling is focused to the visual cortex with the orientation hypercolumns.

However, we also consider DS mechanisms revealed in rodents, for which experiments with

intracellular recordings and optogenetic stimulation have been more developed.

Some important questions regarding the mechanisms underlying DS remain unanswered.

One of the questions is whether DS is inherited from the directionally selective subcortical

neurons (mainly geniculate cells) or is reconstructed in the cortex de novo. DS of geniculate

cells is well-documented for lagomorphs and rodents [10], but data on carnivores and pri-

mates point to some directional bias in geniculate cells rather than a prominent DS [11,12].

Recently, Lien and Scanziani [13] used an optogenetic approach to show that even in mice, the

cortical DS emerges de novo at the convergence of thalamic synapses on the same cortical neu-

ron, whereas at the geniculate level, DS is negligible.

Most DS models include a time delay between the responses of the spatially shifted neigh-

boring geniculate neurons terminating at the same cortical cell [14], similar to the mechanisms

revealed in the retina [15]. These geniculate neurons reveal either an increase or a decrease in

their activity in response to the light stimulus (so-called On and Off cells) or differences in the

temporal characteristics of their responses. In the second case, LGN neurons are categorized

as (i) transient and sustained (T-S), which generate fast- and slow-decaying responses, respec-

tively [13,16,17], or (ii) lagged and nonlagged (L-N), depending on the latency to discharge

after spot onset [18,19,20]. Such neurons exist in cats [17,19], monkeys [21,22], and mice [10]

and have been proposed to provide the spatiotemporal offset for cortical DS [19,23].
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The physiological mechanism of the delay formation was studied in several experimental

works [24,25], and it has been demonstrated that the delay between responses to the center

and surrounding area of a receptive field is determined by GABA-A (gamma-aminobutyric

acid) receptors within the LGN. A complex model of DS has also been proposed based on spe-

cific convergent projections of the signals from LGN cells with and without a delay and intra-

cortical interactions [26]. In this model, the temporal difference between the lagged and

nonlagged cell responses and the structure of LGN inputs provide DS in V1. An alternative

mechanism of DS based on T-S thalamic neurons converging on the same cortical neuron has

been recently proposed by Lien and Scanziani [13]. The authors suggested that the T-S neu-

rons generate a fast- and a slow-decaying excitatory postsynaptic current (EPSC), respectively,

which combine into a compound EPSC. Thalamic neurons prefer distinct spatial phases, so

the decay of the compound EPSC changes with the phase. Time-staggered summation results

in large or small F1 modulations of the compound EPSC depending on the direction of the

simulated motion. Thus, the DS of the cortical neuron depends on the phase shift between the

T-S thalamic neurons.

Alternatively, recently reported experimental data obtained through the use of optogenetics

[27] and multielectrode electrophysiological recordings [28] suggest that DS in V1 is deter-

mined by a displacement of On and Off subzones of the receptive fields of V1 neurons. How-

ever, a mechanism that is based on the On-Off subzone displacement and provides DS for

symmetric white-and-black stimuli like gratings is unclear. Summarizing, some alternative

mechanisms of DS have been discussed in the literature; however, the dominant mechanism is

still unknown.

Besides of feedforward mechanisms, DS is highly dependent on the intracortical interac-

tions, which follows even from the fact of weak correlation between the preferred directions

evaluated from the thalamic input and the neuronal spike response [13]. The intracortical

interactions provide some important effects of the primary cortex functioning, such as

the prolonged responses to brief stimuli [29] or apparent motion [30]. As shown in experi-

ments and models, the balanced intra-layer cortical interactions between inhibitory and

excitatory populations play a major role in shaping the dynamic stimulus representations in

the early visual cortex [31,32]. The question of interplay between the feedforward DS mech-

anisms and the intracortical interactions is an open question brought up in the present

paper.

In our previous works, we extended our biophysically detailed, conductance-based popu-

lation model of cortical orientation tuning [33,34]. This approach is alternative to compre-

hensive network approaches that simulate single neurons explicitly [35,36]. A single

population is defined here as a large number of similar uncoupled neurons receiving similar

inputs. In these notations, the cortex is considered a layered continuum of coupled popula-

tions. Due to the combination of (i) the population level description, which is optimal in the

framework of the population coding of information, (ii) a quite accurate population

approach, namely, a conductance-based refractory density (CBRD) method [37,38], and (iii)

a hypercolumnar structure description of V1, the model was able to reproduce a vast series of

experimental observations obtained in V1 in vitro and in vivo. In the present paper, we dis-

cuss the reproduction of the abovementioned three DS mechanisms using this model by rely-

ing on (i) lagged and nonlagged, (ii) transient and sustained, or (iii) On- and Off-neurons.

Moreover, we explain whether DS may occur as an epiphenomenon due to the orientational

hypercolumns in the absence of any thalamo-cortical bias. Using these four models, a poten-

tial role of intracortical interactions in DS has been identified by mimicking the silencing of

the cortex.
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Results

We present simulations performed with the model (see Methods), which combines the

detailed, conductance-based description of neuronal population activity in area V1 with the

simple, filter-based description of the retino-thalamic processing of visual signals. The general-

ized model retains the advantages of the former model [34], relating simulations to different

experimental observations obtained in slices and in vivo in the visual cortex, and allowing the

consideration of experiments with moving stimuli. These stimuli, such as moving gratings (Fig

1A, left) are used to calculate the fields of activity of the LGN neurons having center-surround

receptive fields (RFs) (Fig 1A, middle), and the activity of the V1 area having neurons with

more sophisticated RFs (Fig 1A, right). The elements are specific to each of DS mechanism.

According to the model, cortical neurons receive inputs from a particular “footprint” in the

LGN; this footprint is a domain in the LGN that sends axons to a given V1 neuron [40]. This

V1 neuron receives thalamic input only from that footprint domain of the LGN. The orienta-

tion and direction selectivity of cortical neurons are determined based on the properties of the

LGN neurons and the structure of the footprint. The elongation of the footprint determines

the cortical neurons’ orientation preference. DS depends on the asymmetry of the V1 neuron

projections received from lagged (L) versus nonlagged (N), transient (T) versus sustained (S),

or On- versus Off-neurons, for the L-N, T-S, or On-Off mechanisms of DS, respectively. Data

on the asymmetry of those connections is lacking in the experimental literature, so for simplic-

ity our simulation assumes that convergent L and N (or T and S) inputs to a cortical cell are

spatially segregated, similar to the assumption about adjacent elongated T- and S-cell subfields

made in the alternative modeling work [36]. In our simulations, the footprint of a V1 neuron

splits into two halves along the axis of elongation, each sending signals from either lagged or

nonlagged thalamic cells (Fig 1A, right). A similar footprint is taken for the T-S mechanism

(Fig 1B, middle). The elongation of the footprints provides the orientation selectivity while

their width determines the optimal wavelength of the stimulating gratings. For the On-Off

mechanism, the footprint is shaped like the shifted, oval On- and round Off-subdomains (Fig

1B, right). The elongation of the On-subdomain provides an orientation selectivity even for

the stimuli that evoke only the On-pathway. The magnitude of the shift effects the optimal

wavelength of the stimulating gratings. This footprint structure is a prototype of that of typical

RFs [28,41].

The sum of the inputs from the thalamic cells depends on the direction of the stimulus in

the L-N and T-S mechanisms (Fig 1B). Together with a threshold-linear-like or sigmoid-like

nonlinearity, this sum determines the cortical cell activity, which is significantly different for

the preferred and non-preferred directions.

In the On-Off mechanism, the sum is identical for both directions, if the stimulus is as

shown in Fig 1B (i.e. the displacement of the white and black subzones in corresponance to

the displacement of the On- and Off-subfields of the footprint). This is also the case for the

moving gratings of any wavelength. For gratings moving with a unity velocity, this issue can

be clarified as follows. We can approximate the thalamic input through the On-subfield of

the footprint as |sin(t)| and the Off-input as |sin(t + π)|, and we can introduce a ratio of Off-

to-On contributions k and a subfield displacement Δφ. The total input when the stimulus is

moving in one direction is |sin(t)| + k |sin(t + π + Δφ)|, and for the opposite direction, it is

|sin(−t)| + k |sin(−t + π + Δφ)|. The inputs have equal amplitudes for any k and Δφ, which do

not provide any preference for any direction. Thus, in the considered cases, DS cannot stem

from just the subcortical projections, but it may derive only from nonlinear interactions

within the orientation map.
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Tuning of the intracortical connections

Nonlinear interactions within the orientation map depend on the tuning of intracortical con-

nections (Fig 2A). We believe that an important characteristic of recurrent connection tuning

is the network ability to maintain its activity in response to a short stimulus. In experiments

Fig 1. Schematic representation of neuronal connections in the mechanisms of directional selectivity (DS). A. An example of connections in the DS

mechanism based on the lagged (L) and nonlagged (N) neurons. A V1 neuron that prefer upward direction (upper white dot on the right panel)

receives thalamic input from the nonlagged cells (upper white dot on the middle panel and red arrow between the middle and right panels) located in

the upper part of the footprint (red oval) and from the lagged cells (lower black dot on the middle panel and blue arrow between the middle and right

panels) located in the upper part of the footprint. It is vice versa for the downward direction preferring neuron (lower white dot on the right panel). The

orientation map was generated using the algorithm from [39] for the purpose of illustration. Speckled texture in LGN plot illustrates homogeneous

distribution of lagged and nonlagged cells. B. Footprints in the three DS mechanisms: lagged-non-lagged, transient-sustained (T-S), and On-Off. Dots

denote the time moments when the stimuli begin to excite the thalamic cells. (The initial stimulus is a gray screen). Sum of the inputs from the thalamic

cells (red and blue curves) and a sigmoid-like nonlinearity of cortical neuron excitation determine the cortical cell activity (green), which depends on

the direction of the stimulus. In the On-Off mechanism, the sum is identical, hence DS may derive only from nonlinear interactions within the

orientation map. σ is the spatial scale in LGN, V is the stimulus speed, Lag is the characteristic delay of the L-neurons relative to N-neurons.

https://doi.org/10.1371/journal.pcbi.1008333.g001
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with monkeys [29], a short (50ms) spot of light evokes an activity that lasts more than 200 ms.

A similar effect is observed in rodents and is shown to be provided by recurrent cortical excit-

atory circuits [42]. Our simulation of the response to a round spot produces results very simi-

lar to those of the experiment (Fig 2B). This effect is nontrivial because all the processes that

provide positive feedback in the dynamical system under consideration are much slower than

the response. The response is most sensitive to the recurrent excitatory connection strengths,

�gAMPA;E and �gNMDA;E, which reveals the role of intracortical recurrent excitation in maintaining

the cortical activity. With all excitatory intracortical conductances reduced by 25% the

response duration dramatically decreases. This effect will be a subject of future analysis as it is

out of the scope of the present paper. However, here we explore the model with sharply tuned

intracortical connections to study the effects of intracortical interactions on DS pre-deter-

mined by different thalamo-cortical footprints.

Three mechanisms provide DS

We have examined the mechanism of DS by simulating responses to horizontal gratings of a

spatial wavelength 1.2˚ moving up and down with the temporal frequency of 2 Hz (Fig 3A).

Simulated cortical domain contained 6 orientation hypercolumns located, for simplicity, on a

rectangular grid (Fig 3B). In response to the stimulus, the bright spots in the patterns of activity

averaged over a large time period correspond with high rates of firing of the V1 excitatory neu-

rons (Fig 3C). The spots appear in the columns that prefer an orientation similar to that of the

stimulus. The patterns are not symmetrical with respect to the central vertical axis, which is

due to DS, i.e., different direction preferences for neurons of the neighboring columns with

the same orientation preferences belonging to different orientation hypercolumns. The peaks

of E-cell activity are located in different hypercolumns depending on the direction of the grat-

ing movement. These simulated patterns are similar to those registered with optical imaging,

such as those obtained in the cat visual cortex [6] (see their Fig 4A and 4B). The spots have a

similar size and smooth shape and shift after a change in the stimulus direction.

Fig 2. Schematic of connections (A) and long-lasting response to a short stimulus (B). Response to a round spot of light of the radius 0.5˚ and the

duration 50ms. The response obtained with the default settings (dashed line) persists much longer than with the excitatory intracortical conductances

reduced by 25% (solid gray).

https://doi.org/10.1371/journal.pcbi.1008333.g002
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Fig 3. Responses to moving gratings reveal strong directional selectivity (DS) for three mechanisms. A. Stimulus within the domain that

retinotopically projects onto the modelled cortical domain (B). B. The V1 area includes six orientation hypercolumns with pinwheels (dots).

C. Three DS mechanisms with correspondent footprints (top row) give different patterns of the firing rate of excitatory neurons averaged

over the initial 1600 ms time period (middle row). For all mechanisms, left panels are the responses to horizontal gratings moving up and

right panels to gratings moving down. Neurons located under the white circle have the footprints shown above the activity patterns. The

bottom row shows the firing rates of the excitatory neurons located within the white circles; the firing rate is much stronger for the

downward than for the upward drift of the gratings. D. The tuning diagrams for the firing rate (in Hz) versus the stimulus direction (in

degrees) at the site shown in C. The direction selectivity index (DSI) is given below.

https://doi.org/10.1371/journal.pcbi.1008333.g003
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Fig 4. Responses to moving gratings reveal directional selectivity (DS) in the absence of any specific DS mechanism but not for the artificially

inhibited cortex. A. Patterns of the firing rate of E-neurons averaged over the initial 1600 ms time period (top row) in response to the gratings

moving up (left) and down (right) and correspondent traces at two sites S1 and S2 (middle and bottom rows). B. The same patterns (top row) and

traces (bottom row) for the artificially inhibited cortex. C. The tuning diagrams for the firing rate at the sites S1 and S2 shown in A. The direction

selectivity index (DSI) is given below.

https://doi.org/10.1371/journal.pcbi.1008333.g004
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The comparison of three DS mechanisms in Fig 3 shows that (i) DS is strong in all three

cases (Fig 3C, bottom) and characterized with sharp tuning diagrams (Fig 3D), high values of

the direction selectivity index (DSIs) for a representative site (Fig 3D) and considerable values

of the DSIs averaged across the entire simulated cortical domain for the firing rate (0.29, 0.46

and 0.28 for the L-N, T-S, and On-Off models, respectively); (ii) DS maps are similar for L-N

and T-S mechanisms; (iii) the DS map for the On-Off mechanism is different, though the

number of spots is comparable; (iv) in all the cases, the direction response is not well-aligned

with the orientation map shown in Fig 3B; (v) the T-S mechanism gives the most stable

response on each cycle of the gratings; and (vi) the preferred direction (downward) in the L-N

model corresponds with the direction from the lagged to nonlagged subfields of the footprint.

The preferred direction in the T-S model corresponds to the direction from the sustained

towards transient subfields.

Pinwheel structure and intracortical interactions lead to DS without any

subcortical bias

A question arises regarding to what extent DS may be caused by intracortical interactions

unbiased with the structure of the footprints. To answer this question, we have considered a

model with a footprint of the same elongation but without any discrimination of LGN cells

within the footprint. Thus, the thalamo-cortical projections were set to be unbiased towards

the stimulus direction. In this model, cortical neurons do not receive any precortical informa-

tion about the stimulus orientation. At the same time, the pinwheel structure of the thalamic

input provides an intracortical bias because a neuron may receive unequal signals from the

neighboring neurons with similar and opposite preferences. The model shows that the

response patterns are symmetrical (Fig 4A) according to the orientation map (Fig 3B), as

expected; however, DS is still present, as seen from the tuning diagrams and DSIs given for

two representative sites in Fig 4C. Though, DS is weaker (averaged over the entire domain DSI

for the firing rate is 0.21), transient (Fig 4A, bottom), and the neurons preferring upward or

downward directions are located in zones different from those for the three DS models dis-

cussed above. These facts along with the asymmetry of the patterns in Fig 3C lead to the con-

clusion that the direction maps obtained with the explicit DS mechanisms are determined by

the precortical bias rather than the intracortical interactions. At the same time, the strength of

DS may strongly depend on the intracortical interactions.

To reveal a role of intracortical connections (Fig 2A), the cortex was artificially inhibited.

For that purpose we supply the inhibitory neurons with extra depolarizing current 100pA that

mimicks the effect of photoactivation of cortical inhibitory interneurons expressing channelr-

hodopsin-2 [13]. It resulted in increased inhibition, which almost silenced the principle

neurons.

In the case without any specific DS mechanism, the artificial inhibition of the cortex results

in a significant reduction in the response (Fig 4B). The response is no longer selective to direc-

tion (Fig 4B, bottom); however, it is still weakly selective to orientation. Locations of the firing

neurons (gray spots in Fig 4B, top) correspond to the horizontal orientation preference regions

on the orientation map in Fig 3B. The dramatic decrease in the response in comparison with

that for the intact cortex (Fig 3A) reveals a major role of the intracortical interactions in

strengthening the tuning to feature detection.

Contribution of cortical interactions is different for different DS mechanisms

Different mechanisms of DS are compared in Fig 5. A significant transient but weak steady DS

was observed with the On-Off mechanism (Fig 5C, intact cortex): the amplitude of current
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Fig 5. Inhibition of the cortex. Lagged-nonlagged (A), transient-sustained (B), and On-Off (C) models of DS as well as the case without any

subcortical bias towards the direction (D). In each case, upper row–stimuli, middle and bottom rows–simulated V1 signals in the conditions of

intact (bottom row) and the artificially inhibited cortex (middle row). The signals are from the representative neuron in the cortical site S1

marked by the white circle in Fig 3C. E. The tuning diagrams for the firing rate (in Hz) of the same neuron as in A-C in the case of inhibited

cortex, to be compared with those for the intact cortex shown in Fig 3D. The direction selectivity index (DSI) is given below.

https://doi.org/10.1371/journal.pcbi.1008333.g005
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oscillations in the case of the preferred direction compared with the non-preferred one was

significantly larger for the two initial cycles of the gratings, whereas it was only moderately

increased for the later cycles. An even weaker DS was observed in the case without any direc-

tional mechanism (Fig 5D, intact cortex). Strong directionality can be observed in two cases—

L-N and T-S mechanisms (Fig 5A and 5B, intact cortex)—in which the magnitude of the oscil-

lations is significantly larger for the preferred direction. In all the cases, the responses to the

orthogonal, horizontal gratings are smaller than for vertical gratings moving in both preferred

and non-preferred directions, revealing strong orientation selectivity (see the tuning diagrams

in Figs 3D and 4C).

Following Lien and Scanziani [13], we simulated responses of a V1 neuron to gratings mov-

ing in preferred and non-preferred directions under the conditions of an artificially inhibited

cortex for each of the three DS mechanisms (Fig 5). The amplitudes of the firing rates are

much smaller with the inhibited cortex compared to the intact cortex. The effect of cortical

inhibition is different in the three models. A weak direction selectivity could still be observed

for the L-N and T-S mechanisms (Fig 5A and 5B, cortex inhibited; Fig 5E), but no difference

in the response to the preferred and non-preferred stimuli was evident for the On-Off mecha-

nism (Fig 5C, cortex inhibited; Fig 5E), such as in the case without a DS mechanism (Fig 5D,

cortex inhibited). For the On-Off model, a weak temporally modulated response was observed

even when the gratings moved in the orthogonal direction, which was not the case for the

other models. The direction tuning diagrams for the inhibited cortex (Fig 5E) demonstrate

weaker tuning than those for the intact cortex (Figs 3D and 4C). The latter ones are more

sharp because of intracortical shunting inhibition [43].

Vertical DSI patterns. In the case of the intact cortex, the distribution in the cortical

space of the DSI is calculated for the vertical direction, which reveals complex, asymmetrical

patterns for the L-N, T-S, and On-Off models (Fig 6A, left panels of each of the left three pairs)

that do not correspond to the thalamic input pattern structured by the orientation map of the

thalamic signal, shown in Fig 3B. In contrast, the inhibition of intracortical interactions leads

to either symmetrical distributions of the vertical DSI (Fig 6A, right panels for L-N and T-S

models) or disappearance of the selectivity (Fig 6A, right panels for the On-Off model).

Mean DSIs. In the case of the intact cortex, mean DSIs for the firing rate are high for the

L-N, T-S, and On-Off models (0.29, 0.46, and 0.28, respectively) and are comparable with

those observed in animals [44,45]. The inhibition of the cortex results in an expected crucial

reduction of the mean firing rate (from 11-13Hz to about 1Hz). DSIs increase in the L-N and

T-S models (0.37 and 0.60, respectively), which shows that intracortical tuning has a “contami-

nating” effect of as a price for amplification. DS vanishes in the On-Off model, as expected and

explained at the beginning of the Results section. In the case of the intact cortex, the DSI values

based on the firing rates are greater than those for the voltage (Fig 6A, compare the numbers

in the bottom two lines), which reveals the threshold nonlinearity as in experiments [13,44].

The effect is opposite for the inhibited cortex where most voltage modulations are subcortically

evoked, subthreshold, and thus do not modulate the firing rate.

Direction maps. Complex patterns are also observed in the preferred direction maps for

the intact cortex (Fig 6B). The patterns for the inhibited cortex are more regular, being struc-

tured by the thalamic input patterns. (The patterns for the inhibited cortex in the On-Off

model and the model without any specific DS mechanism are insignificant because of negligi-

ble DSIs.) That the preferred directions of the spike response differ from those of the thalamic

input is consistent with experimental data [13]. This difference is revealed to be due to cortex

inhibition, which shows the contribution of intracortical interactions.

The model without any specific DS mechanism has a symmetrical vertical DSI pattern in case

with an intact cortex (Fig 6A, left panel in the right pair), in contrast to the other models. The
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Fig 6. DSI and the direction maps. A. The index of preference of the vertical direction distributed in the cortical domain, calculated for the excitatory

neuron firing rate obtained in 8 models presented in Fig 5A–5D. Distribution of direction selectivity index (DSI) values is characterized by the

box plots. Spatially averaged values of the DSI calculated for locally preferred directions are given at the bottom (mean+/-standard deviation), for both

the firing rate and the membrane potential of the excitatory population, as well as the averaged across time and space firing rate and voltage

modulation. Note that the DSI for voltage can be negative, when calculated for the preferred direction pre-determined with the firing rate. B. The

preferred direction maps. Pinwheel centers are marked by dots. C. The vertical DSI distribution and the preferred direction maps for the T-S model

with modified parameters: (i) doubled wavelength (2.4 deg) of the stimulating gratings; (ii) doubled frequency (4 Hz); (iii) halved NMDA conductances.

https://doi.org/10.1371/journal.pcbi.1008333.g006
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DS is considerable (mean DSI 0.21). The direction map (Fig 6B, left panel in the right pair) is

determined mostly by the orientation-tuned thalamo-cortical projections and intracortical

interactions. Because of the model’s construction, this map is not affected by any specific tun-

ing of input or intracortical connections to the directions of stimuli. That is whythe similarity

between this map and those of other models with an intact cortex (Fig 6B, left panels of each of

the left three pairs) reflects a contaminating contribution of the cortex on the direction tuning

of neurons, different from the direction tuning caused by the thalamic input. The direction

map of the T-S model is the least affected by intracortical interactions.

Variation of parameters. We varied some parameters of the stimulating gratings in the

T-S model (Fig 6C) and compared the simulated results with the control (Fig 6A and 6B, third

panels). The comparison show that DS is stronger for faster and finer stimuli (DSIs for the fir-

ing rate were 0.29, 0.46, and 0.70 for 1, 2, and 4Hz, respectively; 0.64, 0.46, and 0.35 for 0.9, 1.2,

and 2.4 degrees, respectively). This is in contrast to the response amplitudes, which are greater

for bigger and slower visual patterns (maximum firing rates were 12, 11, and 8.4 for 1, 2, and

4Hz; 5.4, 11, and 21 for 0.9, 1.2, and 2.4 degrees, respectively). The blockage of NMDA recep-

tors is known to reduce visual responses without significantly changing the degree of DS [46–

48]. In our simulation, halving the NMDA conductance (Fig 6C, right panels) consistently

increased the mean DSI (from 0.46 to 0.55) with a reduced firing rate (from 11 to 9Hz) and

produced avertical DSI pattern much closer to the one for the inhibited cortex (compare with

Fig 6A) and the DS map that is an intermediary between the maps for the intact and inhibited

cortex.

Synaptic activity underlying DS

Synaptic mechanisms of DS in different models are illustrated in Fig 7. For the location S1

marked by a circle in Fig 3C, the LGN input, synaptic conductances, mean voltage, and firing

rate are shown in Fig 7 for all the models: L-N (Fig 7A), T-S (Fig 7B), On-Off (Fig 7C) and

with no specific DS mechanism (Fig 7D). These simulated signals are similar to experimental

data, such as those from [43,44] and [49] (their Fig 5). As expected, the shape of the membrane

potential that is traced in response to the preferred stimulus is close to sinusoidal, with maxima

and minima corresponding to the oscillations of the gratings and without extra peculiarities.

The mean peak amplitude of voltage modulation was about 10mV in the L-N, T-S and On-Off

models, which is within the range of the experimental values (mean depolarization 9.5mV and

hyperpolarization 3.7mV in [43], voltage modulation about 22 mV for the representative cells

in [44] (their Fig 2A), 10mV in [50] and 8mV in [49]). In response to the non-preferred stimu-

lus, this measure is about 2mV in our models, 12mV in [44], 5mV in [50], and 2mV in [49].

Our peak value for the firing rate of excitatory neurons is about 20Hz, which does not exceed

the experimental values (80Hz in [44], 40Hz in [43], and 50Hz in [13]). The firing rate bumps

are more narrow than those for voltage, similar to those of experiments [43,44]. The input and

synaptic conductances are within the range of experimental values. The input conductance of

excitatory neurons at the resting state in the model is about 18nS, which is comparable to the

mean value of 16nS in the experiment [49]. The total synaptic conductance reaches 30nS in

our models. After subtracting the total synaptic conductance in the state of the gray screen

stimulation (9nS), the synaptic conductance modulation (21nS) is comparable to the mean

experimental value (16nS) from [49].

As shown in Fig 7A–7C, in all three DS models, the oscillations of the thalamic input to V1

in the case of non-preferred direction are small. The thalamic input oscillations in the case of

the preferred direction are similar in all the models. The strongest tuning of the input to the

cortex was observed in simulations with the T-S model. The total set of input signals for any
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neuron consists of NMDA, AMPA, and GABA synaptic conductances that include contribu-

tions of both thalamocortical and intracortical connections. NMDA conductance is the largest

component in the responses of all the models; however, note that this component is voltage-

dependent due to magnesium blockage, and thus to exclude an effect of voltage oscillations,

the NMDA-signal is plotted with the voltage-dependency factor fixed to 1, as if for zero-mag-

nesium conditions. Therefore, its values are not to be directly compared with the AMPA and

GABA conductances. In any case, all three synaptic components react to the change of stimu-

lus direction. Oscillations of glutamatergic components are the most distinct features in the

comparison between the responses to preferred and non-preferred stimuli. It is the main

source for the voltage and firing rate modulations that produce DS. Comparing all models, the

oscillations of the NMDA-component in the case of the preferred stimulus are the largest and

most stable for the T-S mechanism.

Fig 7. Intracortical activity. Signals from one site of V1 (S1, circle in Fig 3C) in response to gratings moving in non-preferred (left) and preferred

(right) directions in the lagged-nonlagged (A), transient-sustained (B), and On-Off (C) models of DS, as well as in the case with no specific DS

mechanism (D). Simulations as in Fig 4. Top to bottom: the presynaptic firing rate received by V1 excitatory neurons (magenta); dimensionless

excitatory (AMPA [black] and NMDA [red]) and inhibitory GABA (blue) synaptic conductances at the intracortical recurrent connections; the mean

membrane potentials of the E- (red) and I- (blue) populations; the E- (red) and I- (blue) population firing rates. The NMDA conductance here does not

consider the factor of the voltage-dependent magnesium block. The AMPA conductance was multiplied by 10 to be compared with the GABA and

NMDA components.

https://doi.org/10.1371/journal.pcbi.1008333.g007
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In contrast to NMDA and AMPA, the GABA-component was rather constant over time

(Fig 7). Minor GABA- and larger NMDA- and AMPA-oscillations were in-phase. Both mean

voltage and firing rate oscillate during stimulus drift in all the models. In contrast to the T-S

model, the oscillations in the L-N and On-Off models were larger for the first and second

cycles of the gratings and then stabilized (see Fig 3C and compare Fig 7B to Fig 7A and 7C). A

strong two- or three-fold decrement in both mean voltage and firing rate was observed up to

the third wave, but thereafter, the oscillations were stable. The oscillations of firing rate are sta-

ble on larger time scale (Fig 3C). Therefore, the simulations indicate that the T-S model as the

most reliable for DS.

In the case with no specific DS mechanism (Fig 7D), for the particular site of the cortex

(S1), shown in Fig 4A, synaptic conductance modulation is similar for both directions of the

stimulus according to the tuning diagram (Fig 4C). The magnitude of the conductance modu-

lations is comparable to those for the L-N and On-Off models, pointing again to the dominant

role of intracortical activity evoked not by directional but by orientation-tuned thalamic input.

The CBRD-model allows for the reconstruction of a representative neuron’s behavior with

input variables, such as synaptic conductance, known from the population activity. We simu-

lated a representative neuron of the E-population in the T-S model to compare it with experi-

mental data from [13] (see their Fig 1c and 1e), where the T-S mechanism has been

highlighted. The representative E-neuron generates spikes only during the presentation of the

preferred direction (Fig 8, top right) whereas, in the case of the non-preferred direction, only

subthreshold depolarization was observed (Fig 8, top left). These voltage traces recorded in

Fig 8. Amplitude modulation of thalamic excitation is direction selective in the T-S model. Response to moving

gratings of the non-preferred (left) and preferred (right) directions in in the transient-sustained model of DS as in the

experiment by Lien and Scanziani [13] (see their Fig 1c and 1e). Top to bottom: the membrane potential of a

representative excitatory neuron (green); the population firing rate (black); the current as though it was recorded in the

voltage–clamp at the holding voltage of -70mV in the cases of an intact (Control, grey) and an inhibited cortex

(Thalamic EPSC, black). The signals are from the representative neuron in the cortical site S1 marked by the white

circle in Fig 3C.

https://doi.org/10.1371/journal.pcbi.1008333.g008
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response to moving gratings are consistent with those observed in experiments in vivo when

the shape and amplitude of voltage oscillations are compared [13] (see their Fig 1 and present

Fig 8), [49,51]. In the null direction, the voltage and current modulation are significantly

larger and spikes are much more numerous. As explained in [13], the temporal modulation of

the excitatory postsynaptic current (EPSC) provided by the thalamic input is different for the

preferred and non-preferred stimuli, whereas the integrated charge (Q) is maintained (com-

pare the fulfilled areas in Figure 1 from [13] and Fig 8, bottom right and left). Whereas the

charges in our intact cortex simulations were different for the preferred, orthogonal, and

opposite directions (470, 216, and 259pC, respectively), the charge was the same for the tha-

lamic EPSC evaluated with cortex inhibition (205, 196, and 197pC). The maintenance of the

total input charge in the experiment and in our simulations verifies that the transient and sus-

tained neurons are independently active and are not biased toward the stimulus direction.

Indeed, the stimulus direction does not affect the footprint of a V1 neuron (Fig 3C top mid-

dle) and changes only the timing of the signals from the T-S neurons. This is why the aver-

aged in time thalamic input is independent of the stimulus direction. In contrast, the

temporal modulation of the current is determined by the correlation between the firing rates

of those T- and S-neurons that contribute to the footprint; it therefore depends upon the stim-

ulus direction.

Thalamic contribution was estimated in [41] as the ratio of the charge due to the thalamic

EPSC to the charge due to the EPSC in the intact cortex, Qcontrol/Qinhibited, which was found

to be 0.36 for stimulation with gratings of preferred directions. In our simulations, the values

of this ratio for responses of the representative neurons located in S1 in the L-N, T-S, and

On-Off models were 0.46, 0.43, and 0.47, respectively (Fig 5A–5C), which are comparable

with the experimental values. The mean values of the ratio Qcontrol/Qinhibited for all neurons

preferring the same stimulus direction in the L-N, T-S, and On-Off models were 0.42 ± 0.05,

0.41 ± 0.07, and 0.50 ± 0.10, respectively. Note that the ratio values for S1 match the mean

values.

Identification of a prevailing DS mechanism

The most important question related to DS is likely how a prevailing DS mechanism can be

identified. Though responses to drifting gratings have distinct characteristics in different DS

models, they are not necessarily robust criteria. For instance, as seen from Fig 7C, the tuning

of the thalamic input in V1 is very weak for the On-Off model; however, a moderate direction-

ality was still observed (Figs 3C, 5C and 7C). This is mostly due to the periodicity of the grat-

ings used as a stimulus. As noted at the beginning of the Results section, as weak DS is

expected in the On-Off model for stimulation with gratings or for stimuli that excite only the

On or Off subzone of the footprint. In contrast, a non-periodic stimulus that excites both sub-

zones is expected to reveal DS in the model. To determine the difference between the On-Off

and other DS mechanisms, we propose the application of an experimental protocol with a

non-periodic stimulus containing only a moving edge between white and black domains of the

screen (i.e. an initially black or white screen changing to white or black, respectively, with a

moving edge between the domains of different light intensities [Fig 9]). However, to avoid

contamination due to intracortical interactions, the experiment also requires inhibition of the

cortex. The simulations showed that an inhibition in the form of the opto-driven excitation of

interneurons, as applied in [13], is not sufficient to prevent contamination (Fig 9, gray lines).

The principal neurons of the cortex must be silent. For this purpose, a hyperpolarization of

neurons must be provided. During experiments, it can be done, presumably by means of

halorhodopsin. In simulations, we modelled such hyperpolarization by an additive negative
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Fig 9. Stimulation with a white-black edge and a bar. A. Responses to black-white and white-black edges moving in opposite

directions (left versus right plots) in the lagged-nonlagged, transient-sustained, and On-Off models under the conditions of the

intact cortex (dashed line), or inhibited cortex by either depolarization of interneurons by an injected current of 100pA (gray line)

or hyperpolarization of the excitatory neurons by an injected current of -200pA (black solid line). DS is evident in the L-N and

T-S models, not in the On-Off model. B. Responses to a bar. Legend as in A. C and D. DSI for the simulations in A and B. In the

On-Off model with hyperpolarization, DS is evident with a bar-stimulus, not an edge. The signals are from the representative

neuron in the cortical site S1 marked by the white circle in Fig 3C.

https://doi.org/10.1371/journal.pcbi.1008333.g009
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current (-200pA) injected in E-neurons. Under these conditions, the responses of the On-Off

model are qualitatively different from those of the L-N and T-S models (Fig 9A and 9C), show-

ing an absence of DS only in the On-Off model. It is in contrast to the response to a bar (Fig

9B and 9D), which is directionally selective even for the On-Off model with hyperpolarized

principle neurons, i.e. with for the thalamic input in this model. This qualitative difference

between the responses to an edge and a bar is observed only for the On-Off model. Hence, a

similar experimental protocol might help establish the contribution of the On-Off mechanism

to DS.

Discussion

In the present modeling study, a previously elaborated model of the neuronal population activ-

ity in the neocortex [34], which describes an orientational selectivity, has been adapted for DS

as well.

Modeling approach advantages

Responses to visual stimuli, such as gratings, are determined by network activity, to which

neuronal populations rather than single neurons substantially contribute. At the same time,

this activity is often studied by means of intracellular electrode registrations. Thus, an ideal

approach for mathematical modeling should describe the network activity and the activity of

recorded representative single neurons, whereas a direct description of all neurons of the net-

work might be considered redundant. This detailed but population-type approach of modeling

suits these idealized requirements and contrasts with the other comprehensive models, such as

the most prominent ones [35,52] in which the V1 network is directly simulated with a large

number of individual neurons. As an advantage, our approach provides an even wider set of

experiments captured by the model if those described in our previous paper on orientation

tuning and a comparison between in vitro and in vivo experiments are included [34].

Contrary to the detection of orientation based on mainly spatial peculiarities of the recep-

tive fields, the detection of stimulus direction also requires temporal peculiarities of the

responses. Thus, a temporal shift between the inputs should be taken into account. A strong

DS of the V1 neurons has been observed in the three cases of the integrated thalamic input

received from neurons with: (i) lagged and non-lagged, (ii) transient and sustained, and (iii)

On and Off receptive fields.

Differences between the three models

Quite similar levels of DS in the cases of L-N and T-S thalamic inputs (see Figs 3C, 5A and 5B)

were observed, and a weaker but comparable DS in the case of On-Off inputs was observed.

Both the mean voltage and the firing rate oscillate during the stimulus motion. These oscilla-

tions were the most stable in the T-S model (Fig 7B). In the On-Off (Fig 7A) and L-N (Fig 7C)

models, DS was more evident for the first and second cycles of the gratings, whereas a strong

three-fold decrement in both the mean voltage and the firing rate was observed for the third

and following cycles. These facts justify favoring the T-S model; however, the transient DS pro-

vided by the other models can be also considered functionally sufficient for the secondary

visual processing that receives information from the primary visual cortex fragmentarily, sepa-

rated on the time intervals of eye fixations between saccades. It is interesting that non-periodic

stimuli (single pair of black and white stripes, not gratings) result in the most prominent dif-

ference between the models (Fig 9). Another stimuli, such as moving dots [53], could also

potentially be helpful to distinguish between the models; however, our simulations were
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limited by computational resources and thus considered only a small area of the cortex, so

widespread stimuli could not be processed. Thus, this issue is a matter of future investigations.

The weakest directionality was obtained in the On-Off model. The On-Off division of the

visual cells is the first within the visual processing pathway [20,54] and is believed to underlie a

DS at the retinal level in lagomorphs and rodents [15,55]. This is not the case for animals with

more developed vision, such as carnivores and primates, where the predominant role in DS

belongs to higher structures, meaning the visual thalamus and the cortex. Accordingly, the

On-Off thalamic mechanisms in these animals (like in our mathematical model) could play a

secondary role in the cortical DS. This aspect aligns with the finding that the blockade of an

On pathway has no discernible effect on orientation and direction specificities in the cortex of

rabbits [56].

For the T-S mechanisms, the question about an origin of DS is related to a separation of the

visual system into two main processing streams, so-called X and Y channels, provided by cor-

responding retinal ganglion cells and thalamic cells. One specific characteristic of the Y and X

cells is the duration of their activity after a stimulus onset: fast for the “transient” cells (Y cells)

and prolonged for the “sustained” cells (X cells) [16,17,57]. For many years, it has been sup-

posed that only Y cells are responsible for motion processing [58], but D. Mastronarde, A.

Humphrey, and A. Saul [19,20] suggested that this is not the case. Instead, the temporal shift

between the responses of lagged and non-lagged counterparts irrespective of the X and Y types

underlies DS in the visual cortex. The prominent DS in both the L-N and the T-S models is in

favor of this suggestion.

Sources of tuning

Tuning to stimulus direction is provided by the cumulative action of the following factors: (i)

the projections of LGN to V1, described in Section 2.3 (Fig 1), (ii) the threshold rectification in

V1 neurons, and (iii) the recurrent intracortical interactions. Indeed, the LGN input to V1

excitatory neurons is tuned. This tuning is more evident in the T-S model (compare left and

right traces in Fig 7A) and is reflected in EPSC recorded in the inhibited cortex in L-N and T-S

models (Fig 5A and 5B); it is less evident in the On-Off model (compare left and right traces in

Fig 7B) and in EPSC recorded in the inhibited cortex (Fig 5C). Trivially, it is absent in the

model without any DS mechanism (Fig 5D). The second factor results in stronger tuning of

the mean membrane voltage of E-neurons than of I-neurons (Fig 7), which is due to the effect

of recurrent synaptic inputs. The inhibitory interneuronal activity reflected by the GABAergic

conductance on the excitatory neurons contribute to the tuning of voltage with depolarization

relative to the spike threshold. The threshold rectification produces the firing rate and thus

sharpens voltage tuning. Finally, the firing rate determines the probability for a single neuron

of a population to generate spikes, as shown in Fig 8. As a result, the preferred direction is

determined by the cumulative action of those factors, not simply by the preferred orientation

of the thalamic input, which is consistent with experimental findings [13].

Synaptic conductances underlying cortical tuning

Our simulated conductances are not to be directly compared with experiment-based estima-

tions. In our simulations, the GABA-component during gratings was rather constant over

time; minor GABA- and larger NMDA- and AMPA-oscillations were in-phase (Fig 7). On the

contrary, known experiment-based estimates of synaptic conductances [44,49,51,59] report

that the excitatory and inhibitory conductances oscillate in antiphase. It should be noted that

our simulated variables should not be directly compared with those estimates. Rather than

three separate (AMPA, NMDA, and GABA) components, the mentioned experimental studies
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reported estimates of two conductances: excitatory and inhibitory. This method, due to not

taking into account the voltage-dependence of NMDA receptor magnesium block, overesti-

mates oscillations of the inhibitory conductance and gives in-phase modulations of the excit-

atory and inhibitory signals. This limitation of the estimation procedure has been recently

revealed [60]. Our current simulations confirm that it is not an antiphase interaction of inhibi-

tion and excitation but rather oscillations of the excitatory synaptic drive that underly the tem-

poral modulations of the firing rate response, which contradicts to some earlier models based

on the mentioned estimations [61,62] but consistent with more recent work [35] and with the

study emphasizing the role of NMDA receptors in cortical temporal tuning [63]. Similar data

on the DS of the spike responses and membrane depolarization responses and excitatory and

inhibitory interactions underlying DS were obtained using in vivo whole-cell voltage-clamp

recording; it was shown that (1) both spike responses and membrane depolarization are sensi-

tive to the stimulus direction, and (2) the bias of the inhibitory responses was much weaker

than that of excitation or even not observed [64].

Cortical inhibition and directionality

In L-N and T-S models, the artificial inhibition of the primary visual cortex decreased the

directionality level but did not totally disrupt it; this is mostly related to the T-S model. This

might mean that cortical interneuronal communication enhances directionality. It is well-

known that cortical neurons with a preference for a particular direction are grouped into

directional columns [6,65]. Many studies documented patchy patterns of cortical horizontal

interconnections that have approximately the same center-to-center distance, such as between

functional columns [66–69]. In accordance with the wiring economy thesis [70], this connec-

tional pattern, such as cortical columns per se, can be a result of an attempt to minimize the

wiring cost for the intracortical connectivity. In this case, a reduction in directionality due to

cortical inhibition is expected. Moreover, the major role in strengthening directional tuning

belongs to intracortical interactions (Fig 4). This could mean that DS may be caused by the

inherent intracortical interactions unbiased by thalamic footprints.

Our modeling helps to estimate the role of pure intracortical interactions, which in the

presence of a pinwheel structure of the cortex could lead to a DS that is independent of any

thalamocortical input bias to stimulus direction. In fact, we have observed DS in this model,

which is much weaker than that in the L-N, T-S, and On-Off models. Naturally, DS disappears

after silencing the cortex. The effects of this mechanism cannot be completely excluded for

intact cortex functioning. Moreover, these intracortical interactions within the orientation

map are critical in allowing DS to emerge in the On-Off mechanism.

Development of the model

Because the detailed simulation presented here is consistent with the experimental data, in par-

ticular with those reported in A. Lien and M. Scanziani’s paper [13], our CBRD-model is rec-

ommended for a prognostic modelling of hypothetic experimental conditions, such as the

activation/blockage of a particular thalamic input, changing cortical connections, taking into

account particular types of GABAergic neurons, and alterations of neuromodulators and cellu-

lar messengers. In a future work, it is also worthwhile to compare model predictions with in
vivo data on wild-type and knock-out animals. For example, bursting properties of the cortical

pyramidal neurons are determined by the hyperpolarization-activated cationic current [71].

The hyperpolarization-activated cyclic nucleotide-gated channels (HCN) underlie this current;

within the CNS, these currents were first described in the retina [72]. In HCN knock-out ani-

mals, a special compensatory upregulation of the tonic GABA-A currents was revealed [73,74].
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In the retina, it was observed that directionality is dependent on the HCN channels [75]. These

conditions can be simulated with the proposed mathematical model.

The synaptic connections in our model were chosen without any optimization tuning. A

task-aimed parameter tuning is expected to result in better visual processing performance, as

in the model for motion processing in the MST area that uses an unsupervised optimization

technique based on multi-cause and principle component analysis [76] or the model that uses

Hebbian-like learning to tune the V1 model [35].

The model does not distinguish between different layers of the cortex, which is a reduction

of our former model, in which layers 4 and 2/3 were explicitly present [34]. This reduction was

made for simplicity. At the same time, we suppose that the transitions from layer to layer pro-

vide sharper tuning without a strengthening of recurrent excitatory connections [77]. The

effects of multiple layers can be considered in future research.

Model limitations

The major limitation of this model is the structuring of the visual cortex by functional col-

umns. The population approach is efficient in this case although its usage is not as reasonable

in case of salt-and-pepper distribution of orientationally and directionally selective neurons.

In the case of the cortex structured by pinwheels, the direction and orientation are implicitly

coded by x-y coordinates and do not contribute to the set of independent variables. In contrast,

in the salt-and-pepper case, the functional variables would increase the dimensionality of the

mathematical problem.

Another model limitation is related to characteristics of thalamic cells as sources of input to

cortical cells. The main sources of the geniculate input to the area V1 are layers A and A1 (in

carnivores) or magno- and parvocellular layers (in primates). As is known, layers A and A1 are

different, and several different features in addition to the ocular dominance of their cells were

observed. For example, electrophysiological studies report that On-cells are predominant at

the top of the A-layers and Off-cells at the bottom, whereas both types are balanced at the cen-

ters of the A-layers. The steepest gradients and maximum differences in the proportions of

On- and Off-cells have been obtained in layer A [78]. For the transient and sustained neurons

associated with Y and X cells [16,79,80], in layer A, Y cells are concentrated near the interlami-

nar borders and X cells in the centers of the layers, but these patterns are less obvious for layer

A1 [78,81]. Our own data related to the postnatal development of a cat’s LGN provides addi-

tional evidence of the different dynamics of the maturation of layers A and A1 [82]. These data

together allow for assuming there are unequal contributions of the geniculate layers A and A1

to cortical DS. This aspect has not been taken into account in our model because only func-

tional roles and not spatial placements of the thalamic neurons are important in the considered

DS mechanisms.

Also, the model does not take into account a heterogeneity of either exciting or inhibitory

cortical neuron populations. It is well-known that cortical inhibitory networks consist of mul-

tiple types of inhibitory neurons [83]; their role in cortical directionality is unclear. To clarify

this aspect, the mathematical model can be further developed to describe the behavior of dif-

ferent neuronal types separately.

Main predictions to be verified in experiments

The model predicts that the thalamic input biased toward DS and the intracortical interactions

not specifically tuned to DS can together provide an efficient motion detection by cortical neu-

rons in the presence of an orientation map structure. Hypothetically, this statement could be

proven or disapproven in experimental settings in which the synaptic plasticity can be
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switched off specifically for intracortical connections, thus leaving the thalamic projections

intact during the development of an animal, knowing that DS appears at a certain age [45]. A

lack of strong DS in such treated adult animals would disprove the main model prediction. On

the other hand, it is straightforward for the model to account for intracortical connections

tuned to the direction preferences of the connected neurons, which is expected to increase DS.

Patchy connections primarily between neurons with similar orientation preferences and, pre-

sumably, direction preferences are neglected in the model. These connections could drastically

change DS, so this aspect should be verified in experiments.

The separation of the thalamic footprints’ subfields (Fig 1B) is another assumption of the

model, similar to the assumptions made in alternative modeling studies [35,36]. Disapproval

of these assumptions would ruin the mentioned models.

Another model prediction mentioned above concerns the synaptic conductances underly-

ing cortical tuning. This prediction can be tested with experimental reconsideration of synap-

tic estimations in animals with pinwheels in vivo during stimulations with gratings, as

proposed in [60] or with alternative methods. Evidence of considerable oscillations of GABA-

mediated conductance in antiphase with glutamatergic conductances would demonstrate that

the present intracortical tuning of the model is incorrect.

The model emphasizes the importance of strong recurrent excitatory connections and asso-

ciates this tuning with a prolonged response to short activation. If this association is incorrect,

the model should be re-tuned in favor of DS specificity in the connections.

In conclusion, the proposed biophysical model realistically reproduces the activity of the

visual cortex, reveals the difference between the DS mechanisms, and helps to elaborate an

experimental protocol that would reveal a prevailing mechanism of DS. These findings along

with the mentioned previous modeling of orientation selectivity are a step towards a compre-

hensive biophysical modeling of the primary visual system in the frameworks of the population

rate coding concept.

Methods

Model of stimulation

Model stimuli are black-and-white sine-wave gratings of various orientations (from 0˚ to

180˚) and the spatial frequency 0.83 cycles per degree moving in two opposite directions

orthogonal to the orientation at a 2 Hz rate. Stimuli parameters were chosen close to those

found optimal in experiments [84].

The gratings are moving relative to the center of the screen (xc, yc) with some orientation

θ0, wavelength λ, frequency ν, amplitude of luminance modulation SA and background lumi-

nance B:

Sðx; y; tÞ ¼ Bþ SA cosð2pð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx � xcÞ
2
þ ðy � ycÞ

2

q

cos½arctgððx � xcÞ=ðy � ycÞÞ þ y0�=l � n tÞÞ ; ð1Þ

A basic set of the parameter values was as follows: θ0 = 0, λ = 1˚, ν = 2Hz, B = 50, SA = 40.

Model of LGN, and input to V1

We distinguish different types of LGN neurons that innervate V1 neurons, lagged and non-

lagged, transient and sustained, and On- and Off-cells, whose activity is characterized by the

firing rates LL
LGNðx; y; tÞ, LLGN(x, y, t), LT

LGNðx; y; tÞ, LS
LGNðx; y; tÞ, LOn

LGNðx; y; tÞ and LOff
LGNðx; y; tÞ,

respectively. We assume that the non-lagged, transient and On-populations are identical, i.e.

LT
LGNðx; y; tÞ ¼ LOn

LGNðx; y; tÞ ¼ LLGNðx; y; tÞ. At any given time moment, the firing rate of an

LGN neuron is calculated as a convolution of the stimulus with a receptive field (RF). The
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firing rate LLGN(x, y, t) at any given time moment t is a rectified convolution of the stimulus S
(x, y, t) distributed across the retina with a spatial-temporal receptive field (RF) D(x, y, t) [85].

The firing rate is calculated as follows:

~LLGNðx; y; tÞ ¼
Z t

0

dt
ZZ

dx0 dy0 Dðx0; y0; tÞ Sðx0; y0; t � tÞ ð2Þ

LLGNðx; y; tÞ ¼ ½~LLGNðx; y; tÞ�þ; ð3Þ

where the receptive field D(x, y, t)is approximated as the difference of central (excitation for

On-neurons) Dcen(x, y, t) and surround (inhibition for On-neurons) Dsur(x, y, t), each being

separable in space and time, and round. The spatial kernel displays a center-surround struc-

ture determined by axons from retinal ganglion cells described as a difference of two axisym-

metric Gaussian functions [85]:

Dðx; y; tÞ ¼ Dcenðx; y; tÞ � Dsurðx; y; tÞ ¼
Dcen

t ðtÞ � B
p s2

cen

exp �
x2 þ y2

s2
cen

� �

�
Dsur

t ðtÞ � B
p s2

sur

exp �
x2 þ y2

s2
sur

� �

:ð4Þ

An example of the LGN neuron’s RF is shown in Fig 1A, left. The temporal component is

determined by alpha-functions, as in [85], with a coefficient controlling the balance between

early and late components of LGN cell responses.

Here Dcen
t ðtÞ and Dsur

t ðtÞ are the temporal evolution functions

Dcen
t
ðtÞ ¼ t=t2

cen expð� t=tcenÞ � t=t2

late expð� t=tlateÞ: ð5Þ

and

Dcen
t
ðtÞ ¼ t=t2

sur expð� t=tsurÞ � t=t2

late expð� t=tlateÞ ð6Þ

with the time constants τcen, τsur and τlate, respectively. The spatial scales of the RF are σcen and

σsur. The parameters were: τcen = 10ms, τsur = 20ms, τlate = 64ms, σcen = 0.3 deg., σsur = 1.5 deg.

The parameter are from [85,86].

In practice, in order to optimize the memory usage, the convolutions with the time kernels

can be substituted by integration of equivalent ordinary differential equations. For example, a

variable

Qðx; y; tÞ ¼
Z t

0

dt Dcen
t ðx

0; y0; tÞ Sðx0; y0; t � tÞ

can be alternatively calculated from the following equation

t2

cen
d2Q
dt2
þ 2tcen

dQ
dt
þ Q ¼ Sðx; y; tÞ: ð7Þ

The sustained cells have in 3.5 times slower kinetics [13]. The firing rate LS
LGNðx; y; tÞ is cal-

culated from the Eqs (1)–(6) with the time constant tS
cen ¼ 3:5 tcen, tS

sur ¼ 3:5 tsur, t
S
late ¼

3:5 tlate instead of τcen, τsur and τlate. The lagged cell activity is LL
LGNðx; y; tÞ ¼ LLGNðx; y; t � dÞ.

For the sake of computational efficiency, the activity LLGN as a function of the delay is
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calculated approximately as two first terms of the Taylor expansion:

LLGNð~x; ~y; t � dðx; y; ~x; ~yÞÞ � LLGNð~x; ~y; tÞ � dðx; y; ~x; ~yÞ
@LLGNð~x; ~y; tÞ

@t

� �

þ

ð8Þ

For Off-neurons, the firing rate is calculated as LOff
LGNðx; y; tÞ ¼ ½� ~LLGNðx; y; tÞ�þ.

Thalamic input to V1. Orientation and direction selectivity is determined by a

footprint of the LGN-to-V1 projections as well as by properties of the LGN neurons, which

are different for the considered DS mechanisms. The thalamic input is determined as the

firing rate φTh E(x, y, t), which is a convolution of the LGN neuronal activity of the lagged

and non-lagged, or transient and sustained, or On- and Off-cells, LL
LGNðx; y; tÞ, LLGN(x, y,

t),LT
LGNðx; y; tÞ,L

S
LGNðx; y; tÞ,L

On
LGNðx; y; tÞ,L

Off
LGNðx; y; tÞ, respectively, with the footprint function

DLGN� V1ðx; y; ~x; ~y; iÞ, where iðx; y; ~x; ~yÞ is the index of the LGN neuronal population, which

attributes N, NL, T, S, On or Off indexes, respectively:

φThEðx; y; tÞ ¼
ZZ

d~xd~y
X

i

DLGN� V1ðx; y; ~x; ~y; iðx; y; ~x; ~yÞÞ Liðx;y;~x ;~yÞ
LGN ð~x; ~y; tÞ ð9Þ

A certain form of the footprint function DLGN� V1ðx; y; ~x; ~y; iðx; y; ~x; ~yÞÞ depends on the

mechanism of DS.

In the L-N and T-S DS models, the footprint of a direction-selective V1 neuron splits into

two halves along the axis of elongation, each sending signals from either lagged or nonlagged

(transient/sustained) thalamic cells (Fig 1B). For the On-Off model, the footprint of a V1 cell

consists of an elongated On zone and a circular Off zone. The width and elongation of the

footprints were 0.3 deg. and 0.8 deg., respectively. The shift was 0.6. deg. The neighboring V1

neurons that belong to different orientational hypercolumns have footprints of similar shapes

and prefer the same orientation but opposite directions of the stimulus movement. A kernel

expression that determines the DS bias is the equation for the thalamic input into V1 neuron,

φTh E(x, y, t), which is given separately for each of the three mechanisms.

Lagged and nonlagged cell-based mechanism of DS. For the L-N cell-based mechanism

of DS (L-N mechanism), two populations of L-N cells were considered. These populations are

equally and homogeneously distributed across the LGN (Fig 1A, middle). The L-N cells have

round, center-surround receptive fields (Fig 1A, left). In this particular version of the model,

only On-cells responding to a bright stimulus in the center of RF and being inhibited in the

surrounding area of RF are considered. Lagged cell activity is delayed by 40 ms according to

estimations from [25].

In accordance with the footprint of the LGN-to-V1 projections (Fig 1A, middle), the V1

neurons that prefer a certain direction receive an input signal from the nonlagged cells located

on one (right) side of the footprint and from the lagged cells located on the other (left) side,

whereas V1 neurons preferring the opposite (downward) direction conversely receive an input

signal from the nonlagged cells of the second (left) side and from the lagged cells of the first

(right) side.

The footprints of V1 neurons are oriented according to the neuronal positions in pin-

wheels. The pinwheels with clockwise progression of orientation columns are adjacent to the

ones with counterclockwise progression. The pinwheel-centers are distributed on the rectan-

gular grid with the pinwheel radius R and indexed by iPW and jPW. The adjacent columns

owing to different pinwheels have the same orientation preferences. The coordinates of the

pinwheel-center are xPW = (2 iPW − 1)R, yPW = (2 jPW − 1)R. The orientation angle at the point

(x, y) of V1 that belongs to the pinwheel (iPW, jPW) is defined as θ(x, y) = arctan((y − yPW)/(x
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− xPW)). The progression is determined by the factor ð� 1Þ
iPWþjPW . Finally, the input firing rate

is

φThEðx; y; tÞ ¼
ZZ

d~xd~y DLGN� V1ðx; y; ~x; ~yÞ LLGNð~x; ~y; t � dðx; y; ~x; ~yÞÞ; ð10Þ

with

DLGN� V1ðx; y; ~x; ~yÞ ¼
1

psprefsorth
exp �

x02

s2
pref
�

y02

s2
orth

 !

; ð11Þ

where LLGN is the activity of the LGN neuron (~x; ~y); DLGN� V1ðx; y; ~x; ~yÞ is the LGN-to-V1 foot-

print with the width across preferred orientation σpref and the width across orthogonal orienta-

tion σorth; dðx; y; ~x; ~yÞ is the delay that determines contributions of either lagged or nonlagged

cells. Because the direction preferences are given by a combination of inputs from the L-N

neurons according to the footprint (Fig 1B, left), DS is determined by the delay dðx; y; ~x; ~yÞ,
which is formalized as follows:

dðx; y; ~x; ~yÞ ¼ 40 ms; if ð� 1Þ
iPWþjPW x0 > 0; 0; otherwise; ð12Þ

x0 ¼ ð~x � xcf Þcos y � ð~y � ycf Þsin y ð13Þ

y0 ¼ ð~x � xcf Þsin yþ ð~y � ycf Þcos y: ð14Þ

Here (xcf, ycf) are the coordinates of the center of the footprint of V1 neuron in LGN, xcf =

xcf(x, y), ycf = ycf(x, y).

Transient and sustained cell based mechanism of DS. In the T-S cell based mechanism

of DS the input firing rate is

φThEðx; y; tÞ ¼
ZZ

d~xd~y DLGN� V1ðx; y; ~x; ~yÞ Liðx;y;~x ;~yÞ
LGN ð~x; ~y; tÞ; ð15Þ

where iðx; y; ~x; ~yÞ is the index of T or S neurons, whose firing rates are calculated with different

time constants in the temporal kernel of the convolution. It is defined according to the foot-

print (Fig 1B, middle):

iðx; y; ~x; ~yÞ ¼ }S}; if ð� 1Þ
iPWþjPW x0 > 0; }T}; otherwise: ð16Þ

In this case, DLGN� V1ðx; y; ~x; ~yÞ, x0 and y0 are given by Eqs (11), (13) and (14).

On- and Off cell-based mechanism of DS. In the On- and Off cell-based mechanism of

DS the input firing rate is

φThEðx; y; tÞ ¼
ZZ

d~xd~y
DLGN� V1; Onðx; y; ~x; ~yÞ LOn

LGNð~x; ~y; tÞ

þDLGN� V1; Off ðx; y; ~x; ~yÞ LOff
LGNð~x; ~y; tÞ

 !

; ð17Þ
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where the shifted On- and Off-subfields are given by

DLGN� V1; Onðx; y; ~x; ~yÞ ¼
1

psprefsorth
exp �

x02

s2
pref
�

y02

s2
orth

 !

; ð18Þ

DLGN� V1; Off ðx; y; ~x; ~yÞ ¼
1

ps2
pref

exp �
x̂2 þ ŷ2

s2
pref

 !

; ð19Þ

where

x̂ ¼ ð~x � xOff
cf Þcos y � ð~y � yOff

cf Þsin y; ð20Þ

ŷ ¼ ð~x � xOff
cf Þsin yþ ð~y � yOff

cf Þcos y; ð21Þ

xOff
cf ¼ xcf � D

Off
ð� 1Þ

iPWþjPWcos y; ð22Þ

yOff
cf ¼ ycf � D

Off
ð� 1Þ

iPWþjPW sin y; ð23Þ

with ΔOff as the shift of the Off-subfield, and x0 and y0 given by Eqs (13) and (14).

Model of V1

The model of V1 cortical area activity is an extension of a previous model describing orienta-

tion processing [34]. Neurons in V1 show more complex RFs than LGN cells. The V1 neurons

vigorously respond to gratings moving throughout their RFs. It was assumed that most of neu-

rons in V1 are directionally selective [87,88] despite the fact that some neurons are tuned only

to orientation [4]. V1 is modeled as a 2-dimensional continuum of neuronal populations. In

simulations, the modeled cortical area of the cortex is 1 mm x 1.5 mm and includes six orienta-

tion hypercolumns. (Spatial coordinates as arguments of variables are omitted here.) Each

point of the cortical continuum contains two neuronal populations, excitatory (E) and inhibi-

tory (I), connected by AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid),

NMDA (N-methyl-d-aspartate), and GABA-A mediated synapses providing recurrent intra-

cortical interactions and AMPA and NMDA for the geniculate input. The strengths of the

external connections correspond to the pinwheel architecture, and thus neurons receive inputs

in accordance with their orientation and direction preferences. The profile of the intracortical

connections is isotropic, i.e., the maximum conductances depend on the distance between the

pre- and postsynaptic populations.

According to the definition of a neuronal population [89], neurons of one population

located at a given point both receive a common input that comes from presynaptic populations

and an individual noise that takes into account any differences in the intrinsic and input

parameters of neurons as well as a spontaneous activity of ionic channels. The membrane

potentials and ionic channel states of these neurons are dispersed due to the noise, and thus

they are distributed in a space of neuronal refractority. Neurons that fire contribute to the pop-

ulation firing rate, which is the output measure of the population activity. The mathematical

description of each population is based on the probability density approach [89,90], namely,

the CBRD approach [37,38,91,92], where the neurons within each population are distributed

according to their refractority states, which are characterized with the time elapsed since the

last spike, t�. Single population dynamics are governed by the equations for neuronal density,

the mean over noise realizations voltage, and the gating variables. The model for each E- and
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I- neuronal populations takes into account two neuronal compartments and a set of voltage-

gated ionic currents, including the adaptation currents.

According to the structure of interneuronal connections, the neuronal population firing

rate determines the presynaptic firing rate, which in turn controls the dynamics of synaptic

conductances. The presynaptic firing rate predetermined by the excitatory population firing

rate determines the dynamics of AMPA and NMDA synaptic conductances. The inhibitory

population controls GABA conductance. The synaptic conductances are the input signals

received by the postsynaptic neuronal populations. The membrane voltage distribution across

t� determines the output firing rate and so on.

Model neurons have two compartments: somatic and dendritic. The inhibitory synapses

are assumed to be located at the soma, whereas the excitatory synapses are at the dendrites.

Because in experiments the synaptic currents are usually measured at the soma, only somatic

conductances are calculated in the model. The two-compartment model from [34,93] implic-

itly solves a reverse voltage-clamp problem, thus estimating the dendritic synaptic current.

Each of the somatic AMPA, GABA, and NMDA conductances (the AMPA conductance medi-

ated by the external thalamic terminals is marked by the index with a dash, i.e. gAMPA0,E) is cal-

culated with a second order ordinary differential equation [34]. An input function to the

equation is the presynaptic firing rate. Equations connecting the somatic firing rate with the

presynaptic firing rate are as given in [34], whereas the presynaptic thalamic input has been

modified as described. The full CBRD model for interacting adaptive regular spiking pyrami-

dal cells and fast spiking interneurons is given below.

CBRD-approach. The conductance-based refractory density approach [37,38,91,94] con-

siders a population of an infinite number of Hodgkin-Huxley-like neurons receiving both a

common input and an individual for each neuron noise. In any arbitrary case of transient or

steady-state stimulation the firing rate of such population can be quite precisely and computa-

tionally effectively calculated by solving a system of equations in partial derivatives, 1-d trans-

port equations. The equations govern an evolution of neuronal states distributed in a phase

space of the time elapsed since last spikes, t�. They contain the Hodgkin-Huxley equations for

the membrane voltage and gating variables (except sodium ones), parameterized by t�, as well

as the equation for the neuronal density in t�-space, ρp(t, t�), where the index of a population p
substitutes for E or I. The output characteristic of the population’s activity is the firing rate

νp(t), which is equal to ρp in the state of a spike, t� = 0, i.e. νp(t)� ρp(t, 0).

Basic neurons have 2-compartments with the somatic and dendritic voltages Up(t, t�) and

Up
dðt;t�Þ. In comparison with one-compartment model, the extra parameters is the ratio of

dendritic to somatic conductances γ and the dendritic length. The inhibitory synapses are

located at soma, contributing into the somatic synaptic current Isoma, whereas the excitatory

synapses are at dendrites, determining the dendritic synaptic current Idendr. Due to the con-

struction of the 2-compartment model [93], both type synaptic conductances are imposed to

be somatic, in spite of the localization, in order to be compared with experimental whole-cell

somatic registrations. Approximations of voltage-gated ionic currents Ip
voltage� gatedðUp; t; t�Þ dif-

fer for excitatory and inhibitory neurons. Parameterized by t�, the governing equations are as

follows:

@rp

@t
þ
@rp

@t�
¼ � rpHðUp;gp

totÞ; ð24Þ

C
@Up

@t
þ
@Up

@t�

� �

¼ � gLðU
p � VLÞ þ

2g

l
gLðU

p
d � UpÞ þ Ip

voltage� gatedðU
p; t; t�Þ þ Isoma ð25Þ
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C
@Up

d

@t
þ
@Up

d

@t�

� �

¼ � gLðU
p
d � VrestÞ �

2

l
gLðU

p
d � UpÞ þ

Idendr

g
; ð26Þ

where gp
totðt;t�Þ is the total conductance including the leak, voltage-gated and synaptic conduc-

tance gp
synðt;U

pÞ ¼ gAMPA;pðtÞ þ gNMDA;pðt;U
pÞ þ gGABA;pðtÞ; l is the square ratio of the dendritic

length to the characteristic length. The somatic and dendritic synaptic currents Isoma and Idendr

are calculated as

Isoma ¼ gGABA;pðtÞðVGABA � UpÞ

Idendr ¼
l t0

m

2

d
dt
þ 1þ

l
2

� �

ðgAMPA0;pðtÞ þ gAMPA;pðtÞÞðVAMPA � UpÞ þ gNMDA;pðtÞðVNMDA � UpÞ
� �

;

where the differential operator represents the solution of the reverse problem of dendritic cur-

rent estimation from somatically registered-like conductances [93]. The synaptic conductance

kinetics is estimated from somatic responses to stimulation of presynaptic neuronal popula-

tion, thus it implicitly accounts not only the kinetics of synaptic channels but also the dendritic

and axonal propagation delays. For the dendritic compartment, the differential operator

sharpens the transient effect of the channels, thus providing better agreement between somatic

postsynaptic currents and potentials. This sharpening affects only glutamatergic channels

located on the dendritic compartment.

Hazard function. The source term in the Eq (24) is the hazard function H which is

defined as the probability for a single neuron to generate a spike, if known actual neuron state

variables. The approximation of the hazard function H has been obtained for the case of white

noise [37] and color noise [38] as a function of Up(t), gp
totðt; t�Þ, and parameters of the noise

amplitude in the resting state s0
V , the spike threshold voltage Vth, and the ratio of the mem-

brane time constant τm = C/gtot to the noise time constant τNoise, k = τm/τNoise:

HðU; gp
totÞ ¼ Aþ B; ð27Þ

A ¼
1

tm
e0:0061� 1:12 T� 0:257 T2 � 0:072 T3 � 0:0117 T4

ð1 � ð1þ kÞ� 0:71þ0:0825ðTþ3Þ
Þ;

B ¼
ffiffiffi
2
p

�
dT
dt

� �

þ

ffiffiffi
2

p

r
expð� T2Þ

1þ erf ðTÞ
; T ¼

Vth � Up

ffiffiffi
2
p

sV

ffiffiffiffiffiffi

gp
tot

g0
tot

s

;

where T is the membrane potential relative to the threshold, scaled by the noise amplitude σv

which increases with the synaptic conductance as sV ¼ s
0
V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ gp

syn=g0
tot

p
; g0

tot is the total

somatic conductance at rest. The term A is the hazard for a neuron to cross the threshold

because of noise, derived analytically [37] and approximated by exponential and polynomial

for convenience; B is the hazard for a neuron to fire because of depolarization due to determin-

istic drive, i.e. the hazard due to drift in the voltage phase space. Note that the H-function is

independent of the basic neuron model and does not contain any free parameters or functions

for fitting to any particular case. Thus, H-function is the same for excitatory and inhibitory

populations.
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Voltage-dependent channels of excitatory neurons. For E-neurons, the approximations

for the components of the total (except sodium), voltage-gated current IE
voltage� gatedðU

E; t; t�Þ ¼
� IDR � IA � IM � IAHP are mainly based on the CA1 pyramidal cell model from [95], where

instead of full description of calcium dynamics and calcium-dependent potassium currents a

cumulative after-spike hyperpolarization (AHP) current, that provides an effect of slow spike

timing adaptation [96]. The set of ionic currents includes the voltage-dependent potassium

currents IDR and IA responsible for spike repolarization, the slow potassium current IM that

contributes to spike frequency adaptation and the potassium current IAHP, implicitly depen-

dent on calcium dynamics and contributing to spike frequency adaptation. Approximating

formulas for the currents INa, IDR, IA and IM are taken from [95]; the approximation for IAHP is

given in [96].

The voltage-dependent potassium current IDR:

IDRðU
E; t; t�Þ ¼ �gDR xðtÞ yðtÞ ðUEðtÞ � VKÞ; ð28Þ

@x
@t
þ
@x
@t�
¼

x1ðUEÞ � x
txðUEÞ

; ð29Þ

@y
@t
þ
@y
@t�
¼

y1ðUEÞ � y
tyðUEÞ

ð30Þ

tx ¼ 1=ðaþ bÞ þ 0:8 ms;

x1 ¼ a=ðaþ bÞ;

a ¼ 0:17 exp ððUE þ 5Þ � 0:090Þms� 1;

b ¼ 0:17 exp ð� ðUE þ 5Þ � 0:022Þms� 1;

ty ¼ 300 ms;

y1 ¼ 1=ð1þ expððUE þ 68Þ � 0:038ÞÞ;

The voltage-dependent potassium current IA:

IAðU
E; t; t�Þ ¼ �gA x4ðtÞ y3ðtÞ ðUEðtÞ � VKÞ; ð31Þ

@x
@t
þ
@x
@t�
¼

x1ðUEÞ � x
txðUEÞ

; ð32Þ
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@y
@t
þ
@y
@t�
¼

y1ðUEÞ � y
tyðUEÞ

ð33Þ

tx ¼ 1=ðax þ bxÞ þ 1 ms;

x1 ¼ ax=ðax þ bxÞ;

ax ¼ 0:08 expððUE þ 41Þ � 0:089Þ ms� 1;

bx ¼ 0:08 expð� ðUE þ 41Þ � 0:016Þ ms� 1;

ty ¼ 1=ðay þ byÞ þ 2 ms;

y1 ¼ ay=ðay þ byÞ;

ay ¼ 0:04 � expð� ðUE þ 49Þ � 0:11Þ ms� 1;

by ¼ 0:04 ms� 1;

The voltage-dependent potassium current IM:

IMðU
E; t; t�Þ ¼ �gM x2ðtÞ yðtÞ ðUEðtÞ � VKÞ; ð34Þ

@x
@t
þ
@x
@t�
¼

x1ðUEÞ � x
txðUEÞ

; ð35Þ

@y
@t
þ
@y
@t�
¼

y1ðUEÞ � y
tyðUEÞ

ð36Þ

tx ¼ 1=ðaþ bÞ þ 8 ms;

x1 ¼ a=ðaþ bÞ;

a ¼ 0:003 expððUE þ 45Þ � 0:135Þ ms� 1;

b ¼ 0:003 expð� ðUE þ 45Þ � 0:090Þ ms� 1;

ty ¼ 1000 ms;

y1 ¼ 1=ð1þ expððUE þ 40Þ=5ÞÞ;
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The adaptation current IAHP:

IAHPðU
E; t; t�Þ ¼ �gAHP xðtÞ yðtÞ ðUEðtÞ � VKÞ; ð37Þ

@x
@t
þ
@x
@t�
¼

x1ðUEÞ � x
twðUEÞ

; ð38Þ

@y
@t
þ
@y
@t�
¼

y1ðUEÞ � y
tyðUEÞ

ð39Þ

tw ¼ 2000=ð3:3expððUE þ 35Þ=20Þ þ expð� ðUE þ 35Þ=20ÞÞ ms;

x1 ¼ 1=ð1þ expð� ðUE þ 35Þ=4ÞÞ;

ty ¼ 1000 ms;

y1 ¼ 1=ð1þ expððUE þ 40Þ=5ÞÞ;

Voltage-dependent channels of interneurons. The model of the fast-spiking single-com-

partment interneurons taken from [97] reduces the voltage-gated current to an only potassium

current

II
voltage� gatedðU

I; t; t�Þ ¼ �gK n4ðtÞ ðUIðtÞ � VKÞ; ð40Þ

@n
@t
þ
@n
@t�
¼

n1ðUIÞ � n
tnðUIÞ

; ð41Þ

tn ¼ ð0:5þ 2=ð1þ expð0:045ðUI � 50Þms;

n1 ¼ 1=ð1þ expð� 0:045ðUI þ 10ÞÞÞ:

Boundary conditions. According to the conservation of the number of neurons in a pop-

ulation, the firing rate is calculated as a sink of neurons from their state t� due to spiking, ρp(t,
t�) H(Up(t, t�), integrated over the whole phase space, i.e.

npðtÞ � rpðt; 0Þ ¼
Z1

þ0

rpðt; t�ÞHðUpðt; t�ÞÞdt�: ð42Þ

It is the boundary condition for Eq (24).

The spike duration is taken into account by introducing the time interval 0< t� < ΔtAP

during which the voltage and the gating variables are fixed to their reset values. It defines the

PLOS COMPUTATIONAL BIOLOGY Model of direction selectivity

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008333 October 14, 2020 31 / 42

https://doi.org/10.1371/journal.pcbi.1008333


boundary conditions for eqs.(A2-A14) at t� = ΔtAP which are as follows:

Upðt;DtAPÞ ¼ Vreset; ð43Þ

Up
dðt;DtAPÞ ¼ Vrest; ð44Þ

IDR : xðt;DtAPÞ ¼ 0:262; yðt;DtAPÞ ¼ 0:473; ð45Þ

IA : xðt;DtAPÞ ¼ 0:743; yðt;DtAPÞ ¼ 0:691: ð46Þ

The reset values for the fast gating variables in Eqs (45) and (46) were obtained with the

basic single neuron model. With a rather arbitrary input providing a spike, these values were

measured at the moment of a voltage maximum at the spike. The reset level for each slow con-

ductance in the CBRD model was calculated as a sum of its value at a peak of spike-release dis-

tribution in the t�-space and an increment at spike:

IM : xðt;DtAPÞ ¼ xðt; t��Þ þ 0:175 ð1 � xðt; t��ÞÞ; yðt;DtAPÞ ¼ yðt; t��Þ � 0:003 yðt; t��Þ; ð47Þ

IAHP : xðt;DtAPÞ ¼ xðt; t��Þ þ 0:018 ð1 � xðt; t��ÞÞ; yðt;DtAPÞ ¼ yðt; t��Þ � 0:003 yðt; t��Þ; ð48Þ

where t�� is such that

rðt; t��ÞHðt; t��Þ ¼ max
0< t�<þ1

rðt; t�Þ Hðt; t�Þ:

The increment values for the slow gating variables in Eqs (47) and (48) were also measured

at a single spike of the single neuron model.

Parameters of basic neurons are as follows:

�gDR ¼ 0:76 mS=cm2; �gA ¼ 4:36 mS=cm2;

�gM ¼ 0:76 mS=cm2; �gAHP ¼ 0:6 mS=cm2;

C ¼ 0:7 mF=cm2; t0

m ¼ C=g0

tot ¼ 14:4 ms; ðgL ¼ 0:048 mS=cm2Þ;

Vthðt
�Þ ¼ ð� 40þ 50expð� t�=10 msÞ mV;

Vreset ¼ � 40 mV; DtAP ¼ 1:5 ms;

g ¼ 2:85; s0

V ¼ 6 mV;

S ¼ 10� 4 cm2:

Here S is the membrane area. The dependence of Vth(t�) is taken from a full single neuron

model [37], allowing to take into account the effect of sodium channel inactivation on the

threshold dynamics [98]. σν is the noise amplitude meaning the dispersion of individual neu-

ron’s voltage fluctuations in a stationary state. Its scaling with gsyn approximately reflects the

fact of the synaptic noise increase with the increase of mean synaptic drive [99]. Stochastic

input to E2-neurons Inoise was modeled as Ornstein-Uhlenbeck process with the time correla-

tion 10 ms and the dispersion 20pA for the ID-regime simulation and 40pA for the IID-regime

simulation.
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The equations for the input synaptic conductances are given below, as well as the values of

the reversal potentials. When calculating the dynamics of a neural population, the integration

of Eqs (25), (26) and (28)–(39) determines the evolution of the distribution of voltage UE

across t�. Then, the effect of crossing the threshold and the diffusion due to noise are taken

into account by H-function, Eq (27), substituted into the equation for neuronal density, Eq

(24). The integral Eq (40) results in the output firing rate νE(t).
Lognormal distribution of synaptic weights within each population. The CBRD-

approach is generalized to the case of lognormal distribution of synaptic weights within each

p-population [100]. In this case, instead of equal total synaptic current, neurons receive log-

normally distributed current. For the current scaled by its mean across the distribution, η, the

distribution is

cðZÞ ¼
expð� ðln ZÞ2=ð2 s2

LNÞÞffiffiffiffiffiffi
2p
p

sLN Z
ð49Þ

The membrane potential of neurons parameterized with η, Up
Z
, can be found as

Up
Z
ðt; t�Þ ¼ ðUpðt; t�Þ � Up

freeðt
�ÞÞ xþ Up

freeðt
�Þ; ð50Þ

where Up
freeðt�Þ is the unperturbed potential defined for zero synaptic input.

The density of neurons parameterized by η and distributed in the phase space t� is denoted

as rp
Z
ðt;t�Þ. Calculation of rp

Z
ðt;t�Þ requires solving of a continuum of Eq (1) (or Eq (22)) for rp

Z

instead of ρp with HðUp
Z
;dUp

Z
=dtÞ. The output firing rate is defined as

npðtÞ ¼
Z 1

0

rp
Z
ðt; 0ÞcðZÞ dZ ð51Þ

In numerical simulations, we set the parameter of the lognormal distribution σLN = 0.75

and discretized the η-space by 15 intervals.

Mean somatic and dendritic membrane potentials are calculated as follows:

�UðtÞ ¼
Z 1

0

Uðt; t�Þ
Z 1

0

rZðt; t
�Þ cðZÞ dZ dt� ð52Þ

and

�UdðtÞ ¼
Z 1

0

Udðt; t
�Þ

Z 1

0

rZðt; t
�Þ cðZÞ dZ dt�: ð53Þ

Approximation of synaptic conductances. The synaptic conductances are described

with the second-order differential equations [34] as follows:

gAMPA0;pðtÞ ¼ �gAMPA0;p mAMPA0;pðtÞ ; gAMPA;pðtÞ ¼ �gAMPA;p mAMPA;pðtÞ ; ð54Þ

gNMDA;pðt;U
pÞ ¼ �gNMDA;p fNMDAðU

pðtÞÞmNMDA;pðtÞ; ð55Þ

fNMDAðVÞ ¼ 1=ð1þMg=3:57 expð� 0:062 VÞÞ;

gGABA;pðtÞ ¼ �gGABA;p mGABA;pðtÞ; ð56Þ
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Mg is the magnesium (Mg2+) concentration in mM; ms,p(t) is the non-dimensional synaptic

conductance which is approximated by the second order ordinary differential equation:

ts;p
r t

s;p
d

d2

dt2
þ ðts;p

r þ t
s;p
d Þ

d
dt
þ 1

� �

ms;pðtÞ ¼ t
s;p 1 � ms;pðtÞ
� �

φi;pðtÞ; ð57Þ

ts;p ¼ ðts;p
r � t

s;p
d Þ=ððt

s;p
d =t

s;p
r Þ

t
s;p
d =ðt

s;p
r � t

s;p
d Þ � ðt

s;p
d =t

s;p
r Þ

t
s;p
r =ðt

s;p
r � t

s;p
d ÞÞ; ð58Þ

if ts;p
r 6¼ t

s;p
d ;

ts;j
r e; otherwise:

Here φi,p is the presynaptic firing rate determined by axons of the population i on the post-

synaptic population p. In neglect of spatial propagation and temporal delays the presynaptic

firing rate is equivalent to the somatic firing rate, i.e.φi,p� νi. The index s is the synapse type, s
= AMPA, GABA or NMDA; the index i = Th means thalamic input for s = AMPA0; i = E for s =

AMPA or NMDA; and i = I for s = GABA; �g s;p is the maximum conductance, ts;p
r and t

s;p
d are

the rise and decay time constants. We imply that the synaptic time constants are estimated

from the somatic responses to the stimulation of a presynaptic neuronal population, thus these

time constants characterize not only synaptic channel kinetics but the dendritic and axonal

propagation delays as well. The time scale τs,p is chosen in the form of Eq (56) in order to pro-

vide independence of the maximum of gs,p(t) on ts;p
r and t

s;p
d , when gs,p(t) is evoked by a short

pulse of φi,p(t).
The parameter values were as follows: �gAMPA0;I ¼ 0, �gAMPA0;E ¼ �gAMPA;E ¼ �gAMPA;I ¼ 0:4 mS/

cm2, �gNMDA;E ¼ �gNMDA;I ¼ 1:6 mS/cm2, �gGABA;E ¼ 1:2 mS/cm2, �gGABA;I ¼ 0:2 mS/cm2, VAMPA =

VNMDA = 0, VGABA = −77mV, Mg = 2 mM, tAMPA;E
r ¼ tAMPA;I

r ¼ 1:7 ms, t
AMPA;E
d ¼ t

AMPA;I
d ¼ 8:3

ms, tNMDA;E
r ¼ tNMDA;I

r ¼ 6:7 ms, t
NMDA;E
d ¼ t

NMDA;I
d ¼ 100 ms, tGABA;E

r ¼ tGABA;I
r ¼ 0:5 ms,

t
GABA;E
d ¼ t

GABA;I
d ¼ 20 ms.

Representative neurons. Representative neurons of each of the populations were mod-

eled according with the basic single neuron model with the same synaptic inputs as for the

populations. The activity of the representative neurons does not affect the network. The repre-

sentative neuron model is described by the equations for the membrane voltage, Eqs (25), (26)

and (28)–(39) for E-population, and Eqs (24), (25), (40) and (41) for I-population, where the

sum of partial derivatives were substituted by the total derivative in time t, and the sodium cur-

rent was explicitly present in the right-hand part of Eq (25). The sodium current dependent on

voltage U was approximated by the 4-state Markov model [95]:

INaðtÞ ¼ �gNa x1ðtÞðUðtÞ � VNaÞ;

x1 þ x2 þ x3 þ x4 ¼ 1;

dxi

dt
¼
X4

j¼0; j6¼i

Aj;ixj � xi

X4

j¼0; j6¼i

Ai;j; i ¼ 1; 2; 3
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A1;2 ¼ 3 ms� 1; A1;3 ¼ f 1;3

1
ðUÞ; A1;4 ¼ f 1;4

1
ðUÞ;

A2;1 ¼ 0; A2;3 ¼ f 2;3

2
ðUÞ; A2;4 ¼ 0;

A3;1 ¼ f 3;1

1
ðUÞ; A3;2 ¼ 0; A3;4 ¼ f 3;4

2
ðUÞ;

A4;1 ¼ f 4;1

1
ðUÞ; A4;2 ¼ 0; A4;3 ¼ 0

f i;j
1 ðUÞ ¼ ft

i;j
min þ 1=expðU � Vi;j

1=2k
i;jÞg

� 1
;

f i;j
2 ðUÞ ¼ ft

i;j
min þ ½ðt

i;j
max � t

i;j
minÞ

� 1
þ expðU � Vi;j

1=2k
i;jÞ�
� 1
g
� 1

;

t1;3

min ¼ 1=3 ms; V1;3

1=2 ¼ � 51 mV; k1;3 ¼ � 2 mV;

t1;4

min ¼ 1=3 ms; V1;4

1=2 ¼ � 57 mV; k1;4 ¼ � 2 mV;

t2;3

min ¼ 1 ms; V2;3

1=2 ¼ � 53 mV; k2;3 ¼ � 1 mV; t2;3

max ¼ 100 ms;

t3;1

min ¼ 1=3 ms; V3;1

1=2 ¼ � 42 mV; k3;1 ¼ 1 mV;

t3;4

min ¼ 1 ms; V3;4

1=2 ¼ � 60 mV; k3;4 ¼ � 1 mV; t3;4

max ¼ 100 ms;

t4;1

min ¼ 1=3 ms; V4;1

1=2 ¼ � 51 mV; k4;1 ¼ 1 mV:

Numerical approach for CBRD model. The transport equations with the independent

variables t and t� are solved with numerical scheme constructed in the framework of the

Lagrangian description. The semi-infinite t�-space is bounded by the interval [0, B] and discre-

tized by N intervals. Each i-indexed interval is represented by a non-spiking probe neuron, ini-

tially located at t�i . Each probe neuron i represents a certain fraction of a population. The states

of the probe neurons (the voltage and gating variables) and the neuronal density attributed to

probe neurons evolve according to the main transport equations with the total derivative in

time in the left-hand part. Their t�-coordinates increase up to B. If a probe neuron reaches t� =

B, then its t�-coordinate is renewed to 0, their potential and gating variables are replaced or

incremented in accordance with the boundary conditions. The neuronal density at t� = 0 is

equal to the flux ρH accumulated during the time B/N. In the present study, this approach has

been applied with the parameters BE = 100ms, NE = 100, BI = 40ms, NI = 50.

Spatial connections. The horizontal cortical connections are supposed to be local and iso-

tropic. In contrast to [98], the patchy connections have been neglected. They are determined

by the relations between the somatic rates νi and presynaptic firing rates φi,j, where i and j are

the indexes of the pre- and postsynaptic populations, respectively. In the case of 2-d geometry,

all variables depend on the spatial coordinates x and y, oriented along the surface of the cortex.
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A gaussian profile of the strengths of the connections is assumed, i.e.

�i;jðt; x; yÞ ¼
ZZ

niðt; x0; y0Þ e� ððx� x0Þ2þðy� y0Þ2Þ=d2
i;j dx0 dy0=

ZZ

e� ððx� x0Þ2þðy� y0Þ2Þ=d2
i;j dx0 dy0

where di,j is the characteristic length. The parameters were as follows: dE,E = 100μm, dE,I =

500μm, dI,E = 200μm and dI,I = 100μm, which roughly correspond to electrophysiological

paired recordings estimations [101]. Cortex region was 1 mm×1,4 mm, containing 2×3 regu-

larly distributed pinwheels. Numerical parameters: time step 0.1ms, spatial grid 24×36.

The software code written in Delphi and the compiled program “Brain” are available from

http://www.ioffe.ru/CompPhysLab/MyPrograms/Brain/Brain.zip.

Modeling of V1 silencing and recordings from single neurons

To reveal the contribution of LGN-to-V1 projections into DS, Lien and Scanziani [13,41]

optogenetically inhibited the visual cortex of mice with interneurons expressing channelrho-

dopsin. Monochrome light led to the activation of interneurons and the subsequent inhibition

of their target neurons, including the excitatory neurons in layer 4. In this way, the contribu-

tion of cortico-cortical interconnections was minimized, thus revealing the contribution of

LGN-to-V1 connections. In this model, we substituted the effect of light by the effect of the

depolarizing current 100 pA applied to the interneurons.

To register the behavior of a single representative neuron, we simulated the neuron with

the basic Hodgkin-Huxley-like model that was used for the construction of the CBRD model.

Because in the cortex each single neuron receives synaptic inputs determined by the activity of

neuronal populations, the representative neuron was simulated with synaptic conductances

obtained from the equations of the population activity. In addition, the neuron can be con-

trolled by a patch-clamp electrode that injects a current in the current-clamp mode or holds

the membrane potential in the voltage-clamp mode. For instance, experimental registrations

by Lien and Scanziani [13,41] were done with the voltage clamped at the level of the GABAer-

gic channel reversal potential, thus measuring EPSC. In simulations, it is equal to -77mV.

Because the representative neuron is simply used to observe the population dynamics, it does

not affect the network. Locations of the representative neurons are marked with white dots in

Figs 3C, 4A and 4B. For the sake of statistical measurements of the ratio of the charges supplied

with the EPSC for intact versus inhibited cortex Qcontrol/Qinhibited (Fig 8), we simulated patch-

clamp recordings in the voltage-clamp mode in all nodes of the spatial grid. Specifically, for

each of the DS models we: (i) calculated EPSCs in all nodes of the spatial grid, (ii) calculated

Qcontrol and Qinhibited by integrating over the interval from 0 to 1600ms the EPSCs with the sub-

tracted background level before the stimulation (-135 and -125pA for the intact and inhibited

cortex, respectively), and (iii) calculated the mean value and the dispersion of Qcontrol/Qinhibited

across all nodes with the same preferred orientation as in the site shown in Fig 3C.

Data analysis

For each point of the computational domain the field of the excitatory population firing rate

νE(t, x, y) and the membrane potential �U Eðt; x; yÞ were averaged over the time interval from

600 to 1600ms since the stimulus onset. Based on modulations of these signals, the field of the

preferred directions was found. At each point, the direction selectivity index (DSI) was calcu-

lated as in [13]: DSI = (Pref − Nonpref)/Pref, where Pref and Nonpref are the amplitudes of

the modulated component of the response (firing rate or voltage) to gratings of the preferred

and opposite directions, The mean DSIs were calculated by averaging over the entire computa-

tional domain.
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The charge Q was calculated as an integral of EPSC(t) − EPSC0 over the time period from 0

to 1600ms, where EPSC0 is the steady-state response to the initial gray screen. With the basic

parameters it was equal to -135 and -125pA for the intact and inhibited cortex, respectively.
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